- Supporting Information -

¹⁵N NMR Spectroscopic and Theoretical GIAO-DFT Studies for the Unambiguous Characterization of Disubstituted 1,2,3-Triazoles

Miriam Corredor, Jordi Bujons, Àngel Messeguer and Ignacio Alfonso*

Corresponding author: ignacio.alfonso@iqac.csic.es

		Page
1.	Data for the 1,4-disubstituted 1,2,3-triazoles	S2
2.	Data for the 1,5-disubsituted 1,2,3-triazoles	S24
3.	Data for the 2,4-disubstituted 1,2,3-triazoles	S39
4.	¹ H ¹⁵ N HMBC comparisons	S54
5.	Theoretical calculations	S57

1. Data for the 1,4-disbustituted-1,2,3-triazoles (1,4-TAs)

1-(2,4-Dichlorophenethyl)-4-hydroxymethyl-1H-1,2,3-triazole (1a)

HPLC

S2

¹H NMR

¹H-¹³C-gHMBC

1-benzyl-4-hydroxymethyl-1*H*-1,2,3-triazole (1b)

HRMS

¹H-NMR

¹H-¹³C-HMBC

1-(4-Fluorophenethyl)-4-hydroxymethyl-1*H*-1,2,3-triazole (1c)

¹H-NMR

¹H-¹⁵N-gHMBC h _ -150 -140 -000 è. -130 -120 -110 . -100 f1 (ppm) -70 -60 -50 -40 Ô 00 . -30 . -20 ٩Ó0 · -10

7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 f2 (ppm) 1-(2,4-dichlorophenethyl)-4-phenyl-1,2,3-triazole (1d)

¹H-NMR

¹H-¹⁵N-gHMBC

1-(2,4-Dichlorophenethyl)-4-formyl-1H-1,2,3-triazole (4a)

-10.11₹ 4.70 ₹ 4.69 4.67 $4^{3.39}$ 7.42 7.42 7.15 7.15 7.15 7.13 7.13 7.13 7.13 7.13 6.93 0.88-0.84H 1.15- 1.31-2.00H 1.10H H68.1 10.5 10.0 8.0 7.5 7.0 6.5 f1 (ppm) 6.0 5.5 5.0 3.5 9.5 9.0 4.5 4.0 8.5 3.0

¹H-NMR

110 100 90 f1 (ppm) 70 -10 190 180 170 160 150 140 130 120 80 60 50 40 30 20 10 0

¹H-¹³C-gHSQC

¹H-¹⁵N-HMBC

HRMS

180 182 184 186 188 190 192 194 196 198 m/z

¹H-NMR

^{190 185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40} f1 (ppm)

1-(4-Fluorophenethyl)-4-formyl-1*H*-1,2,3-triazole (4b)

^{205 210 215 220 225 230 235} m/z

¹H-¹⁵N-gHMBC

2. 1,5-Disubstituted-1,2,3-triazoles (1,5-TAs)

1-(2',4'-Dichlorophenethyl)-5-hydroxymethyl-1*H*-1,2,3-triazole (2a)

¹H-NMR

S25

¹H-¹³C-gHSQC

¹H-¹⁵N-gHMBC

1-(benzyl)-5-hydroxymethyl-1*H*-1,2,3-triazole (2b)

HRMS

¹H-NMR

¹³C-NMR

¹H-¹⁵N-gHMBC

1-(4-Fluorophenethyl)-5-hydroxymethyl-1H-1,2,3-triazole (2c)

HRMS

¹H-NMR

___7.42

7.26

-4.69-4.58-4.56-4.54-4.42 $\frac{322}{2320}$

7.04 7.02 7.01 7.01 7.01 6.95 6.95

¹H-¹⁵N-gHMBC

¹H-¹³C-gHMBC

1-(2',4'-Dichlorophenethyl)-5-formyl-1H-1,2,3-triazole (5a)

¹H-¹⁵N-gHMBC

130 120 f1 (ppm)

 Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

¹H⁻¹⁵N-gHMBC

3. 2,4-Disubstituted-1,2,3-triazole derivatives (2,4-TA)

2-(2,4-Dichlorophenethyl)-4-hydroxymethyl-1*H*-1,2,3-triazole (3a)

HPLC:

HRMS:

¹H-NMR

¹³C-NMR

¹H-¹⁵N-gHMBC

2-Benzyl-4-hydroxymethyl-1*H*-1,2,3-triazole (3b)

HRMS

¹H-NMR:

¹³C-NMR:

¹H-¹⁵N-gHMBC

2-(4-Fluorophenethyl)-4-hydroxymethyl-1*H*-1,2,3-triazole (3c)

¹H-NMR

¹³C-NMR

¹H-¹⁵N-gHMBC

2-(2',4'-Dichlorophenethyl)-4-formyl-1*H*-1,2,3-triazole (6a)

¹³C-NMR

¹H-¹⁵N-gHMBC

2-(4-Fluorophenethyl)-4-formyl-1*H*-1,2,3-triazole (6c)

¹H-NMR

¹H-¹⁵N-gHMBC

4. ¹H ¹⁵N HMBC comparisons

Superposition of the ¹H ¹⁵N gHMBC spectra of the isomers (**1b** in green, **2b** in blue and **3b** in red), with the benzyl substituent.

Superposition of the ¹H ¹⁵N gHMBC spectra of the isomers (**1c** in green, **2c** in blue and **3c** in red), where Ar = aryl and in this case *p*-fluorophenyl.

Superposition of the ¹H ¹⁵N gHMBC spectra of the isomers (**4a** in green, **5a** in blue and **6a** in red) with the aldehyde moiety and where Ar = aryl is in this case 2,4-dichlorophenyl.

5. Theoretical Calculations

Table S1. Gas phase energy (E^{gp} , hartrees), zero point energy (ZPE, kcal mol⁻¹), enthalpic (ΔH , kcal mol⁻¹) and entropic (ΔS , cal K⁻¹ mol⁻¹) corrections at 298.15 K, total Gibbs free energy (G^{gp} , hartrees), and relative Boltzmann population (P_i , %), determined through density functional theory calculations at B3LYP/6-311++G** level for the lowest free energy minima of compounds **1a**, **2a**, **3a**, **4a**, **5a** and **6a** detected in gas phase.

Compound	\mathbf{E}^{gp}	ZPE	ΔH	ΔS	G^{gp}	P_i^{a}
1a	-1585.860862	141.68	9.72	126.62	-1585.679742	9.0
2a	-1585.859133	132.22	10.38	131.88	-1585.694535	9.1
3 a	-1585.868018	141.49	9.72	126.66	-1585.687220	7.3
4 a	-1584.651048	126.69	9.40	124.44	-1584.493290	24.3
5a	-1584.648800	117.29	10.00	128.38	-1584.506953	22.0
6a	-1584.657498	126.46	9.42	124.54	-1584.500131	14.4

^a The P_i values shown correspond to the Boltzmann population of the lowest energy conformer, however it should be kept in mind that most conformers detected had a degeneracy of 2, that is, they had the same energetic, shielding parameters and relative population as their symmetry related counterpart.

Table S2. Gas phase energy (E^{gp} , hartrees), zero point energy (ZPE, kcal mol₋₁), enthalpic (ΔH , kcal mol₋₁) and entropic (ΔS , cal K⁻¹ mol⁻¹) corrections at 298.15 K, solvation energy (E^{sol} , kcal mol⁻¹), total Gibbs free energy in solution (G^{sol} , hartrees), and relative Boltzmann population (P_i , %), determined through density functional theory calculations at B3LYP/6-311++G** level for the lowest free energy minima of compounds **1a**, **2a**, **3a**, **4a**, **5a** and **6a** detected under implicit CHCl₃ solvation conditions.

Compound	\mathbf{E}^{gp}	ZPE	ΔH	ΔS	\mathbf{E}^{sol}	G^{sol}	P_i^{a}
1a	-1585.859981	141.32	9.79	126.87	-11.51	-1585.697805	9.4
2a	-1585.858576	132.32	10.31	130.33	-10.79	-1585.710399	9.8
3 a	-1585.866775	141.12	9.79	127.00	-9.68	-1585.702040	7.4
4 a	-1584.650699	126.48	9.42	124.62	-10.32	-1584.509782	19.9
5a	-1584.648783	117.27	10.02	128.77	-8.58	-1584.520801	31.2
6a	-1584.656786	126.16	9.48	124.81	-8.80	-1584.513968	15.9

^a The P_i values shown correspond to the Boltzmann population of the lowest energy conformer, however it should be kept in mind that most conformers detected had a degeneracy of 2, that is, they had the same energetic, shielding parameters and relative population as their symmetry related counterpart.

- Coordinates of lowest free energy minima detected in the gas phase.

1a:

С	-0.34200	1.69160	0.55570
С	-0.21440	3.02760	0.86990
Н	-1.19760	1.04630	0.45200
Ν	1.80240	2.27060	0.55030
Ν	1.11520	3.33410	0.85460
Ν	0.92800	1.26090	0.36510
С	-1.25200	4.07160	1.13160
Н	-2.17470	3.61220	1.48830
Н	-0.88390	4.75100	1.90880
С	1.41260	-0.07930	0.04600
Н	2.08310	0.00570	-0.81110
Н	0.54910	-0.67290	-0.25320
0	-1.61710	4.80210	-0.04380
Н	-0.82200	5.22340	-0.38850
С	2.15970	-0.73810	1.22060
Н	2.53340	-1.70280	0.86740
Н	3.02660	-0.12110	1.46290
С	-0.22850	-1.20400	4.78980
С	0.68460	-0.16040	4.69560
С	1.44430	-0.03610	3.53740
С	1.32020	-0.92420	2.46180
С	0.38490	-1.95600	2.60520
С	-0.38830	-2.11320	3.75110
Cl	-1.19790	-1.38720	6.24090
Н	0.80070	0.54010	5.51200
Н	2.15710	0.77700	3.45930
Cl	0.15380	-3.13150	1.30910
Н	-1.09580	-2.92680	3.82960

С	0.47770	0.21720	1.51870
С	1.66170	-0.17630	0.93020
Н	0.29690	0.54710	2.52930
Ν	-0.52490	0.12630	0.60600
С	3.05590	-0.25610	1.46390
Н	3.47740	-1.25170	1.31270
Н	3.02370	-0.07370	2.54330
Ν	-0.02690	-0.29480	-0.52140
Ν	1.29670	-0.48450	-0.34610
С	2.10820	-0.97630	-1.45910
Н	3.15360	-0.82200	-1.19650
Н	1.88200	-0.35240	-2.32550
С	1.81200	-2.45010	-1.79610
Н	0.75290	-2.53820	-2.04440
Н	2.38100	-2.69950	-2.69480
С	2.70930	-5.16920	1.43810

С	3.73980	-4.75510	0.60270
С	3.44200	-3.88210	-0.43980
С	2.14480	-3.41240	-0.68130
С	1.14170	-3.86360	0.18570
С	1.40490	-4.73170	1.24000
Cl	3.07060	-6.26500	2.76070
Н	4.75210	-5.10230	0.75600
Cl	4.77580	-3.37880	-1.47690
Н	0.12560	-3.52000	0.02730
Н	0.61090	-5.06390	1.89560
0	3.96290	0.63750	0.81210
Н	3.65400	1.54020	0.94700

3a:

С	-0.27690	2.87140	0.95340
С	-0.37050	1.56150	0.44930
Н	-1.04020	3.50870	1.37070
Ν	0.85120	1.19090	0.04770
Ν	0.98660	3.28240	0.85340
С	-1.54040	0.63140	0.36520
Н	-1.32310	-0.14440	-0.37690
Н	-2.43240	1.17100	0.04350
Ν	1.61640	2.24440	0.30970
С	3.04140	2.27840	-0.00560
Н	3.21150	3.08500	-0.72280
Н	3.26230	1.32810	-0.48770
0	-1.88750	0.05420	1.62800
Н	-1.13190	-0.45290	1.94420
С	3.91690	2.50300	1.23920
Н	4.94740	2.61690	0.89350
Н	3.62290	3.44650	1.70220
С	3.59980	-0.64110	4.18320
С	2.88930	0.54150	4.35150
С	3.01390	1.54040	3.39170
С	3.82770	1.39560	2.26180
С	4.52250	0.18650	2.13910
С	4.42430	-0.83240	3.08140
Cl	3.46360	-1.91850	5.37980
Н	2.25390	0.67940	5.21640
Н	2.46170	2.46480	3.51740
Cl	5.58340	-0.09160	0.75830
Н	4.97980	-1.75130	2.95690

С	-0.50430	1.61700	0.46430
С	-0.40510	2.97350	0.72190

Н	-1.35360	0.96030	0.38540
Ν	1.62700	2.25810	0.46380
Ν	0.91900	3.31220	0.71200
Ν	0.76850	1.21260	0.30840
С	-1.45670	3.96180	0.97030
С	1.29320	-0.12410	0.03100
Н	1.93680	-0.04870	-0.84720
Н	0.44330	-0.75830	-0.21890
0	-2.64140	3.70280	0.98280
С	2.09390	-0.70220	1.21200
Н	2.93490	-0.03680	1.41400
Н	2.50700	-1.65870	0.88160
С	-0.18760	-1.17580	4.84940
С	0.67150	-0.09280	4.70400
С	1.39680	0.03500	3.52440
С	1.28970	-0.88790	2.47670
С	0.40820	-1.95820	2.67030
С	-0.32860	-2.11980	3.83900
Cl	-1.10940	-1.36550	6.32870
Н	0.77270	0.63500	5.49820
Н	2.07020	0.87690	3.40870
Cl	0.20470	-3.17880	1.41210
Н	-0.99460	-2.96310	3.95700
Н	-1.08050	4.98660	1.14960

С	-0.89620	0.85180	1.87080
С	-0.21420	1.49810	0.85000
Н	-1.66570	1.23500	2.52230
Ν	-0.44930	-0.41810	1.96270
С	-0.34160	2.86740	0.36920
Ν	0.47420	-0.60150	1.04890
Ν	0.63160	0.53560	0.36720
С	1.62730	0.60820	-0.70630
Н	1.18530	1.15550	-1.53800
Н	1.81350	-0.42260	-1.00510
С	2.92550	1.29370	-0.24240
Н	2.68840	2.30490	0.09190
Н	3.33350	0.74040	0.60580
С	5.76030	1.57310	-3.48600
С	5.72380	0.41110	-2.72560
С	4.80940	0.32720	-1.67920
С	3.93430	1.37320	-1.36310
С	4.00880	2.52260	-2.15980
С	4.90720	2.63710	-3.21480
Cl	6.90740	1.69220	-4.80890
Н	6.39000	-0.41300	-2.93950
Cl	4.78710	-1.16230	-0.74030
Н	3.34110	3.34910	-1.94170

Н	4.94760	3.53690	-3.81440
0	0.32690	3.36570	-0.51510
Н	-1.12480	3.44930	0.89090

С	-0.24290	2.98870	0.93580
С	-0.36830	1.63860	0.55190
Н	-0.98890	3.66830	1.31400
Ν	0.83570	1.20970	0.13950
Ν	1.01960	3.36150	0.75660
С	-1.53160	0.74480	0.55220
Ν	1.61550	2.26170	0.27900
С	3.04030	2.23700	-0.04650
Н	3.22880	3.03080	-0.77230
Н	3.22040	1.27380	-0.51920
0	-2.63650	1.07950	0.91920
С	3.93110	2.44100	1.19160
Н	4.96450	2.48560	0.83820
Н	3.69610	3.41210	1.63110
С	3.44310	-0.60190	4.21780
С	2.83450	0.63780	4.37530
С	3.01320	1.60210	3.38910
С	3.78170	1.36700	2.24280
С	4.37500	0.10380	2.13210
С	4.22020	-0.88280	3.10030
Cl	3.23730	-1.83680	5.44700
Н	2.23500	0.84520	5.25190
Н	2.54190	2.57120	3.50860
Cl	5.37650	-0.28650	0.73420
Н	4.69620	-1.84630	2.98390
Н	-1.32270	-0.27860	0.18660

Coordinates of lowest free energy minima detected in solution phase.

1a:

С	-0.51690	1.69440	0.63050
С	-0.24880	3.03010	0.86080
Н	-1.43900	1.13520	0.58580
Ν	1.67300	2.04410	0.57960
Ν	1.10400	3.19510	0.82310
Ν	0.70080	1.12360	0.46740
С	-1.16060	4.19320	1.09100
Н	-2.15550	3.84550	1.37370
Н	-0.76560	4.80220	1.91140
С	1.05620	-0.25680	0.13320
Н	0.30730	-0.91190	0.57790
Н	2.01540	-0.45510	0.61250
0	-1.34270	5.00370	-0.08520
Н	-0.48950	5.38990	-0.33240
С	1.15580	-0.44880	-1.39460
Н	0.17030	-0.29550	-1.84210
Н	1.81700	0.32300	-1.79410
С	2.77800	-4.28910	-2.51190
С	3.58960	-3.16070	-2.54040
С	3.04030	-1.93570	-2.17340
С	1.70200	-1.80350	-1.77950
С	0.93160	-2.97230	-1.76860
С	1.44430	-4.21520	-2.12880
Cl	3.44290	-5.85060	-2.97500
Н	4.62580	-3.23320	-2.84690
Н	3.66700	-1.05020	-2.20240
Cl	-0.77030	-2.90530	-1.30370
Н	0.81780	-5.09730	-2.11290

С	0.65320	1.84510	0.53820
С	1.74310	1.00370	0.43230
Н	0.61480	2.86980	0.87520
Ν	-0.45750	1.18050	0.13350
С	3.19170	1.28060	0.68920
Н	3.69010	0.42220	1.14100
Н	3.26070	2.10790	1.40230
Ν	-0.11580	-0.03500	-0.21610
Ν	1.20920	-0.15860	-0.04420
С	1.82690	-1.47000	-0.27750
Н	2.90840	-1.34380	-0.22960
Н	1.57110	-1.77920	-1.29290
С	1.31820	-2.49910	0.75560
Н	1.50050	-2.11210	1.76140
Н	0.23730	-2.59640	0.63940

С	3.05930	-6.42850	0.35160
С	3.75700	-5.45740	1.05940
С	3.19190	-4.19000	1.16630
С	1.95190	-3.86230	0.60380
С	1.29250	-4.87900	-0.10030
С	1.82970	-6.15620	-0.23680
Cl	3.75480	-8.03830	0.20830
Н	4.71150	-5.67840	1.51870
Cl	4.10020	-2.97570	2.07120
Н	0.32390	-4.66850	-0.54290
Н	1.29750	-6.92580	-0.78260
0	3.92690	1.57480	-0.50880
Н	3.59310	2.39710	-0.89580

С	-0.33230	2.95730	0.84790
С	-0.33190	1.59560	0.50410
Н	-1.14210	3.59060	1.17960
Ν	0.91890	1.26230	0.15900
Ν	0.90940	3.43350	0.70880
С	-1.43800	0.58460	0.49720
Н	-1.46750	0.07110	-0.47050
Н	-2.39420	1.09050	0.63830
Ν	1.61630	2.38090	0.30800
С	3.03540	2.45010	-0.03500
Н	3.50530	1.55220	0.36840
Н	3.44130	3.32000	0.47950
0	-1.33310	-0.37230	1.56540
Н	-0.53260	-0.90090	1.43530
С	3.23800	2.53750	-1.56280
Н	2.65000	1.74570	-2.03150
Η	2.84770	3.49240	-1.92270
С	7.35500	1.96150	-2.72570
С	6.47040	0.88880	-2.75220
С	5.14920	1.10670	-2.37370
С	4.68350	2.36480	-1.96670
С	5.61800	3.40730	-1.95480
С	6.94700	3.22970	-2.33070
Cl	9.03020	1.71850	-3.20600
Н	6.80200	-0.09350	-3.06660
Н	4.45190	0.27500	-2.40280
Cl	5.12900	5.02960	-1.46370
Н	7.64080	4.06040	-2.31640

4a:

С	-0.40590	1.49920	0.77820
С	-0.42100	2.88770	0.78420
Н	-1.12730	0.76620	1.10600
Ν	1.49060	2.29920	-0.06010
Ν	0.76400	3.32420	0.25990
Ν	0.78750	1.18050	0.24980
С	-1.43590	3.83520	1.23700
С	1.36420	-0.14050	-0.02690
Н	0.70040	-0.87520	0.42730
Н	2.32850	-0.18950	0.48300
0	-2.50860	3.51460	1.72080
С	1.56150	-0.39110	-1.53600
Н	2.01010	-1.38360	-1.63650
Н	2.29140	0.32680	-1.91340
С	-2.01880	-0.03470	-3.92850
С	-1.06460	0.97450	-3.95800
С	0.08230	0.83250	-3.18120
С	0.30360	-0.28940	-2.36990
С	-0.68760	-1.27810	-2.38550
С	-1.84520	-1.17290	-3.15050
Cl	-3.47800	0.11710	-4.89790
Н	-1.20990	1.85240	-4.57500
Н	0.83320	1.61470	-3.21250
Cl	-0.49070	-2.74620	-1.42510
Н	-2.58720	-1.95980	-3.13950
Н	-1.15520	4.89650	1.10620

С	-1.09660	0.74910	1.58080
С	-0.05150	1.54350	1.13530
Н	-2.05080	1.04420	1.98900
Ν	-0.74780	-0.54520	1.43420
С	0.03160	2.99850	1.10620
Ν	0.46440	-0.59550	0.92130
Ν	0.90250	0.64590	0.73710
С	2.23320	0.85440	0.14880
Н	2.78210	-0.06620	0.34320
Н	2.71300	1.67430	0.68110
С	2.14720	1.13820	-1.36540
Н	1.58700	2.06050	-1.52790
Н	1.59600	0.32590	-1.84420
С	6.06140	1.61140	-3.12580
С	5.54140	0.33040	-2.99000
С	4.28030	0.18800	-2.41710
С	3.51780	1.28160	-1.98720
С	4.08990	2.55100	-2.14860
С	5.35090	2.73180	-2.70880

Cl H Cl H H O H	7.65430 6.09920 3.65130 3.52810 5.76920 0.98420 -0.86720	1.81010 -0.53660 -1.45110 3.42340 3.72460 3.63530 3.50180	-3.84580 -3.32020 -2.25410 -1.83100 -2.82290 0.69100 1.50260
6a:			
С	-0.39050	3.07120	0.66980
С	-0.37470	1.66370	0.58670
Н	-1.21130	3.74780	0.85630
N	0.89150	1.27700	0.34280
N	0.84900	3.51350	0.47830
С	-1.43850	0.66830	0.72030
N	1.57230	2.40030	0.29270
С	2.99930	2.43170	-0.03710
H	3.43920	1.53200	0.39410
Н	3.41920	3.30510	0.46020
0	-2.60460	0.94880	0.93340
С	3.21360	2.48370	-1.56440
H	2.64940	1.66//0	-2.02190
H	2.80460	3.42100	-1.94900
C	6 49740	2.00680	-2.07900
C	5 16710	1 09890	-2.72550
C	1 66830	2 34250	-2.30040
C	5 57810	3 40660	-1.94900
C	6 91540	3 26220	-2 27890
CI	9.04280	1.80630	-3.14020
H	6.85520	-0.05640	-3.04480
H	4.48950	0.25190	-2.40550
Cl	5.04520	5.01430	-1.42630
Н	7.58960	4.10820	-2.24910
Н	-1.10900	-0.38120	0.61240

		$\sigma^{ m gp}$			$\sigma^{ m sol}$	
	Н	С	Ν	Н	С	Ν
TMS	31.97	184.11		31.93	183.92	
nitromethane			-151.99			-168.33

Table S3. Isotropic shieldings calculated for the reference compounds TMS and nitromethane at the B3LYP/6-311++G** level, in gas phase (σ^{gp}) and in CHCl₃ solution phase (σ^{sol}).

Table S4. Summary of results obtained at B3LYP/6-311++G** level in gas phase for the triazole system of compounds **1a**, **2a**, **3a**, **4a**, **5a** and **6a**. ¹H, ¹³C and ¹⁵N isotropic shieldings of the lowest free energy minima and Boltzmann averaged shieldings (σ^{min} and $\overline{\sigma}$), chemical shifts calculated from each set of shieldings (δ^{min} and $\overline{\delta}^a$), residuals (*res^{min}* and \overline{res}^b) relative to the experimental values (δ^{exp}), and RMS of the residuals.

		1a			2a			3a			4a			5a		6a			
	H⁵			H ⁴			H⁵			H⁵			H⁴			H⁵			RMS
δ^{exp}	7.36			7.52			7.57			7.89			8.23			8.07			
σ^{min}	25.13			24.71			24.18			24.50			23.81			23.76			
$\overline{\sigma}$	24.74			24.51			24.25			24.19			23.88			23.81			
δ^{min}	6.84			7.26			7.79			7.47			8.16			8.21			
$\overline{\delta}$	7.23			7.46			7.72			7.78			8.09			8.16			
res ^{min}	-0.52			-0.26			0.22			-0.42			-0.07			0.14			0.31
res	-0.13			-0.06			0.15			-0.11			-0.14			0.09			0.12
	C⁴	C⁵		C⁴	C⁵		C⁴	C⁵		C⁴	C⁵		C ⁴	C⁵		C⁴	C⁵		
δ^{exp}	147.90	122.10		132.90	136.50		147.80	129.70		146.60	125.70		141.10	133.90		146.90	135.10		
σ^{min}	29.05	54.86		46.65	40.35		29.19	42.61		29.03	52.26		35.94	43.85		30.11	42.57		
$\overline{\sigma}$	28.61	57.01		45.86	41.77		27.95	43.51		28.52	53.33		36.25	43.61		29.00	43.32		
δ^{min}	155.06	129.25		137.46	143.76		154.92	141.50		155.07	131.85		148.17	140.26		154.00	141.54		
$\overline{\delta}$	155.50	127.10		138.25	142.34		156.16	140.60		155.59	130.78		147.86	140.50		155.10	140.79		
res ^{min}	7.16	7.15		4.56	7.26		7.12	11.80		8.47	6.15		7.07	6.36		7.10	6.44		7.40
res	7.60	5.00		5.35	5.84		8.36	10.90		8.99	5.08		6.76	6.60		8.20	5.69		7.24
	N ¹	N ²	N ³	N ¹	N ²	N ³	N ¹	N ²	N ³	N^1	N ²	N ³	N ¹	N ²	N ³	N ¹	N ²	N ³	
δ^{exp}	-134.80	-18.30	-31.50	-144.10	-22.90	-40.90	-50.10	-126.70	-55.90	-130.90	-12.80	-18.90	-142.40	-9.30	-38.60	-41.40	-119.00	-47.40	
σ^{min}	-14.96	-147.45	-142.47	-15.55	-154.71	-139.54	-106.38	-22.90	-109.86	-19.36	-149.27	-153.12	-20.80	-170.05	-136.23	-106.46	-31.40	-124.65	
$\overline{\sigma}$	-15.37	-149.24	-138.07	-16.08	-155.18	-138.55	-110.57	-24.15	-104.59	-20.72	-151.10	-151.88	-19.39	-168.76	-136.74	-110.64	-32.68	-120.35	
δ^{min}	-137.04	-4.54	-9.53	-136.45	2.72	-12.46	-45.61	-129.09	-42.13	-132.63	-2.73	1.13	-131.19	18.06	-15.77	-45.54	-120.59	-27.34	
$\overline{\delta}$	-136.62	-2.75	-13.92	-135.92	3.18	-13.44	-41.43	-127.84	-47.41	-131.27	-0.89	-0.12	-132.60	16.77	-15.25	-41.35	-119.32	-31.64	
res ^{min}	-2.24	13.76	21.97	7.65	25.62	28.44	4.49	-2.39	13.77	-1.73	10.07	20.03	11.21	27.36	22.83	-4.14	-1.59	20.06	16.23
res	-1.82	15.55	17.58	8.18	26.08	27.46	8.67	-1.14	8.49	-0.37	11.91	18.78	9.80	26.07	23.35	0.05	-0.32	15.76	15.40

^a Chemical shifts calculated by subtraction of calculated shieldings from values for reference compounds (Table S3). ^b Residuals calculated as the difference between calculated and experimental δ values.

Table S5. Summary of results obtained at B3LYP/6-311++G^{**} level under implicit CHCl₃ solvation for the triazole system of compounds **1a**, **2a**, **3a**, **4a**, **5a** and **6a**. ¹H, ¹³C and ¹⁵N isotropic shieldings of the lowest free energy minima and Boltzmann averaged shieldings (σ^{min} and $\overline{\sigma}$), chemical shifts calculated from each set of shieldings (δ^{min} and $\overline{\delta}^a$), residuals (res^{min} and \overline{res}^b) relative to the experimental values (δ^{exp}), and RMS of the residuals.

		1a			2a			3a			4a			5a			6a		
	H⁵			H⁴			H⁵			H⁵			H⁴			H⁵			RMS
δ^{exp}	7.36			7.52			7.57			7.89			8.23			8.07			
σ^{min}	23.66			23.35			23.64			23.56			22.89			22.86			
$\overline{\sigma}$	23.90			23.17			23.50			23.19			22.99			22.94			
δ^{min}	8.27			8.58			8.29			8.37			9.04			9.07			
$\overline{\delta}$	8.03			8.76			8.43			8.74			8.94			8.99			
res ^{min}	0.91			1.06			0.72			0.48			0.81			1.00			0.85
\overline{res}	0.67			1.24			0.86			0.85			0.71			0.92			0.90
	C⁴	C⁵		C⁴	C⁵		C⁴	C⁵		C ⁴	C⁵		C ⁴	C⁵		C⁴	C⁵		
δ^{exp}	147.90	122.10		132.90	136.50		147.80	129.70		146.60	125.70		141.10	133.90		146.90	135.10		
σ^{min}	22.38	58.52		44.77	42.59		24.54	43.03		24.30	51.70		40.57	51.16		28.39	43.43		
$\overline{\sigma}$	21.12	57.60		40.71	41.24		24.09	40.17		24.20	53.12		40.12	49.87		28.49	43.38		
δ^{min}	161.54	125.40		139.15	141.33		159.38	140.89		159.62	132.22		143.35	132.76		155.53	140.49		
$\overline{\delta}$	162.80	126.32		143.21	142.68		159.83	143.75		159.72	130.80		143.80	134.05		155.43	140.54		
res ^{min}	13.64	3.30		6.25	4.83		11.58	11.19		13.02	6.52		2.25	-1.14		8.63	5.39		8.37
res	14.90	4.22		10.31	6.18		12.03	14.05		13.12	5.10		2.70	0.15		8.53	5.44		9.28
	N ¹	N ²	N ³	N ¹	N ²	N ³	N ¹	N ²	N ³	N ¹	N ²	N ³	N ¹	N ²	N ³	N ¹	N ²	N ³	
δ^{exp}	-134.80	-18.30	-31.50	-144.10	-22.90	-40.90	-50.10	-126.70	-55.90	-130.90	-12.80	-18.90	-142.40	-9.30	-38.60	-41.40	-119.00	-47.40	
σ^{min}	-24.80	-152.14	-171.11	-22.31	-153.16	-158.25	-118.87	-35.71	-104.77	-22.56	-153.19	-179.17	-19.00	-168.28	-148.26	-116.41	-38.79	-118.77	
$\overline{\sigma}$	-22.21	-151.61	-173.10	-22.42	-155.42	-159.19	-119.43	-31.36	-106.15	-23.91	-154.91	-180.46	-20.35	-168.70	-150.40	-115.85	-37.26	-119.85	
δ^{min}	-143.53	-16.19	2.78	-146.02	-15.17	-10.08	-49.46	-132.62	-63.56	-145.77	-15.14	10.84	-149.33	-0.05	-20.07	-51.92	-129.54	-49.56	
$\overline{\delta}$	-146.12	-16.72	4.77	-145.91	-12.91	-9.14	-48.90	-136.97	-62.18	-144.42	-13.42	12.13	-147.98	0.37	-17.93	-52.48	-131.07	-48.48	
res ^{min}	-8.73	2.11	34.28	-1.92	7.73	30.82	0.64	-5.92	-7.66	-14.87	-2.34	29.74	-6.93	9.25	18.53	-10.52	-10.54	-2.16	15.23
res	-11.32	1.58	36.27	-1.81	9.99	31.76	1.20	-10.27	-6.28	-13.52	-0.62	31.03	-5.58	9.67	20.67	-11.08	-12.07	-1.08	16.11

^a Chemical shifts calculated by subtraction of calculated shieldings from values for reference compounds (Table S3). ^b Residuals calculated as the difference between calculated and experimental δ values.

Figure S1. Linear fits of the gas phase calculated Boltzmann averaged shieldings ($\overline{\sigma}$) to the experimental ¹³C and ¹⁵N-chemical shifts.

$$\delta^{13}C = (172.4 \pm 1.0) - (0.878 \pm 0.023) \sigma^{13}C \qquad n = 12, r^2 = 0.993 \qquad (1)$$

 $\delta^{15}N = -(150.0 \pm 3.0) - (0.864 \pm 0.027) \sigma^{15}N \qquad n = 18, r^2 = 0.985 \qquad (2)$

Table S6. ¹³C and ¹⁵N-chemical shifts (δ^{min} and $\overline{\delta}$) recalculated with equations (1) and (2) from the ¹³C and ¹⁵N isotropic shieldings of the lowest free energy minima and Boltzmann averaged shieldings (σ^{min} and $\overline{\sigma}$), residuals (res^{min} and \overline{res}^{a}) relative to the experimental values (δ^{exp}), and RMS of the residuals.

		1a			2a			3a			4a			5a			6a		
	C⁴	C⁵		C⁴	C⁵		C ⁴	C⁵		C ⁴	C⁵		C ⁴	C⁵		C⁴	C⁵		RMS
δ^{exp}	147.90	122.10		132.90	136.50		147.80	129.70		146.60	125.70		133.90	141.10		147.70	135.10		
σ^{min}	29.05	54.86		46.65	40.35		29.19	42.61		29.03	52.26		35.94	43.85		30.11	42.57		
$\overline{\sigma}$	28.61	57.01		45.86	41.77		27.95	43.51		28.52	53.33		36.25	43.61		29.00	43.32		
δ^{min}	147.56	122.99		130.80	136.80		147.43	134.65		147.58	125.46		141.00	133.47		146.55	134.68		
$\overline{\delta}$	147.33	122.39		132.18	135.77		147.91	134.25		147.40	125.62		140.62	134.16		146.98	134.41		
res ^{min}	-0.34	0.89		-2.10	0.30		-0.37	2.15		0.98	-0.24		-0.10	-0.43		-0.35	-0.42		0.99
\overline{res}	-0.57	0.29		-0.72	-0.73		0.11	1.75		0.80	-0.08		-0.48	0.26		0.08	-0.69		0.70
	N ¹	N ²	N ³	N ¹	N ²	N ³	N ¹	N ²	N ³	N ¹	N ²	N ³	N ¹	N ²	N ³	N ¹	N ²	N ³	
δ^{exp}	-134.80	-18.30	-31.50	-144.10	-22.90	-40.90	-50.10	-126.70	-55.90	-130.90	-12.80	-18.90	-142.40	-9.30	-38.60	-41.40	-119.00	-47.40	
σ^{min}	-14.96	-147.45	-142.47	-15.55	-154.71	-139.54	-106.38	-22.90	-109.86	-19.36	-149.27	-153.12	-20.80	-170.05	-136.23	-106.46	-31.40	-124.65	
$\overline{\sigma}$	-15.37	-149.24	-138.07	-16.08	-155.18	-138.55	-110.57	-24.15	-104.59	-20.72	-151.10	-151.88	-19.39	-168.76	-136.74	-110.64	-32.68	-120.35	
δ^{min}	-136.86	-23.71	-27.96	-136.35	-17.51	-30.46	-58.78	-130.07	-55.81	-133.09	-22.16	-18.86	-131.87	-4.41	-33.29	-58.72	-122.81	-43.18	
$\overline{\delta}$	-137.25	-21.63	-31.28	-136.64	-16.51	-30.87	-55.03	-129.66	-60.20	-132.63	-20.03	-19.36	-133.77	-4.78	-32.43	-54.97	-122.30	-46.58	
res ^{min}	-2.06	-5.41	3.54	7.75	5.39	10.44	-8.68	-3.37	0.09	-2.19	-9.36	0.04	10.53	4.89	5.31	-17.32	-3.81	4.22	7.14
res	-2.45	-3.33	0.22	7.46	6.39	10.03	-4.93	-2.96	-4.30	-1.73	-7.23	-0.46	8.63	4.52	6.17	-13.57	-3.30	0.82	6.01

^a Residuals calculated as the difference between calculated and experimental δ values.