SUPPLEMENTARY MATERIAL

BELONGING TO THE PAPER

Transition Metal Free Sulfenylation and Bis-sulfenylation of

Indoles: Persulfate Mediated Synthesis in Methanol

Ch. Durga Prasad, Shailesh Kumar, Moh. Sattar, Amit Adhikary, Sangit Kumar*

Department of Chemistry, Indian Institute of Science Education and Research (IISER), Bhopal,

MP 462 066, India

E-mail: sangitkumar@iiserb.ac.in

Contents

General experimental details	S 1
Synthetic procedure for 3-sulfenylation of indoles	S2-S11
Synthetic procedure for 2,3-bis-sulfenylation of indoles	S11-S13
References	S 14
¹ H, ¹³ C, DEPT-135 spectra for sulfenyl & bis-sulfenyl indoles	S15-S76
Crystallographic details of 11	S77-S85
Crystallographic details of 21	S86-S95

General Experimental Details

All NMR experiments were carried out on 400 MHz spectrometer in DMSO or CDCl₃ and NMR chemical shifts are reported in ppm referenced to the solvent peaks of CDCl₃ (7.26 ppm for ¹H and 77.16 (\pm 0.06) ppm for ¹³C, respectively) or DMSO (2.50 ppm for ¹H and 39.50 ppm for ¹³C, respectively). Mass analysis is performed on quadruple-time of flight (Q-TOF) mass spectrometer equipped with an ESI source (+ve/-ve). Phenyl disulfide, 2,2'-dithiodibenzoic acid, and phenyl diselenide were used as received from Aldrich. Substituted aryl disulfides like 4-methylphenyl disulfide, 4-methoxyphenyl disulfide, and 2-aminophenyl disulfide were prepared by the oxidation of respective thiols by using *tert*-butyl hydroperoxide in the presence of catalytic amount of *N*,*N*-dimethylbenzylamine ditelluride. Silica gel (100-200 mesh size) was used for column chromatography. TLC analysis of reaction mixtures was performed using silica gel plates.

Synthetic procedure for 3-sulfenylation of indoles:

Methanol (5 mL) was added to a single neck flask (10 mL) containing stirrer bar. To this flask, diphenyl disulfide (218 mg, 1.0 mmol) and $(NH_4)_2S_2O_8$ (456 mg, 2.0 mmol) were added and stirred at reflux temperature (70 °C) for 3 hours. After this, reaction mixture was cooled to room temperature, Indole (234 mg, 2.0 mmol) was added and resulted reaction mixture was again refluxed at 70 °C for 3-4 hours. Progress of the reaction was monitored by TLC (10-20% EA: 90-80% Hexane). Upon completion of the reaction, the mixture was cooled to room temperature, not extracted four times with 20 mL of ethyl acetate. The combined organic layers were dried over Na₂SO₄, and filtered. The solvent was removed *in vacuo* and the residue

was purified by column chromatography (silica gel, eluent: hexane/ethyl acetate) to yield sulfenylated indole as product.

3-(phenylthio)-1*H*-indole (1).

White solid. Yield 0.31 g (68%); mp 147-149 °C (Lit.¹ 150-152 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.29 (bs, 1H), 7.54 (d, *J* = 8.1 Hz, 1H), 7.39 (d, *J* = 2.4 Hz, 1H), 7.35 (d, *J* = 8.1 Hz, 1H), 7.21-7.17 (m, 1H), 7.11-7.01 (m, 5H), 7.00-6.94 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 139.2, 136.5, 130.7, 129.1, 128.7, 125.9, 124.8, 123.1, 120.9, 119.7, 111.6, 102.9; GCMS-EI: rt = 10.2 min, *m*/*z* = 225.0.

3-(*p*-tolylthio)-1*H*-indole (2).

Brown solid. Yield 0.36 g (76%); mp 122-125 °C (Lit.¹ 124-126 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.34 (bs, 1H), 7.62 (d, *J* = 7.9 Hz, 1H), 7.46-7.39 (m, 2H), 7.28-7.22 (m, 1H), 7.18-7.12 (m, 1H), 7.06-6.95 (m, 4H), 2.25 (s, 3H). ¹³C NMR (100MHz,CDCl₃) δ 136.5, 135.5, 134.7, 130.5, 129.5, 129.1, 126.3, 123.0, 120.9, 119.7, 111.6, 103.5, 20.9; GCMS-EI: rt = 10.2 min, *m/z* = 239.0.

3-((4-methoxyphenyl)thio)-1*H*-indole (3).

Pale yellow solid. Yield 0.40 g (78%); mp 120-123 °C (Lit.¹ 111-112 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.33 (bs, 1H), 7.62 (d, J = 8.0 Hz, 1H), 7.46-7.38 (m, 2H), 7.26-7.21 (m, 1H), 7.17-7.09 (m, 3H), 6.72 (d, J = 8.7 Hz, 2H), 3.72 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.8, 136.5, 130.0, 129.5, 129.0, 128.6, 122.9, 120.8, 119.7, 114.5, 111.5, 104.7, 55.3. GCMS-EI: rt = 11.2 min, m/z = 254.9.

4-((1*H*-indol-3-yl)thio)phenol (4).

Light green solid. Yield 0.31 g (64%); mp 169-172 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 11.50 (s, 1H), 9.31 (s, 1H), 7.65 (d, *J* = 2.5 Hz, 1H), 7.41 (d, *J* = 8.2 Hz, 2H), 7.12 (d, *J* = 7.5 Hz, 1H), 7.04-6.95 (m, 3H), 6.61 (d, *J* = 8.6 Hz, 2H). ¹³C NMR (100 MHz, DMSO-d₆) δ 156.1, 137.0, 131.9, 129.4, 129.1, 127.4, 122.4, 120.3, 118.9, 116.4, 112.6, 102.6. HRMS-ESI *m*/*z*: 240.0495 (Calculated for C₁₄H₁₁NOS - H⁺: 240.0478).

2-((1*H*-indol-3-yl)thio)aniline (5).

Yellow solid. Yield 0.28 g (58%); mp 89-92 °C; (Lit.² 93-94 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.35 (bs, 1H), 7.66 (d, *J* = 8.0 Hz, 1H), 7.33-7.28 (m, 2H), 7.25-7.11 (m, 3H), 7.01 (dt, *J* = 7.6, 1.5 Hz, 1H), 6.67 (dt, *J* = 8.0, 1.0 Hz, 1H), 6.61 (dt, *J* = 7.5, 1.0 Hz, 1H), 4.19 (bs, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 145.6, 136.4, 131.9, 129.2, 128.8, 128.1, 122.9, 120.9, 120.7, 119.4, 119.0, 115.4, 111.6, 104.1. GCMS-EI: rt = 11.8 min, *m*/*z* = 239.9.

2-((1H-indol-3-yl)thio)benzoic acid (6).

Green solid. Yield 0.25 g (46%); mp 242-246 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 13.05 (bs, 1H), 11.69 (s, 1H), 7.89 (dd, J = 7.8, 1.3 Hz, 1H), 7.70 (d, J = 2.6 Hz, 1H), 7.49 (d, J = 8.2 Hz, 1H), 7.29 (d, J = 8.0 Hz, 1H), 7.20-7.13 (m, 2H), 7.10-6.99 (m, 2H), 6.66 (d, J = 8.0 Hz, 1H). ¹³C NMR (100MHz, DMSO-d₆) δ 167.9, 144.2, 137.2, 133.1, 132.5, 131.4, 129.2, 127.1, 126.1, 124.2, 122.6, 120.6, 118.8, 112.9, 100.5. HRMS-ESI *m*/*z*: 270.0560 (Calculated for C₁₅H₁₁NO₂S + H⁺: 270.0583).

3-(phenylselanyl)-1*H*-indole (7).

White solid. Yield 0.44 g (80%); mp 135-138 °C; (Lit.³ 135-137 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.39 (bs, 1H), 7.64 (d, *J* = 8.0 Hz, 1H), 7.46 (d, *J* = 2.5 Hz, 1H), 7.43 (d, *J* = 8.0 Hz, 1H), 7.29-7.21 (m, 3H), 7.20-7.06 (m, 4H). ¹³C NMR (100MHz, CDCl₃) δ 136.4, 133.8, 131.2, 130.0, 129.0, 128.7, 125.6, 123.0, 120.9, 120.4, 111.4, 98.2. GCMS-EI: rt = 9.9 min, *m*/*z* = 272.9.

5-methoxy-3-(phenylthio)-1H-indole (8).

Pale yellow solid. Yield 0.31 g (61%); mp 76-79 °C; (Lit.¹ 77-78 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.37 (bs, 1H), 7.41 (d, *J* = 2.6 Hz, 1H), 7.30 (d, *J* = 8.8 Hz, 1H), 7.19-7.15 (m, 2H), 7.12-7.10 (m, 2H), 7.08-7.04 (m, 2H), 6.92 (dd, *J* = 8.8, 2.5 Hz, 1H), 3.78 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.1, 139.4, 131.4, 130.0, 128.8, 125.7, 124.8, 113.6, 112.5, 102.1, 100.8, 55.8. GCMS-EI: rt = 12.2 min, *m*/*z* = 254.9.

2-((5-methoxy-1*H*-indol-3-yl)thio)aniline (9).

Dark brown oil. Yield 0.40 g (74%); ¹H NMR (400 MHz, CDCl₃) δ 8.27 (bs, 1H), 7.31 (d, J = 2.5 Hz, 1H), 7.21 (d, J = 8.8 Hz, 1H), 7.15 (dd, J = 7.8, 1.3 Hz, 1H), 7.10 (d, J = 2.3 Hz, 1H),

6.99 (dt, J = 7.6, 1.4 Hz, 1H), 6.86 (dd, J = 8.8, 2.5 Hz, 1H), 6.67 (dd, J = 8.0, 1.0 Hz, 1H), 6.60 (dt, J = 7.6, 1.1 Hz, 1H), 4.22 (bs, 2H), 3.79 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 154.9, 145.4, 131.5, 131.3, 129.7, 129.6, 127.9, 121.0, 119.0, 115.4, 113.3, 112.4, 103.5, 100.9, 55.8. LRMS-ESI *m*/*z*: 270.0948 (Calculated for C₁₅H₁₄N₂OS + H⁺: 270.1125).

5-methoxy-3-(p-tolylthio)-1H-indole (10).

Brown oil. Yield 0.51 g (94%); ¹H NMR (400 MHz, CDCl₃) δ 8.34 (bs, 1H), 7.37 (d, J = 2.5 Hz, 1H), 7.27 (d, J = 8.8 Hz, 1H), 7.12 (d, J = 2.2 Hz, 1H), 7.08 (d, J = 8.1 Hz, 2H), 7.02 (d, J = 8.1 Hz, 2H), 6.95 (dd, J = 8.8, 2.4 Hz, 1H), 3.81 (s, 3H), 2.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.1, 135.7, 134.7, 131.4, 130.0, 129.6, 126.1, 113.5, 112.6, 102.6, 100.9, 55.9, 20.9. GCMS-EI: rt = 13.6 min, m/z = 268.9.

5-nitro-3-(p-tolylthio)-1H-indole (11).

Yellow solid. Yield 0.31 g (55%); mp 204-207 °C; (Lit.⁴ 189-193 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.86 (bs, 1H), 8.54 (d, *J* = 2.0 Hz, 1H), 8.14 (dd, *J* = 8.9, 2.1 Hz, 1H), 7.62 (d, *J* = 2.2 Hz, 1H), 7.47 (d, *J* = 8.9 Hz, 1H), 7.05 (d, *J* = 8.3 Hz, 2H), 6.99 (d, *J* = 8.3 Hz, 2H), 2.24 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 142.8, 139.4, 135.6, 134.0, 129.8, 128.8, 127.1, 118.7, 116.9,
111.8, 105.1, 20.9. GCMS-EI: rt = 14.9 min, *m/z* = 318.9. GCMS-EI: rt = 12.8 min, *m/z* = 284.1.

5-bromo-3-(phenylthio)-1H-indole (12).

White solid. Yield 0.31 g (52%); mp 120-123 °C; (Lit.¹ 120-121 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.44 (bs, 1H), 7.75 (s, 1H), 7.46 (d, J = 2.6 Hz, 1H), 7.34 (dd, J = 8.6, 1.4 Hz, 1H), 7.30-7.24 (m, 1H), 7.19-7.15 (m, 2H), 7.08-7.05 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 138.7, 135.1, 131.9, 131.0, 128.8, 126.1, 125.9, 125.0, 122.3, 114.5, 113.1, 102.8. GCMS-EI: rt = 14.5min, m/z = 304.8.

5-bromo-3-(p-tolylthio)-1H-indole (13).

Pale yellow solid. Yield 0.44 g (70%); mp 123-125 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.37 (bs, 1H), 7.75 (d, *J* = 1.3 Hz, 1H), 7.44 (d, *J* = 2.6 Hz, 1H), 7.33 (dd, *J* = 8.7, 1.7 Hz, 1H), 7.28-7.24 (m, 1H), 7.02-6.97 (m, 4H), 2.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 135.1, 135.0, 134.9, 131.6, 131.0, 129.6, 126.4, 126.1, 122.3, 114.4, 113.0, 103.5, 20.9. GCMS-EI: rt = 14.9 min, *m/z* = --318.9.

1-methyl-3-(phenylthio)-1H-indole (14).

Yellow solid. Yield 0.40 g (84%); mp 86-88 °C; (Lit.¹ 84-86 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 8.0 Hz, 1H), 7.38 (d, *J* = 8.1 Hz, 1H), 7.33 (s, 1H), 7.29 (dt, *J* = 7.3, 0.7 Hz, 1H), 7.18-7.12 (m, 3H), 7.11-7.06 (m, 2H), 7.06-7.00 (m, 1H), 3.84 (s, 3H). ¹³C NMR (100MHz, CDCl₃) δ 139.7, 137.6, 135.1, 129.9, 128.7, 125.8, 124.7, 122.6, 120.5, 119.8, 109.7, 33.2. LRMS-ESI *m*/*z*: 240.0911 (Calculated for C₁₅H₁₃NS + H⁺: 240.0841).

3-((4-methoxyphenyl)thio)-1-methyl-1H-indole (15).

Pale Yellow solid. Yield 0.43 g (80%); mp 64-67 °C; (Lit.⁵ 60-61 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 8.0 Hz, 1H), 7.36 (d, J = 8.1 Hz, 1H), 7.31-7.26 (m, 2H), 7.20-7.12 (m, 3H), 6.74 (d, J = 8.8 Hz, 2H), 3.80 (s, 3H), 3.73 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.8, 137.5, 134.5, 130.0, 129.8, 128.5, 122.5, 120.4, 119.7, 114.5, 109.7, 102.4, 55.4, 33.1. GCMS-EI: rt = 12.1 min, m/z = 268.9.

4-((1-methyl-1H-indol-3-yl)thio)phenol (16).

Pale yellow solid. Yield 0.35 g (70%); mp 94-97 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 7.9 Hz, 1H), 7.36 (d, J = 8.3 Hz, 1H), 7.28 (t, J = 7.6 Hz, 2H), 7.17 (t, J = 7.4 Hz, 1H), 7.06 (d, J = 8.6 Hz, 2H), 6.62 (d, J = 8.6 Hz, 2H), 5.17 (bs, 1H), 3.78 (s, 3H). ¹³C NMR (100MHz, CDCl₃) δ 153.6, 137.5, 134.6, 130.0, 129.7, 128.6, 122.5, 120.4, 119.7, 116.0, 109.7, 102.2, 33.1. HRMS-ESI *m*/*z*: 256.0774 (Calculated for C₁₅H₁₃NOS + H⁺: 256.0791).

2-((1-methyl-1*H*-indole-3-yl)thio)aniline (17).

Purple solid. Yield 0.40 g (78%); mp 82-85 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 7.9 Hz, 1H), 7.35-7.15 (m, 5H), 7.01 (dt, *J* = 7.9, 1.4 Hz, 1H), 6.67 (dd, *J* = 8.0, 1.0 Hz, 1H), 6.62 (dt, *J* = 7.6, 1.0 Hz, 1H), 4.27 (bs, 2H), 3.75 (s, 3H). ¹³C NMR (100MHz, CDCl₃) δ 145.6, 137.4, 133.6, 131.8, 129.6, 127.9, 122.5, 121.2, 120.3, 119.6, 118.9, 115.4, 109.7, 102.1, 33.1. HRMS-ESI *m*/*z*: 256.0963 (Calculated for C₁₅H₁₄N₂S + H⁺: 256.0950).

2-((2-methyl-1H-indol-3-yl)thio)aniline (18).

Greenish yellow solid. Yield 0.36 g (72%); mp 69-72 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.20 (bs, 1H), 7.57 (d, J = 7.6 Hz, 1H), 7.27 (d, J = 7.8 Hz, 1H), 7.18-7.06 (m, 2H), 6.97-6.91 (m,

2H), 6.67-6.63 (m, 1H), 6.55 (dt, J = 7.5, 1.1 Hz, 1H), 4.15 (bs, 2H), 2.50 (s, 3H). ¹³C NMR (100MHz, CDCl₃) δ 144.7, 140.3, 135.3, 130.2, 130.0, 127.0, 122.1, 121.8, 120.6, 118.9, 118.8, 115.4, 110.7, 99.8, 12.3. HRMS-ESI *m*/*z*: 256.0952 (Calculated for C₁₅H₁₄N₂S + H⁺: 256.0950).

3-((4-methoxyphenyl)thio)-2-methyl-1H-indole (19).

Brick red solid. Yield 0.42 g (79%); mp 117-119 °C; (Lit.⁶ 119-120 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.21 (bs, 1H), 7.55 (d, *J* = 7.7 Hz, 1H), 7.30 (d, *J* = 7.9 Hz, 1H), 7.19-7.08 (m, 2H), 7.03 (d, *J* = 8.8 Hz, 2H), 6.71 (d, *J* = 8.8 Hz, 2H), 3.71 (s, 3H), 2.52 (s, 3H). ¹³C NMR (100MHz, CDCl₃) δ 157.5, 140.6, 135.4, 130.3, 129.9, 127.9, 122.1, 120.6, 119.0, 114.5, 110.6, 100.9, 55.4, 12.2. LRMS-ESI *m*/*z*: 268.0870 (Calculated for C₁₆H₁₅NOS - H⁺: 268.0791).

Synthetic procedure for 2,3-bis-sulfenylation of indoles:

Methanol (5 mL) was added to a single neck flask (10 mL) containing stirrer bar. To this flask, diphenyl disulfide (218 mg, 1.0 mmol) and indole (117 mg, 1.0 mmol) were added. After this, $(NH_4)_2S_2O_8$ (456 mg, 2.0 mmol) and I₂ (254 mg, 1.0 mmol) were added one after the other portion wise and resulted reaction mixture was refluxed at 70 °C for 6-7 hours. Progress of the reaction was monitored by TLC (10-20% EA: 90-80% Hexane). Upon completion of the reaction, the mixture was cooled to room temperature, poured into water, and extracted four times with 20 mL of ethyl acetate. The combined organic layers were dried over Na₂SO₄, and

filtered. The solvent was removed *in vacuo* and the residue was purified by column chromatography (silica gel, eluent: hexane/ethyl acetate) to yield bis-sulfenylated indole as product.

2,3-bis(phenylthio)-1H-indole (20).

Pale yellow solid. Yield 0.15 g (44%); mp 96-98 °C; (Lit.⁷ 97-99 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.34 (bs, 1H), 7.58 (d, *J* = 8.0 Hz, 1H), 7.31 (d, *J* = 8.1 Hz, 1H), 7.28-7.19 (m, 6H), 7.17-7.09 (m, 5H), 7.08-7.03 (m, 1H). ¹³C NMR (100MHz, CDCl₃) δ 138.1, 136.9, 134.3, 133.6, 130.0, 129.8, 129.4, 128.7, 127.3, 126.6, 125.1, 123.9, 121.4, 119.9, 111.1, 109.2. LRMS-ESI *m/z*: 333.0629 (Calculated for C₂₀H₁₅NS₂ : 333.0646).

2,3-bis((4-methoxyphenyl)thio)-1H-indole (21).

Brown solid. Yield 0.24 g (62%); mp 134-137 °C; (Lit.⁸ 133-135 °C); ¹H NMR (400 MHz, CDCl₃) δ 8.10 (bs, 1H), 7.57 (d, *J* = 7.7 Hz, 1H), 7.33 (d, *J* = 8.8 Hz, 2H), 7.23 (d, *J* = 7.6 Hz, 1H), 7.20-7.08 (m, 4H), 6.82 (d, *J* = 8.8 Hz, 2H), 6.71 (d, *J* = 8.8 Hz, 2H), 3.78 (s, 3H), 3.72 (s,

3H).¹³C NMR (100 MHz, CDCl₃) δ 159.9, 157.9, 136.5, 135.6, 133.7, 130.3, 129.3, 128.7, 127.2, 123.3, 123.2, 121.0, 119.5, 115.2, 114.5, 110.8, 55.4, 55.3. LRMS-ESI *m/z*: 393.0655 (Calculated for C₂₂H₁₉NO₂S₂ : 393.0857).

2,3-bis((4-methoxyphenyl)thio)-1-methyl-1*H*-indole (22).

Gray solid. Yield 0.29 g (71%); mp 92-94 °C; (Lit.⁸ 95-96 °C); ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 7.9 Hz, 1H), 7.36-7.26 (m, 2H), 7.19-7.04 (m, 5H), 6.70 (t, *J* = 8.9 Hz, 4H), 3.78 (s, 3H), 3.72 (d, *J* = 4.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 158.7, 158.0, 138.2, 135.4, 130.5, 129.5, 129.2, 129.1, 126.1, 123.7, 120.9, 120.3, 114.9, 114.4, 112.0, 110.1, 55.33, 55.30, 31.1. LRMS-ESI *m/z*: 408.1116 (Calculated for C₂₃H₂₁NO₂S₂ + H⁺: 408.1087).

Reference Section

- 1) F.-L. Yang and S.-K. Tian, Angew. Chem. Int. Ed. 2013, 52, 4929.
- 2) W. Ge and Y. Wei, Green Chem. 2012, 14, 2066.
- 3) X. L. Fang, R. Y. Tang, P. Zhong and J. H. Li, Synthesis 2009, 24, 4183.
- 4) Q. Wu, D. Zhao, X. Qin, J. Lan and J. You, Chem. Commun., 2011, 47, 9188.
- 5) M. Tudge, M. Tamiya, C. Savarin and G. R. Humphrey, Org. Lett. 2006, 8, 565.
- 6) G.Wu, J.Wu, J.Wu and L.Wu, Synth. Commun. 2008, 38, 1036.
- 7) C. C. Silveira, S. R. Mendes, L. Wolf, G. M. Martins, L. v. Mühlen, Tetrahedron, 2012, 68, 10464.
- 8) P. Hamel, N. Zajac, J. G. Atkinson and Y. Girard, J. Org. Chem. 1994, 59, 6372.

Figure S1 ¹H NMR of **1**

Figure S2 ¹³C NMR of **1**

Figure S3 ¹³C DEPT-135 NMR of **1**

Figure S4¹H NMR of **2**

Figure S5 ¹³C NMR of 2

Figure S6 ¹³C DEPT-135 NMR of **2**

Figure S7¹H NMR of **3**

Figure S8¹³C NMR of **3**

Figure S9 ¹³C DEPT-135 NMR of **3**

Figure S10 ¹H NMR of **4**

Figure S14 ¹³C NMR of **5**

Figure S15¹³C DEPT-135 NMR of **5**

Figure S16 ¹H NMR of **6**

Figure S17 ¹³C NMR of 6

Figure S18 ¹³C DEPT-135 NMR of **6**

Figure S19¹H NMR of **7**

Figure S20 ¹³C NMR of 7

Figure S21 ¹³C DEPT-135 NMR of **7**

Figure S22 ¹H NMR of 8

Figure S23 ¹³C NMR of 8

Figure S24¹³C DEPT-135 NMR of **8**

Figure S25¹H NMR of **9**

Figure S26¹³C NMR of **9**

Figure S27 ¹³C DEPT-135 NMR of **9**

Figure S28 ¹H NMR of **10**

Figure S29 ¹³C NMR of **10**

Figure S30 ¹³C DEPT-135 NMR of **10**

Figure S31 ¹H NMR of **11**

Figure S32 ¹³C NMR of **11**

Figure S33 ¹H NMR of **12**

Figure S34 ¹³C NMR of **12**

Figure S35¹³C DEPT-135 NMR of **12**

Figure S36 ¹H NMR of **13**

Figure S37 ¹³C NMR of **13**

Figure S38 ¹³C DEPT-135 NMR of **13**

Figure S39 ¹H NMR of **14**

Figure S40 ¹³C NMR of **14**

Figure S41 ¹³C DEPT-135 NMR of **14**

Figure S42 ¹H NMR of **15**

Figure S43 ¹³C NMR of **15**

Figure S44 ¹³C DEPT-135 NMR of **15**

Figure S45 ¹H NMR of **16**

Figure S46 ¹³C NMR of **16**

Figure S47 ¹³C DEPT-135 NMR of **16**

Figure S48 ¹H NMR of **17**

Figure S49 ¹³C NMR of **17**

Figure S50 ¹³C DEPT-135 NMR of **17**

Figure S51 ¹H NMR of **18**

Figure S52 ¹³C NMR of **18**

Figure S53 ¹³C DEPT-135 NMR of **18**

Figure S54 ¹H NMR of **19**

Figure S55 ¹³C NMR of 19

Figure S56 ¹H NMR of **20**

Figure S57 ¹³C NMR of **20**

Figure S58 ¹³C DEPT-135 NMR of **20**

Figure
S59 ¹H NMR of **21**

Figure S60¹³C NMR of **21**

Figure S62 ¹³C NMR of **22**

Crystal Structure data of sulfide 11 (CCDC No. 953902)

_audit_creation_method SHELXL-97 _chemical_name_systematic ; _chemical_name_common _chemical_melting_point _chemical_formula_moiety 'C13 H9 N2 O2 S, C H3' _chemical_formula_sum 'C14 H12 N2 O2 S ' _chemical_formula_weight 272.33

loop_

_atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'N' 'N' 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'O' 'O' 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'S' 'S' 0.1246 0.1234 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'

_symmetry_cell_setting ? _symmetry_space_group_name_H-M Fdd2

loop_

_symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, z' '-x+1/4, y+1/4, z+1/4' 'x+3/4, -y+3/4, z+1/4' 'x, y+1/2, z+1/2' '-x, -y+1/2, z+1/2' '-x+1/4, y+3/4, z+3/4' 'x+3/4, -y+5/4, z+3/4' 'x+1/2, y, z+1/2' '-x+1/2, -y, z+1/2' '-x+3/4, y+1/4, z+3/4' 'x+5/4, -y+3/4, z+3/4' 'x+1/2, y+1/2, z' '-x+1/2, -y+1/2, z' '-x+3/4, y+3/4, z+1/4' 'x+5/4, -y+5/4, z+1/4'

_cell_length_a 20.173(6) _cell_length_b 51.635(14) _cell_length_ c 5.5236(15) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 cell volume 5754(3) _cell_formula_units_Z 16 _cell_measurement_temperature 120(2)_cell_measurement_reflns_used _cell_measurement_theta_min cell measurement theta max _exptl_crystal_description _exptl_crystal_colour _exptl_crystal_size_max _exptl_crystal_size_mid exptl crystal size min _exptl_crystal_density_meas _exptl_crystal_density_diffrn 1.258 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 2274 _exptl_absorpt_coefficient_mu 0.224 _exptl_absorpt_correction_type _exptl_absorpt_correction_T_min exptl absorpt correction T max _exptl_absorpt_process_details

_exptl_special_details;

_diffrn_ambient_temperature 120(2)_diffrn_radiation_wavelength 0.71073 diffrn radiation type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite diffrn measurement device type ? ? _diffrn_measurement_method _diffrn_detector_area_resol_mean ? diffrn reflns number 23149 _diffrn_reflns_av_R_equivalents 0.1602 diffrn reflns av sigmal/netI 0.1510

_diffrn_reflns_limit_h_min -26 _diffrn_reflns_limit_h_max 26 _diffrn_reflns_limit_k_min -66 diffrn reflns limit k max 66 _diffrn_reflns_limit_l_min -5 _diffrn_reflns_limit_l_max 7 diffrn reflns theta min 2.56_diffrn_reflns_theta_max 27.74 _reflns_number_total 2787 _reflns_number_gt 1052 _reflns_threshold_expression >2sigma(I) ? _computing_data_collection _computing_cell_refinement ? _computing_data_reduction 9 _computing_structure_solution 'SHELXS-97 (Sheldrick, 2008)' computing structure refinement 'SHELXL-97 (Sheldrick, 2008)' _computing_molecular_graphics ? _computing_publication_material ? _refine_special_details Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and Rfactors based on ALL data will be even larger. refine ls structure factor coef Fsqd _refine_ls_matrix_type full refine ls weighting scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.1000P)^2^+0.0000P] where P=(Fo^2^+2Fc^2)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap atom sites solution hydrogens geom refine ls hydrogen treatment mixed _refine_ls_extinction_method none refine ls extinction coef ? _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack -0.1(2)_refine_ls_number_reflns 3387

_refine_ls_number_parameters 183 _refine_ls_number_restraints 1 _refine_ls_R_factor_all 0.2406 refine ls R factor gt 0.0752 refine ls wR factor ref 0.2192 _refine_ls_wR_factor_gt 0.1652 refine ls goodness of fit ref 1.012 _refine_ls_restrained_S_all 1.012 refine ls shift/su max 0.013 _refine_ls_shift/su_mean 0.002 loop _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y atom site fract z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity atom site calc flag _atom_site_refinement_flags atom site disorder assembly _atom_site_disorder_group S1 S 0.36889(11) 0.04007(4) 0.8174(6) 0.1129(10) Uani 1 1 d . . . N121 N 0.4382(3) 0.0972(2) 1.2059(13) 0.112(2) Uani 1 1 d . . . H121 H 0.4616 0.1031 1.3237 0.135 Uiso 1 1 calc R . . O18 O 0.2865(3) 0.16348(12) 0.4388(14) 0.136(3) Uani 1 1 d . . . O81 O 0.2632(2) 0.12390(13) 0.3275(11) 0.1081(19) Uani 1 1 d ... C123 C 0.4280(4) 0.0717(2) 1.151(2) 0.118(3) Uani 1 1 d . . . H123 H 0.4457 0.0580 1.2386 0.141 Uiso 1 1 calc R . . N92 N 0.2914(3) 0.14005(16) 0.4628(14) 0.090(2) Uani 1 1 d . . . C1 C 0.2829(3) 0.03885(12) 0.8569(17) 0.077(2) Uani 1 1 d . . . C1# C 0.1444(4) 0.03059(15) 0.914(3) 0.113(4) Uani 1 1 d . . . H1 H 0.1343 0.0456 0.8119 0.135 Uiso 1 1 d R . . C107 C 0.3310(3) 0.13019(15) 0.6589(15) 0.0688(18) Uani 1 1 d . . . C108 C 0.3355(3) 0.10383(13) 0.6884(14) 0.0681(18) Uani 1 1 d . . . H108 H 0.3139 0.0925 0.5838 0.082 Uiso 1 1 calc R . . C109 C 0.3732(3) 0.09470(13) 0.8779(12) 0.0584(16) Uani 1 1 d ... C110 C 0.3627(4) 0.14712(14) 0.820(2) 0.096(3) Uani 1 1 d . . . H110 H 0.3582 0.1649 0.7978 0.116 Uiso 1 1 calc R ... C111 C 0.3997(3) 0.1383(2) 1.0079(18) 0.099(3) Uani 1 1 d . . . H111 H 0.4212 0.1497 1.1122 0.118 Uiso 1 1 calc R ... C112 C 0.3882(3) 0.06900(15) 0.9513(18) 0.090(3) Uani 1 1 d . . . C113 C 0.2466(7) 0.02466(16) 0.691(2) 0.120(3) Uani 1 1 d . . .

loop_

_atom_site_aniso_label _atom_site_aniso_U_11 atom site aniso U 22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 S1 0.1103(14) 0.0978(13) 0.131(2) 0.0108(16) 0.0498(16) 0.0217(10) N121 0.052(4) 0.236(9) 0.049(4) 0.003(6) 0.000(3) 0.010(5) 018 0.115(4) 0.129(4) 0.164(7) 0.049(5) 0.057(4) 0.036(3) O81 0.072(3) 0.168(5) 0.084(4) 0.040(5) 0.019(3) 0.019(3) C123 0.079(6) 0.165(9) 0.109(10) 0.032(8) 0.030(6) 0.030(6) N92 0.059(4) 0.114(6) 0.096(7) 0.020(5) 0.049(5) 0.013(4) C1 0.092(4) 0.063(3) 0.076(6) 0.000(5) 0.015(5) 0.007(3) C1# 0.109(7) 0.059(4) 0.169(11) 0.003(6) -0.049(7) 0.019(4) C107 0.048(4) 0.091(5) 0.067(5) 0.004(5) 0.015(4) 0.004(3) C108 0.047(3) 0.089(5) 0.069(5) -0.001(4) 0.021(4) -0.005(3) C109 0.041(3) 0.096(5) 0.038(4) 0.000(4) 0.013(3) 0.001(3) C110 0.070(5) 0.095(5) 0.124(8) -0.014(7) 0.066(6) -0.014(4) C111 0.047(4) 0.164(9) 0.085(7) -0.052(7) 0.028(4) -0.032(4) $C112\ 0.058(4)\ 0.121(7)\ 0.090(7)\ 0.019(6)\ 0.027(4)\ -0.001(4)$ $C113\ 0.172(9)\ 0.093(6)\ 0.095(7)\ -0.012(6)\ -0.012(8)\ 0.009(6)$ $C114\ 0.074(5)\ 0.088(4)\ 0.103(7)\ -0.003(6)\ 0.006(5)\ 0.001(3)$ $C115\ 0.097(6)\ 0.095(5)\ 0.097(7)\ -0.010(6)\ -0.011(6)\ 0.001(4)$ C116 0.089(6) 0.128(6) 0.31(2) -0.005(9) -0.076(8) -0.005(4) C117 0.167(10) 0.089(6) 0.147(12) -0.029(7) -0.061(10) 0.014(7) $C118\ 0.042(4)\ 0.131(6)\ 0.066(6)\ -0.024(7)\ 0.026(4)\ -0.020(4)$

_geom_special_details

;

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken

into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

loop_

_geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag S1 C112 1.712(9).? S1 C1 1.750(7).? N121 C123 1.367(10) . ? N121 C118 1.370(10) . ? N121 H121 0.8600 . ? O18 N92 1.221(7) . ? O81 N92 1.257(8) . ? C123 C112 1.373(12) . ? C123 H123 0.9300 . ? N92 C107 1.438(10) . ? C1 C114 1.362(11) . ? C1 C113 1.381(12).? C1# C117 1.363(14).? C1# C115 1.393(12).? C1# C116 1.549(10) . ? C1# H1 0.9803 . ? C107 C108 1.374(8).? C107 C110 1.402(11) . ? C108 C109 1.377(9) . ? C108 H108 0.9300 . ? C109 C118 1.398(9) . ? C109 C112 1.420(9).? C110 C111 1.357(11) . ? C110 H110 0.9300 . ? C111 C118 1.387(10) . ? C111 H111 0.9300 . ? C113 C117 1.386(12).? C113 H113 0.9300 . ? C114 C115 1.388(9) . ? C114 H114 0.9300 . ? C115 H115 0.9300 . ? C116 H11A 0.9600.? C116 H11B 0.9600 . ? C116 H11C 0.9600 . ?

C117 H117 0.9300 . ?

loop_

_geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C112 S1 C1 101.7(4) . . ? C123 N121 C118 107.6(8) . . ? C123 N121 H121 126.2 . . ? C118 N121 H121 126.2 . . ? N121 C123 C112 111.3(9) . . ? N121 C123 H123 124.3 . . ? C112 C123 H123 124.3 . . ? O18 N92 O81 123.8(8) . . ? O18 N92 C107 118.5(8) . . ? O81 N92 C107 117.7(7) . . ? C114 C1 C113 116.8(7) . . ? C114 C1 S1 125.4(7) . . ? C113 C1 S1 117.5(8) . . ? C117 C1# C115 115.2(8) . . ? C117 C1# C116 123.9(12) . . ? C115 C1# C116 120.9(11) . . ? C117 C1# H1 86.5 . . ? C115 C1# H1 92.8 . . ? C116 C1# H1 90.0 . . ? C108 C107 C110 120.8(7) . . ? C108 C107 N92 118.5(7) . . ? C110 C107 N92 120.7(8) . . ? C107 C108 C109 117.8(6) . . ? C107 C108 H108 121.1 . . ? C109 C108 H108 121.1 . . ? C108 C109 C118 121.0(7) . . ? C108 C109 C112 130.9(7) . . ? C118 C109 C112 108.1(7) . . ? C111 C110 C107 121.8(7) . . ? C111 C110 H110 119.1 . . ? C107 C110 H110 119.1 . . ? C110 C111 C118 117.6(8) . . ? C110 C111 H111 121.2 . . ? C118 C111 H111 121.2..? C123 C112 C109 105.0(8) . . ? C123 C112 S1 124.7(9) . . ?

C109 C112 S1 130.1(8) . . ? C1 C113 C117 120.7(10) . . ? C1 C113 H113 119.6 . . ? C117 C113 H113 119.6 . . ? C1 C114 C115 122.1(8) . . ? C1 C114 H114 119.0 . . ? C115 C114 H114 119.0 . . ? C114 C115 C1# 121.6(9) ...? C114 C115 H115 119.2 . . ? C1# C115 H115 119.2 . . ? C1# C116 H11A 109.5 . . ? C1# C116 H11B 109.5 . . ? H11A C116 H11B 109.5 . . ? C1# C116 H11C 109.5 . . ? H11A C116 H11C 109.5 . . ? H11B C116 H11C 109.5 . . ? C1# C117 C113 123.4(10) . . ? C1# C117 H117 118.3 . . ? C113 C117 H117 118.3 . . ? N121 C118 C111 131.0(10) . . ? N121 C118 C109 108.0(8) . . ? C111 C118 C109 120.9(9) . . ?

loop_

_geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion geom torsion site symmetry 1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 geom torsion publ flag C118 N121 C123 C112 0.1(9)? C112 S1 C1 C114 -33.5(7) . . . ? C112 S1 C1 C113 153.2(7) ? O18 N92 C107 C108 178.8(6) ? O81 N92 C107 C108 -0.3(8) ? O18 N92 C107 C110 0.6(9) . . . ? O81 N92 C107 C110 -178.6(6) ? C110 C107 C108 C109 -1.3(8) ? N92 C107 C108 C109 -179.6(5)? C107 C108 C109 C118 1.7(8) . . . ? C107 C108 C109 C112 -178.7(6)? C108 C107 C110 C111 1.1(10) . . . ?

N92 C107 C110 C111 179.3(6) ? C107 C110 C111 C118 -1.2(10)? N121 C123 C112 C109 0.3(8) . . . ? N121 C123 C112 S1 175.6(5)? C108 C109 C112 C123 179.8(6) . . . ? C118 C109 C112 C123 -0.5(7) . . . ? C108 C109 C112 S1 4.8(10)? C118 C109 C112 S1 -175.5(5) . . . ? C1 S1 C112 C123 117.2(7) . . . ? C1 S1 C112 C109 -68.7(7) ? C114 C1 C113 C117 1.0(12)? S1 C1 C113 C117 174.8(7)? C113 C1 C114 C115 -2.4(10) ? S1 C1 C114 C115 -175.6(6) ? $C1 C114 C115 C1# 4.1(11) \dots ?$ C117 C1# C115 C114 -4.1(12)? C116 C1# C115 C114 176.7(7)? C115 C1# C117 C113 2.9(14)? C116 C1# C117 C113 -178.0(8) . . . ? $C1 C113 C117 C1\# -1.4(14) \dots ?$ C123 N121 C118 C111 -178.0(7) . . . ? C123 N121 C118 C109 -0.4(8)? C110 C111 C118 N121 178.9(6) . . . ? C110 C111 C118 C109 1.5(9)? C108 C109 C118 N121 -179.7(5)? C112 C109 C118 N121 0.5(6) ? C108 C109 C118 C111 -1.8(9)? C112 C109 C118 C111 178.4(6)?

_diffrn_measured_fraction_theta_max 0.993 _diffrn_reflns_theta_full 27.74 _diffrn_measured_fraction_theta_full 0.993 _refine_diff_density_max 0.176 _refine_diff_density_min -0.225 _refine_diff_density_rms 0.045

Crystal Structure data of sulfide 21 (CCDC No. 952234)

SHELXL-97 _audit_creation_method _chemical_name_systematic chemical name common _chemical_melting_point _chemical_formula_moiety _chemical_formula_sum 'C23 H19 N2 O2 S2' _chemical_formula_weight 419.52 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'N' 'N' 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'S' 'S' 0.1246 0.1234 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'O' 'O' 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting ? _symmetry_space_group_name_H-M ? loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, y+1/2, -z+1/2' '-x, -y, -z'

,	J '	_			
'x-1	/2,	-y-	1/2,	z-1	/2'

_cell_length_a	7.5669(4)
_cell_length_b	10.6356(5)
_cell_length_c	24.4275(12)
_cell_angle_alpha	90.00
_cell_angle_beta	97.345(2)
_cell_angle_gamma	90.00
_cell_volume	1949.76(17)
_cell_formula_units_Z	4

_cell_measurement_temperature 296(2) _cell_measurement_reflns_used ?

?

_cell_measurement_theta_min

_cell_measurement_theta_max ?

? _exptl_crystal_description ? _exptl_crystal_colour ? _exptl_crystal_size_max _exptl_crystal_size_mid ? _exptl_crystal_size_min ? ? _exptl_crystal_density_meas 1.429 _exptl_crystal_density_diffrn _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 876 _exptl_absorpt_coefficient_mu 0.296 _exptl_absorpt_correction_type ? _exptl_absorpt_correction_T_min ? _exptl_absorpt_correction_T_max ? _exptl_absorpt_process_details

_exptl_special_details;

_diffrn_ambient_temperature 296(2) diffrn radiation wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type ? _diffrn_measurement_method 9 diffrn detector area resol mean ? _diffrn_reflns_number 20029 diffrn reflns av R equivalents 0.0287 _diffrn_reflns_av_sigmal/netI 0.0228 diffrn reflns limit h min -8 diffrn reflns limit h max 9 _diffrn_reflns_limit_k_min -13 diffrn reflns limit k max 13 _diffrn_reflns_limit_l_min -30 diffrn reflns limit 1 max 30 _diffrn_reflns_theta_min 2.55 _diffrn_reflns_theta_max 26.37 reflns number total 3878 _reflns_number_gt 3012 reflns threshold expression >2sigma(I)

_computing_data_collection ?

_computing_cell_refinement ? _computing_data_reduction ? _computing_structure_solution 'SHELXS-97 (Sheldrick, 2008)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 2008)' _computing_molecular_graphics ? _computing_publication_material ?

_refine_special_details

;

Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of $F^2^> 2 \operatorname{sigma}(F^2^)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

refine ls structure factor coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc refine ls weighting details $calc w=1/[s^2(Fo^2)+(0.1000P)^2+0.0000P]$ where $P=(Fo^2+2Fc^2)/3'$ atom sites solution primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method none ? refine ls extinction coef refine ls number reflns 3878 _refine_ls_number_parameters 246 refine ls number restraints 0 _refine_ls_R_factor_all 0.0585 refine ls R factor gt 0.0419 _refine_ls_wR_factor_ref 0.1476 _refine_ls_wR_factor_gt 0.1347 _refine_ls_goodness_of_fit_ref 1.102 _refine_ls_restrained_S_all 1.102 refine ls shift/su max 0.000 refine ls shift/su mean 0.000 loop _atom_site_label atom site type symbol

_atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag atom site refinement flags _atom_site_disorder_assembly atom site disorder group S1 S 0.73637(8) 0.21013(5) 0.06383(3) 0.0703(2) Uani 1 1 d . . . S2 S 0.39422(7) 0.00199(4) 0.069275(19) 0.0554(2) Uani 1 1 d . . . O2 O 0.98152(19) 0.73658(14) 0.05839(7) 0.0761(5) Uani 1 1 d . . . O1 O 0.71061(16) -0.44153(11) 0.19141(5) 0.0575(4) Uani 1 1 d . . . C1 C 0.8897(3) 0.8276(2) 0.02244(11) 0.0806(7) Uani 1 1 d . . . H3 H 0.8939 0.8032 -0.0152 0.121 Uiso 1 1 calc R . . H1 H 0.9456 0.9082 0.0290 0.121 Uiso 1 1 calc R . . H19 H 0.7678 0.8327 0.0293 0.121 Uiso 1 1 calc R . . C2 C 0.9175(2) 0.61650(18) 0.05685(8) 0.0538(5) Uani 1 1 d . . . C3 C 0.7777(2) 0.57398(19) 0.02050(8) 0.0571(5) Uani 1 1 d . . . H4 H 0.7196 0.6279 -0.0059 0.069 Uiso 1 1 calc R . . C4 C 0.7236(3) 0.45045(19) 0.02320(8) 0.0587(5) Uani 1 1 d . . . H5 H 0.6289 0.4216 -0.0017 0.070 Uiso 1 1 calc R . . C5 C 0.8072(3) 0.36895(17) 0.06215(8) 0.0539(5) Uani 1 1 d . . . C6 C 0.5713(2) 0.22003(15) 0.10748(7) 0.0450(4) Uani 1 1 d . . . C7 C 0.4401(2) 0.13278(15) 0.11185(7) 0.0434(4) Uani 1 1 d . . . C8 C 0.4964(2) -0.12435(15) 0.10909(7) 0.0424(4) Uani 1 1 d ... C9 C 0.4144(2) -0.24043(17) 0.10308(8) 0.0506(5) Uani 1 1 d . . . H8 H 0.3064 -0.2488 0.0805 0.061 Uiso 1 1 calc R . . C10 C 0.4917(2) -0.34369(16) 0.13037(9) 0.0525(5) Uani 1 1 d . . . H9 H 0.4371 -0.4219 0.1251 0.063 Uiso 1 1 calc R . . C11 C 0.6474(2) -0.33308(15) 0.16508(7) 0.0440(4) Uani 1 1 d . . . C12 C 0.8637(3) -0.4330(2) 0.23129(10) 0.0749(6) Uani 1 1 d . . . H6 H 0.9606 -0.3979 0.2145 0.112 Uiso 1 1 calc R . . H7 H 0.8959 -0.5154 0.2452 0.112 Uiso 1 1 calc R ... H2 H 0.8383 -0.3800 0.2611 0.112 Uiso 1 1 calc R . . N1 N 0.55972(19) 0.31428(13) 0.14544(6) 0.0494(4) Uani 1 1 d . . . H16 H 0.6286 0.3787 0.1501 0.059 Uiso 1 1 calc R . . C14 C 0.4204(2) 0.28885(15) 0.17468(7) 0.0449(4) Uani 1 1 d . . . C15 C 0.3419(2) 0.17603(15) 0.15473(7) 0.0431(4) Uani 1 1 d . . . C16 C 0.6546(3) -0.11490(16) 0.14317(8) 0.0558(5) Uani 1 1 d . . . H11 H 0.7116 -0.0374 0.1473 0.067 Uiso 1 1 calc R . . C17 C 0.7311(3) -0.21727(16) 0.17149(8) 0.0550(5) Uani 1 1 d . . . H10 H 0.8379 -0.2087 0.1947 0.066 Uiso 1 1 calc R . . C18 C 0.1971(3) 0.12831(18) 0.17822(9) 0.0572(5) Uani 1 1 d . . . H15 H 0.1420 0.0540 0.1653 0.069 Uiso 1 1 calc R . . C19 C 0.1378(3) 0.1937(2) 0.22085(10) 0.0681(6) Uani 1 1 d . . .

 $\begin{array}{l} \text{H14 H } 0.0420 \ 0.1625 \ 0.2370 \ 0.082 \ \text{Uiso } 1 \ 1 \ \text{calc R} \ .. \\ \text{C20 C } 0.2178(3) \ 0.3057(2) \ 0.24040(9) \ 0.0698(6) \ \text{Uani } 1 \ 1 \ d \ .. \\ \text{H12 H } 0.1746 \ 0.3474 \ 0.2694 \ 0.084 \ \text{Uiso } 1 \ 1 \ \text{calc R} \ .. \\ \text{C21 C } 0.3594(3) \ 0.35590(18) \ 0.21764(8) \ 0.0563(5) \ \text{Uani } 1 \ 1 \ d \ .. \\ \text{H13 H } 0.4121 \ 0.4312 \ 0.2303 \ 0.068 \ \text{Uiso } 1 \ 1 \ \text{calc R} \ .. \\ \text{C22 C } 0.9514(3) \ 0.4127(2) \ 0.09840(9) \ 0.0617(5) \ \text{Uani } 1 \ 1 \ d \ .. \\ \text{H18 H } 1.0114 \ 0.3588 \ 0.1244 \ 0.074 \ \text{Uiso } 1 \ 1 \ \text{calc R} \ .. \\ \text{C23 C } 1.0044(3) \ 0.5358(2) \ 0.09552(9) \ 0.0648(6) \ \text{Uani } 1 \ 1 \ d \ .. \\ \text{H17 H } 1.1000 \ 0.5650 \ 0.1199 \ 0.078 \ \text{Uiso } 1 \ 1 \ \text{calc R} \ .. \end{array}$

loop_

_atom_site_aniso_label atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 atom site aniso U 13 _atom_site_aniso_U_12 S1 0.0821(4) 0.0463(3) 0.0912(5) -0.0050(3) 0.0439(3) -0.0037(2) S2 0.0785(4) 0.0368(3) 0.0470(3) -0.00003(18) -0.0073(3) -0.0030(2) O2 0.0605(9) 0.0582(9) 0.1072(12) 0.0230(8) 0.0021(9) -0.0142(7) O1 0.0602(8) 0.0366(7) 0.0712(9) 0.0014(6) -0.0085(7) 0.0013(6) C1 0.0778(15) 0.0581(13) 0.1083(19) 0.0300(13) 0.0215(14) 0.0052(11) C2 0.0422(10) 0.0556(11) 0.0654(12) 0.0157(9) 0.0143(9) -0.0035(8) $C3\ 0.0507(11)\ 0.0604(12)\ 0.0600(12)\ 0.0143(10)\ 0.0062(9)\ 0.0031(9)$ C4 0.0502(11) 0.0638(13) 0.0613(12) 0.0014(10) 0.0045(9) -0.0036(9) C5 0.0520(11) 0.0520(11) 0.0615(12) 0.0056(9) 0.0222(10) -0.0019(9) C6 0.0554(11) 0.0318(9) 0.0486(10) 0.0024(7) 0.0092(8) 0.0007(7) C7 0.0525(10) 0.0322(8) 0.0447(10) 0.0035(7) 0.0033(8) -0.0008(7) C8 0.0516(10) 0.0337(8) 0.0417(9) -0.0035(7) 0.0053(8) -0.0024(7) $C9\ 0.0459(10)\ 0.0420(10)\ 0.0602(11)\ -0.0033(8)\ -0.0072(8)\ -0.0057(8)$ C10 0.0516(10) 0.0332(9) 0.0704(12) -0.0035(8) -0.0017(9) -0.0079(7) C11 0.0487(10) 0.0333(8) 0.0502(10) -0.0022(7) 0.0070(8) -0.0002(7) C12 0.0784(14) 0.0573(13) 0.0805(15) 0.0087(11) -0.0219(12) 0.0054(11) N1 0.0561(9) 0.0308(7) 0.0629(10) -0.0030(6) 0.0137(8) -0.0059(6) C14 0.0524(10) 0.0344(9) 0.0478(10) 0.0056(7) 0.0058(8) 0.0057(7) C15 0.0501(10) 0.0332(8) 0.0454(9) 0.0080(7) 0.0035(8) 0.0034(7) C16 0.0645(12) 0.0359(10) 0.0635(12) -0.0007(8) -0.0055(10) -0.0151(8) C17 0.0532(11) 0.0436(10) 0.0630(12) -0.0038(9) -0.0123(9) -0.0071(8) C18 0.0583(12) 0.0453(10) 0.0693(13) 0.0138(9) 0.0129(10) -0.0025(8) C19 0.0705(14) 0.0627(14) 0.0769(15) 0.0202(12) 0.0322(12) 0.0065(11) C20 0.0864(16) 0.0660(14) 0.0620(13) 0.0097(11) 0.0285(13) 0.0261(12) C21 0.0704(13) 0.0423(10) 0.0562(12) -0.0025(8) 0.0082(10) 0.0121(9) $C22\ 0.0555(11)\ 0.0630(13)\ 0.0671(13)\ 0.0236(10)\ 0.0101(10)\ 0.0008(10)$ $C23\ 0.0476(11)\ 0.0726(14)\ 0.0717(13)\ 0.0212(12)\ -0.0018(10)\ -0.0089(10)$ _geom_special_details;

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes;

loop_

_geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag S1 C6 1.7457(18).? S1 C5 1.7742(19).? S2 C7 1.7449(17).? S2 C8 1.7767(17).? O2 C2 1.365(2) . ? O2 C1 1.427(3) . ? O1 C11 1.376(2) . ? O1 C12 1.418(2) . ? C1 H3 0.9600.? C1 H1 0.9600.? C1 H19 0.9600 . ? C2 C3 1.368(3).? C2 C23 1.379(3) . ? C3 C4 1.380(3).? C3 H4 0.9300 . ? C4 C5 1.379(3).? C4 H5 0.9300 . ? C5 C22 1.394(3) . ? C6 C7 1.373(2).? C6 N1 1.376(2) . ? C7 C15 1.435(2).? C8 C16 1.372(2) . ? C8 C9 1.381(2) . ? C9 C10 1.376(3) . ? C9 H8 0.9300.? C10 C11 1.366(3) . ? C10 H9 0.9300 . ? C11 C17 1.385(2).? C12 H6 0.9600 . ? C12 H7 0.9600 . ? C12 H2 0.9600 . ?

N1 C14 1.374(2) . ? N1 H16 0.8600 . ? C14 C21 1.395(2) . ? C14 C15 1.398(2).? C15 C18 1.396(2) . ? C16 C17 1.377(2).? C16 H11 0.9300 . ? C17 H10 0.9300 . ? C18 C19 1.375(3) . ? C18 H15 0.9300 . ? C19 C20 1.392(3) . ? C19 H14 0.9300 . ? C20 C21 1.377(3).? C20 H12 0.9300 . ? C21 H13 0.9300 . ? C22 C23 1.374(3) . ? C22 H18 0.9300 . ? C23 H17 0.9300 . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C6 S1 C5 101.45(8) . . ? C7 S2 C8 103.72(8) . . ? C2 O2 C1 118.35(17) . . ? C11 O1 C12 118.18(14) . . ? O2 C1 H3 109.5 . . ? O2 C1 H1 109.5 . . ? H3 C1 H1 109.5 . . ? O2 C1 H19 109.5 . . ? H3 C1 H19 109.5 . . ? H1 C1 H19 109.5 . . ? O2 C2 C3 124.72(17) . . ? O2 C2 C23 115.28(18) . . ? C3 C2 C23 120.00(18) . . ? C2 C3 C4 119.56(18) . . ? C2 C3 H4 120.2 . . ? C4 C3 H4 120.2 . . ? C5 C4 C3 121.22(19) . . ? C5 C4 H5 119.4 . . ? C3 C4 H5 119.4 . . ?

C4 C5 C22 118.76(18) . . ? C4 C5 S1 120.07(16) . . ? C22 C5 S1 121.13(15) . . ? C7 C6 N1 109.32(15) . . ? C7 C6 S1 125.98(13) . . ? N1 C6 S1 124.60(13) . . ? C6 C7 C15 106.68(15) . . ? C6 C7 S2 125.68(13) . . ? C15 C7 S2 127.47(13) . . ? C16 C8 C9 118.38(15) . . ? C16 C8 S2 124.17(13) . . ? C9 C8 S2 117.38(13) . . ? C10 C9 C8 120.31(16) . . ? C10 C9 H8 119.8 . . ? C8 C9 H8 119.8 . . ? C11 C10 C9 120.97(16) . . ? C11 C10 H9 119.5 . . ? C9 C10 H9 119.5 . . ? C10 C11 O1 116.20(15) . . ? C10 C11 C17 119.32(16) . . ? O1 C11 C17 124.48(16) . . ? O1 C12 H6 109.5 . . ? O1 C12 H7 109.5 . . ? H6 C12 H7 109.5 . . ? O1 C12 H2 109.5 . . ? H6 C12 H2 109.5 . . ? H7 C12 H2 109.5 . . ? C14 N1 C6 109.05(14) . . ? C14 N1 H16 125.5 . . ? C6 N1 H16 125.5 . . ? N1 C14 C21 129.79(17) . . ? N1 C14 C15 107.91(14) . . ? C21 C14 C15 122.29(17) . . ? C18 C15 C14 119.30(17) . . ? C18 C15 C7 133.65(17) . . ? C14 C15 C7 107.04(15) . . ? C8 C16 C17 121.70(16) . . ? C8 C16 H11 119.2 . . ? C17 C16 H11 119.2 . . ? C16 C17 C11 119.29(17) . . ? C16 C17 H10 120.4 . . ? C11 C17 H10 120.4 . . ? C19 C18 C15 118.48(19) . . ? C19 C18 H15 120.8 . . ? C15 C18 H15 120.8 . . ? C18 C19 C20 121.54(19) . . ? C18 C19 H14 119.2 . . ? C20 C19 H14 119.2 . . ? C21 C20 C19 121.34(19) . . ? C21 C20 H12 119.3 . . ? C19 C20 H12 119.3 . . ? C20 C21 C14 117.05(19) . . ? C20 C21 H13 121.5 . . ? C14 C21 H13 121.5 . . ? C23 C22 C5 119.69(18) . . ? C23 C22 H18 120.2 . . ? C22 C23 C2 120.76(19) . . ? C22 C23 H17 119.6 . . ?

loop_

_geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag $C1 O2 C2 C3 4.7(3) \dots ?$ C1 O2 C2 C23 -175.30(19)? O2 C2 C3 C4 -179.39(18)? C23 C2 C3 C4 0.6(3) . . . ? $C2 C3 C4 C5 0.4(3) \dots ?$ $C3 C4 C5 C22 - 1.4(3) \dots ?$ C3 C4 C5 S1 -179.06(15) . . . ? C6 S1 C5 C4 -88.85(17)? C6 S1 C5 C22 93.57(17) . . . ? C5 S1 C6 C7 161.50(17) . . . ? C5 S1 C6 N1 -22.54(17)? N1 C6 C7 C15 0.22(19)? S1 C6 C7 C15 176.71(13) ? N1 C6 C7 S2 175.76(12) ? $S1 C6 C7 S2 - 7.8(2) \dots ?$ C8 S2 C7 C6 100.73(16) ? C8 S2 C7 C15 -84.65(16)? C7 S2 C8 C16 - 36.61(18) . . . ? C7 S2 C8 C9 146.49(14)? $C16 C8 C9 C10 - 0.7(3) \dots ?$

S2 C8 C9 C10 176.39(14)? C8 C9 C10 C11 2.0(3) ? C9 C10 C11 O1 178.28(17)? C9 C10 C11 C17 -2.0(3) ? C12 O1 C11 C10 -174.83(19) . . . ? C12 O1 C11 C17 5.5(3) . . . ? $C7 C6 N1 C14 - 0.1(2) \dots ?$ S1 C6 N1 C14 -176.65(13) . . . ? C6 N1 C14 C21 178.94(18) . . . ? C6 N1 C14 C15 -0.06(19) . . . ? N1 C14 C15 C18 179.35(16) ? C21 C14 C15 C18 0.2(3) . . . ? N1 C14 C15 C7 0.20(18) . . . ? C21 C14 C15 C7 -178.90(16)? $C6 C7 C15 C18 - 179.23(19) \dots ?$ S2 C7 C15 C18 5.3(3) . . . ? $C6 C7 C15 C14 - 0.26(19) \dots ?$ S2 C7 C15 C14 -175.69(13) . . . ? C9 C8 C16 C17 -0.6(3) ? S2 C8 C16 C17 -177.48(15) . . . ? C8 C16 C17 C11 0.6(3) . . . ? C10 C11 C17 C16 0.7(3) . . . ? O1 C11 C17 C16 -179.61(17) . . . ? C14 C15 C18 C19 -0.8(3) ? C7 C15 C18 C19 178.11(19)? C15 C18 C19 C20 0.5(3) ? C18 C19 C20 C21 0.3(3) . . . ? $C19 C20 C21 C14 - 0.8(3) \dots ?$ N1 C14 C21 C20 -178.35(18) . . . ? C15 C14 C21 C20 0.5(3) . . . ? $C4 C5 C22 C23 1.5(3) \dots ?$ S1 C5 C22 C23 179.11(16)? $C5 C22 C23 C2 - 0.5(3) \dots$? O2 C2 C23 C22 179.5(2) ? $C3 C2 C23 C22 - 0.5(3) \dots ?$

_diffrn_measured_fraction_theta_max 0.971 _diffrn_reflns_theta_full 26.37 _diffrn_measured_fraction_theta_full 0.971 _refine_diff_density_max 0.278 _refine_diff_density_min -0.186 _refine_diff_density_rms 0.042