Pentide	Peptide	Peptide	Conjugate ^b	Conjugate
replice	mass found $(m/z)^{a}$	mass calculated (m/z)	mass found $(m/z)^a$	mass calculated (m/z)
LB1_1	2460	2464	7711	7714
LB1_2	2461	2464	7716	7714
LB1_3	2462	2464	7716	7714
LB1_4	2153	2154	7406	7405
LB1_5	2478	2479	7732	7729
LB1_6	2479	2480	7735	7730
LB1_7	2536	2537	7793	7787
LB1_8	2447	2448	7703	7698
LB1_9	2350	2352	7599	7602
LB1_10	2384	2388	7634	7638
LB1_11	2186	2187	7435	7437
LB1_12	2354	2356	7606	7606
LB1_13	2469	2471	7723	7721
LB1_14	2470	2471	7723	7721
LB1_15	2470	2471	7722	7721
LB1_16	2469	2471	7721	7721

 Table S1. MALDI-TOF mass-spectrometry analysis of LB1-peptides and their PNA705 conjugates synthesized using SELPEPCON

^a Main signal as found by MALDI-TOF mass-spectrometry.

^b Mass after conjugation with N_3 -PNA(705)-S-S-biotin and workup providing the **LB1**-PNA705-SH conjugate containing a triazole linker between the peptide and the PNA as shown in **Schemes 1 - 3**.

Pentide	Sequence ^a	Peptide	Peptide mass $(m/z)^{\circ}$		Conjugate mass $(m/z)^{c}$	
replue	Sequence	Found	Calculated	Found	Calculated	
LB2_1	GWTLNSAGYLLGPHIDNHRSFHDKYGLA	3223	3220	8472	8470	
LB2_2	GALFLGFLGAAGSTMGAWSQPKKKRKV	2891	2886	8156*	8137	
LB2_3	GWTLNSAGYLLGKINLKALAALAKKIL	2918	2921	-	8171	
LB2_4	GALFLFWLGAAGSTMGAWSQPKKKRKV	3012	3016	8262	8266	
LB2_5	MGLGLHLLVLAAALQGAWSQPKKKRKV	2990	2994	8241	8244	
LB2_6	RRRRRRQIKIWFQNRRMKWKKGG	3383	3377	8650**	8627	
LB2_7	RXRRXRRXRIKILFQNRRMKWKK	3251	3245	8519**	8495	
LB2_8	RXRRBRRXRILFQYRXRBRXRB	2989	2989	8249	8240	
LB2_9	RXRRBRRXRYQFLIRXRBRXRB	2990	2989	8249	8240	
LB2_10	MVTVLFRRLRIRRACGPPRVRV	2819	2820	8094** ^d	7982	
LB2_11	AGYLLGKINLKALAALAKKIL	2262	2262	7518	7512	
LB2_12	KETWWETWWTETSQPKKKRKV	2925	2927	8176	8178	
LB2_13	KETWFETWFTEWSQPKKKRKV	2847	2849	8099	8100	
LB2_14	VTVLFRRLRIRRCSGPPRVR	2603	2605	7855** ^d	7767	
LB2_15	GLWRALWRLLRSLWRLLWRA	-	2701	-	7951	
LB2_16	CQSWQQGWCSLGPIHAHLDR	2576	2578	-	7652	
LB2_17	HGLASTLTRWAHYNALIRAF	2375	2378	7624	7628	
LB2_18	HGLASTLTRWAHYNALIRAF	2378	2378	7625	7628	
LB2_19	AGYLLGKINLKALAALAKKI	2146	2149	7400	7399	
LB2_20	GYLLGKINLKALAALAKKIL	2189	2191	7444	7441	
LB2_21	VTVLFRRLRIRRASGPPRVR	2484	2485	7739	7735	
LB2_22	MPGEPRRANVMAHKLEPASL	2282	2284	7538	7534	
LB2_23	PQRDTVGGRTTPPSWGPAKA	2158	2158	7414	7409	
LB2_24	AGYLLGKLKALAALAKKIL	2034	2020	7288	7270	
LB2_25	KMTRAQRRAAARRNRWTAR	2432	2436	7680	7686	
LB2_26	RGGRLSYSRRRFSTSTGR	2178	2179	7424	7430	
LB2_27	KLALKALKALKAALKLA	1955	1957	7210	7207	
LB2_28	RQIKILFQNRRMKWKKGG	2381	2367	7635	7617	
LB2_29	VRLPPPVRLPPPVRLPPP	2074	2077	7327	7327	
LB2_30	LGISYGRKKRRQRRRPPQ	2330	2332	7583	7582	
LB2_31	LLIILRRRIRKQAHAHSK	2287	2289	7542	7539	
LB2_32	IAWVKAFIRKLRKGPLG	2032	2033	7287	7283	

Table S2a. Sequences and MALDI-TOF mass-spectrometry analysis of **LB2** CPP-library containing a *N*-terminal alkyne linker and conjugation to N₃-PNA705-S-S-biotin.

^a All peptides contain a *C*-terminal amide and a 4-pentynoic acid group coupled to the *N*-terminus.

^b Main signal as found by MALDI-TOF mass- spectrometry. Note that cysteines contain StBu protection group.

^c Mass after conjugation with N₃-PNA(705)-S-S-biotin and workup providing the LB2-PNA705-SH conjugate containing a triazole linker between the peptide and the PNA as shown in Schemes 1 - 3. Main signal contains (*) oxidized methionine, (**) sodium

^d The mass spectrum contains a statistical mixture of peaks corresponding to StBu adducts corresponding to the amount of cysteines; the major observed signal is shown

Pentide	Sequence ^a	Peptide	mass $(m/z)^{\circ}$	Conjugate mass $(m/z)^{\circ}$		
replice	Sequence	Found	Expected	Found	Expected	
LB2_33	RBRRXRILFQYRXRRBR	2379	2380	7635	7630	
LB2_34	RXRRXRILFQYRXRRXR	2464	2464	7720	7714	
LB2_35	RQIKIWFQNRRMKWKK	2341	2326	7597**	7576	
LB2_36	FFLIPKGRRRRRRRRR	2305	2306	7560	7556	
LB2_37	AAKKAAKKAAKKAAKK	1690	1691	6943	6941	
LB2_38	RQPKIWFPNRRKPWKK	2242	2245	7494	7495	
LB2_39	SDLWEMMMVSLASQY	-	1870	-	7120	
LB2_40	GEAHIPTSEMREKGW	1820	1807	7070**	7057	
LB2_41	KWFETWFTEWPKKRK	2174	2177	7427	7427	
LB2_42	RKKLWTPPKAKKWK	1873	1874	7127	7125	
LB2_43	RXRRXRRXRXRXB	1983	1983	7238	7233	
LB2_44	GKKAFKEAEKGFKK	1675	1675	6930	6925	
LB2_45	GHKALKLAAKLLHH	1616	1616	6872	6866	
LB2_46	GKKALKLAAKLLKK	1589	1589	6846	6839	
LB2_47	RXRRBRRXRBRXB	1899	1899	7158	7149	
LB2_48	RRRRNTRRNRRVR	2086	2087	7334	7338	
LB2_49	TRRQRTRRARRNR	1862	1862	7110	7112	
LB2_50	KMDCRWRWKCCKK	2115	2115	7366 ^d	7101	
LB2_51	INLKKLAKLKKIL	1602	1602	6860	6852	
LB2_52	GRKKRRQRRRPPQ	1797	1798	7055	7048	
LB2_53	GPFHFYQFLFPPV	1674	1675	6933	6925	
LB2_54	GSPWGLQHHPPRT	1548	1549	6805	6799	
LB2_55	PIRRRKKLRRLK	1670	1699	6951	6949	
LB2_56	RRQRRTSKLMKR	1695	1695	6947	6945	
LB2_57	WWWWRRRRRRR	2092	2091	7343	7342	
LB2_58	RRRRWWWRRRR	2092	2091	7343	7342	
LB2_59	RWRRWRRWR	2092	2091	7342	7342	
LB2_60	ALSSSPSKHCG	1239	1240	6489** ^d	6402	
LB2_61	YARAAARQARA	1283	1283	6537	6534	
LB2_62	RRRRRRRFF	1798	1797	7053	7047	
LB2_63	RRRRFFRRRR	1798	1797	7055	7047	
LB2_64	ARWRWKAAKK	1379	1380	6636	6630	

Table S2b. Sequences and MALDI-TOF mass-spectrometry analysis of **LB2** CPP-library containing a *N*-terminal alkyne linker and conjugation to N₃-PNA705-S-S-biotin.

D

^a All peptides contain a *C*-terminal amide and a 4-pentynoic acid group coupled to the *N*-terminus.

^b Main signal as found by MALDI-TOF mass- spectrometry. Note that cysteines contain StBu protection group.

^c Mass after conjugation with N₃-PNA(705)-S-S-biotin and workup providing the LB2-PNA705-SH conjugate containing a triazole linker between the peptide and the PNA as shown in Schemes 1 - 3. Main signal contains (*) oxidized methionine, (**) sodium

^d The mass spectrum contains a statistical mixture of peaks corresponding to StBu adducts corresponding to the amount of cysteines; the major observed signal is shown

Pentide	Sequence ^a	Peptide	mass $(m/z)^{\rm b}$	Conjugate mass $(m/z)^{c}$	
reptide	Sequence	Found	Expected	Found	Expected
LB2_65	TQIENLKEKG	1238	1238	6495	6489
LB2_66	KFFKFFKFFK	1492	1493	6750	6743
LB2_67	SRWRWKSSKK	1426	1428	6684	6678
LB2_68	CRWRWKCCKK	1740	1740	6991 ^d	6726
LB2_69	RRLSYSRRRF	1475	1476	6726	6726
LB2_70	RRRRRRRR	1500	1503	6759	6753
LB2_71	RWRWKXXKK	1391	1393	6647	6643
LB2_72	RRRRRFF	1327	1329	6582	6579
LB2_73	GRKKRRQR	-	1163	-	6414
LB2_74	NFKFGLSS	978	978	6231	6228
LB2_75	KKKKKKK	-	1122	-	6373
LB2_76	PKKKRKV	962	962	-	6212
LB2_77	FFLIPKG	900	900	6154	6150
LB2_78	FLFLFL	-	878	-	6128

Table S2c. Sequences and MALDI-TOF mass-spectrometry analysis of **LB2** CPP-library containing an *N*-terminal alkyne linker and conjugation to N₃-PNA705-S-S-biotin.

^a All peptides contain a *C*-terminal amide and a 4-pentynoic acid group coupled to the *N*-terminus.

^b Main signal as found by MALDI-TOF mass-spectrometry. Note that cysteines contain StBu protection group.

^c Mass after conjugation with N₃-PNA(705)-S-S-biotin and workup providing the LB2-PNA705-SH conjugate containing a triazole linker between the peptide and the PNA as shown in Schemes 1 - 3. Main signal contains (*) oxidized methionine, (**) sodium

^d The mass spectrum contains a statistical mixture of peaks corresponding to StBu adducts corresponding to the amount of cysteines; the major observed signal is shown

Dantidaa	Lonath	Number	Net	Successful	Yield peptide	Successful	Yield conjugate
Peptide	Lengui	of Arg's	charge	peptide synthesis ^b	$(\mu mol)^{c}$	conjugation ^d	(nmol) ^e
LB2_1	28	1	+4	Y	4.4	Y*	12.1
LB2_2	27	1	+5	Y	3.2	Y*	14.5
LB2_3	27	0	+4	Y	2.3	Ν	-
LB2_4	27	1	+5	Y	2.9	Y*	16.7
LB2_5	27	1	+5	Y	3.1	Y*	19.4
LB2_6	24	9	+13	Y	4.8	Y	18.7
LB2_7	23	8	+12	Y	3.0	Y	20.1
LB2_8	22	10	+10	Y	5.0	Y	18.5
LB2_9	22	10	+10	Y	4.9	Y	27.9
LB2_10	22	7	+7	Y	4.7	Yx	16.1
LB2_11	21	0	+4	Y	6.1	Y*	13.8
LB2_12	21	1	+3	Y	2.1	Y	18.6
LB2_13	21	1	+3	Y	2.3	Y	16.7
LB2_14	20	7	+7	Y	4.7	Yx	21.2
LB2_15	20	5	+5	Ν	-	Ν	-
LB2_16	20	1	+2	Y	3.7	Ν	-
LB2_17	20	2	+2	Y	4.3	Y	19.6
LB2_18	20	2	+2	Y	3.1	Y	20.3
LB2_19	20	0	+4	Y	3.6	Y	21.7
LB2_20	20	0	+4	Y	3.6	Y	17.2
LB2_21	20	7	+7	Y	3.5	Y	21.8
LB2_22	20	2	+1	Y	3.9	Y	21.7
LB2_23	20	2	+4	Y	4.3	Y	20.1
LB2_24	19	0	+3	Y	2.6	Y*	13.6
LB2_25	19	7	+8	Y	4.2	Y	22.4
LB2_26	18	6	+6	Y*	3.9	Y	19.3
LB2_27	18	0	+5	Y	3.2	Y	20.1
LB2_28	18	3	+7	Y	4.0	Y	21.6
LB2_29	18	3	+3	Y	4.9	Y	20.7
LB2_30	18	6	+8	Y	2.9	Y	19.8
LB2_31	18	4	+6	Y	3.3	Y*	20.5
LB2_32	17	2	+5	Y	3.5	Y	21.2

Table S3a. Yields of parallel peptide and PNA705-conjugate synthesis of LB2-CPP-Library.

^a All peptides contain a *C*-terminal amide and a 4-pentynoic acid group coupled to the *N*-terminus. See **Table S2** for sequences. Length = number of amino acids

^b Main product was identified by MALDI-TOF mass-spectroscopy, Y = Yes, N = No, * = significant impurities.

 $^{\circ}$ Crude yield from a 5 μ mol synthesis after Oasis HLB cartridge workup. Based on crude weight and corrected for TFA salts.

^d Main product was identified by MALDI-TOF mass-spectroscopy, Y = Yes, N = No, * = significant amount of impurities (In most cases low conversion to the conjugate resulting in significant amount of unconjugated PNA

Conjugates indicated with an "x" contain cysteines that are modified with tBuS-groups.

 $^{\rm e}$ From a 30 nmol reaction based on N_3 -PNA705-S-S-biotin, determined by UV absorption at 260 nm.

Dantidaa	Lanath	Number	Net	Successful	Yield peptide	Successful	Yield conjugate
Peptide	Length	of Arg's	charge	peptide synthesis ^b	(µmol) ^c	conjugation ^d	(nmol) ^e
LB2_33	17	8	+8	Y	3.5	Y	22.1
LB2_34	17	8	+8	Y	3.7	Y	19.9
LB2_35	16	3	+7	Y	3.0	Y	22.7
LB2_36	16	9	+10	Y	1.0	Y	20.1
LB2_37	16	0	+8	Y*	1.8	Y	18.4
LB2_38	16	9	+7	Y	2.5	Y	21.4
LB2_39	15	0	0	Ν	-	Ν	-
LB2_40	15	1	-1	Y*	3.1	Y	19.7
LB2_41	15	1	+3	Y	1.9	Y	21.1
LB2_42	14	1	+7	Y	2.0	Y	21.5
LB2_43	14	8	+8	Y	3.9	Y	20.7
LB2_44	14	0	+4	Y	2.6	Y	21.5
LB2_45	14	0	+3	Y	2.3	Y	21.0
LB2_46	14	0	+6	Y	2.0	Y	19.2
LB2_47	14	8	+8	Y	3.4	Y	18.5
LB2_48	14	10	+10	Y	3.6	Y	13.9
LB2_49	13	8	+8	Y	3.5	Y	7.5
LB2_50	13	2	+7	Y	2.4	Yx	18.0
LB2_51	13	0	+5	Y*	2.3	Y	22.4
LB2_52	13	6	+8	Y	2.7	Y	16.7
LB2_53	13	0	0	Y	0.7	Y	21.0
LB2_54	13	1	+1	Y	2.9	Y	23.1
LB2_55	12	5	+8	Y	4.0	Y	17.0
LB2_56	12	5	+7	Y	4.3	Y	12.8
LB2_57	12	8	+8	Y	2.3	Y	15.0
LB2_58	12	8	+8	Y	4.5	Y	21.3
LB2_59	12	8	+8	Y	2.7	Y	17.9
LB2_60	11	0	+1	Y	6.7	Y	20.4
LB2_61	11	3	+3	Y	3.2	Y	21.5
LB2_62	11	9	+9	Y	2.2	Y	21.8
LB2_63	11	9	+9	Y	2.7	Y	24.3
LB2_64	10	2	+5	Y	2.7	Y	22.7

Table S3b. Yields of parallel peptide and PNA705-conjugate synthesis of LB2-CPP-Library.

^a All peptides contain a *C*-terminal amide and a 4-pentynoic acid group coupled to the *N*-terminus. See **Table S2** for sequences.

^b Main product was identified by MALDI-TOF mass-spectroscopy, Y = Yes, N = No, * = significant impurities.

 $^{\circ}$ Crude yield from a 5 μ mol synthesis after Oasis HLB cartridge workup. Based on crude weight and corrected for TFA salts.

^d Main product was identified by MALDI-TOF mass-spectroscopy, Y = Yes, N = No, * = significant amount of impurities (In most cases low conversion to the conjugate resulting in significant amount of unconjugated PNA Conjugates indicated with an "x" contain cysteines that are modified with *t*BuS-groups.

^e From a 30 nmol reaction based on N₃-PNA705-S-S-biotin, determined by UV absorption at 260 nm.

Dantidaa	Longth	Number	Net	Successful	Yield peptide	Successful	Yield conjugate
replide	Lengui	of Arg's	charge	peptide synthesis ^b	(µmol) ^c	conjugation ^d	(nmol) ^e
LB2_65	10	0	0	Y	4.7	Y	20.5
LB2_66	10	0	+4	Y	3.7	Y	15.7
LB2_67	10	2	+5	Y	2.8	Y	23.6
LB2_68	10	2	+5	Y	3.5	Yx	25.7
LB2_69	10	5	+5	Y	5.5	Y	24.2
LB2_70	9	9	+9	Y	1.9	Y	17.2
LB2_71	9	2	+5	Y	3.2	Y	17.9
LB2_72	8	6	+6	Y	2.8	Y	17.2
LB2_73	8	4	+6	Ν	-	Ν	-
LB2_74	8	0	+1	Y	3.4	Y	17.5
LB2_75	8	0	+8	Ν	-	Ν	-
LB2_76	7	1	+5	Y	3.3	Y*	8.5
LB2_77	7	0	+1	Y	2.6	Y	18.0
LB2_78	6	0	0	Ν	-	Ν	-

Table S3c. Yields of parallel peptide and PNA705-conjugate synthesis of LB2-CPP-Library.

^a All peptides contain a *C*-terminal amide and a 4-pentynoic acid group coupled to the *N*-terminus. See **Table S2** for sequences.

^b Main product was identified by MALDI-TOF mass-spectroscopy, Y = Yes, N = No, * = significant impurities.

 $^{\circ}$ Crude yield from a 5 μ mol synthesis after Oasis HLB cartridge workup. Based on crude weight and corrected for TFA salts.

^d Main product was identified by MALDI-TOF mass-spectroscopy, Y = Yes, N = No, * = significant amount of impurities (In most cases low conversion to the conjugate resulting in significant amount of unconjugated PNA

Conjugates indicated with an "x" contain cysteines that are modified with tBuS-groups.

^e From a 30 nmol reaction based on N₃-PNA705-S-S-biotin, determined by UV absorption at 260 nm.

Dentide	$(N_{1}, C_{1}, C_{2}, C_{2})^{3}$	Net	Number	Yield peptide	Yield conjugate
Peptide	Sequence (N to C – term)	charge	of Arg's	$(\mu \operatorname{mol}, (\%))^{\mathrm{b}}$	$(nmol, (\%))^c$
LB1_17	RXRRXRILFQYRXRRXRZ	+8	8	3.3 (67)	22.3 (74)
LB1_18	RXRRXRILFQYRXRRXRGGZ	+8	8	3.3 (66)	24.4 (82)

Table S4. Library of LB1 peptides containing a C-terminal alkyne, peptide and conjugate synthesis yield.

^a All peptides contain a *C*-terminal amide and a free amine on *N*-terminus. Z = Bpg (L-bishomopropargylglycine).

^b Crude yield from a 5 μ mol synthesis after Oasis HLB cartridge workup. Based on crude weight and corrected for TFA salts.

^c Yield of the **LB1**-PNA705 conjugate obtained via SELPEPCON (**Schemes 1** - **3**) from a 30 nmol scale synthesis based on N_3 -PNA705-S-S-biotin, determined by UV absorption at 260 nm.

 Table S5. MALDI-TOF mass-spectrometry analysis of C-terminal alkyne containing LB1-peptides and their

 PNA705 conjugates synthesized using SELPEPCON.

Peptide	Peptide mass found $(m/z)^{a}$	Peptide mass calculated (m/z)	Conjugate ^b mass found $(m/z)^a$	Conjugate mass calculated (m/z)
LB1_17	2503	2507	7747	7757
LB1_18	2617	2621	7864	7871

^a Main signal as found by MALDI-TOF mass- spectrometry.

^b Mass after conjugation with azido-PNA(705)-S-S-biotin and workup providing the **LB1**-PNA705-SH conjugate containing a triazole linker between the peptide and the PNA as shown in **Schemes 1 - 3**.

Examples of MALDI mass-spectra of parallel-synthesized LB1- and LB2peptides obtained by SELPEPCON

Below, in Figures S1 - S12, examples are given of MALDI-TOF mass-spectra of LB1- and LB2-peptides obtained using the SELPEPCON parallel synthesis procedure. Figures S11 - S12 show peptides that showed several peaks belonging to impurities.

Figure S1. MALDI-TOF mass-spectrum of LB1_1

Figure S2. MALDI-TOF mass-spectrum of LB1_12

Figure S3. MALDI-TOF mass-spectrum of LB2_3

Figure S4. MALDI-TOF mass-spectrum of LB2_5

Figure S5. MALDI-TOF mass-spectrum of LB2_7

Figure S6. MALDI-TOF mass-spectrum of LB2_24

Figure S7. MALDI-TOF mass-spectrum of LB2_27

Figure S8. MALDI-TOF mass-spectrum of LB2_54

Figure S9. MALDI-TOF mass-spectrum of LB2_68

Figure S10. MALDI-TOF mass-spectrum of LB2_72

Figure S11. MALDI-TOF mass-spectrum of LB2_40

Figure S12. MALDI-TOF mass-spectrum of LB2_51

Example HPLC graphs of parallel-synthesized peptides obtained by SELPEPCON

Below, in **Figures S13** and **S14**, two example HPLC graphs of peptides obtained by SELPEPCON are shown. These are recorded on a Phenomenex analytical C18 Jupiter column (250 x 4.6 mm, 5 micron) using the following gradient (A: 0.1% TFA, B: 90% acetonitrile, 0.1% TFA) 0-2 min 15% B 2-20 min 15%-30% B 20-25 min 30%-90% B.

Figure S13. HPLC-graph of the LB1_5 obtained by SELPEPCON.

Examples of MALDI mass-spectra of LB1- and LB2–PNA705 conjugates obtained by SELPEPCON

Below, in **Figures S15** - **S27**, examples are given of MALDI-TOF mass-spectra of conjugates obtained using the SELPEPCON procedure. **Figures S15** - **S26** show MALDI-TOF mass-spectra of PNA705 conjugates from libraries **LB1** and **LB2** that were tested in the splicing redirection assay. As an example **Figure S27** shows a MALDI-TOF mass-spectrum of a conjugate for which the conversion of the conjugation reaction was low and was thus not tested. **Figure S25** shows an example of a conjugate containing a cysteine in the CPP-sequence for which the mixture of conjugate containing different amounts of StBu groups was found by MALDI-spectroscopy.

Figure S15. MALDI-TOF mass-spectrum of the PNA705 conjugate of LB1_4

Figure S16. MALDI-TOF mass-spectrum of the PNA705 conjugate of LB1_8

Figure S17. MALDI-TOF mass-spectrum of the PNA705 conjugate of LB1_11

Figure S18. MALDI-TOF mass-spectrum of the PNA705 conjugate of LB2_27

Figure S19. MALDI-TOF mass-spectrum of the PNA705 conjugate of LB2_28

Figure S20. MALDI-TOF mass-spectrum of the PNA705 conjugate of LB2_35

Figure S21. MALDI-TOF mass-spectrum of the PNA705 conjugate of LB2_38

Figure S22. MALDI-TOF mass-spectrum of the PNA705 conjugate of LB2_43

Figure S23. MALDI-TOF mass-spectrum of the PNA705 conjugate of LB2_44

Figure S24. MALDI-TOF mass-spectrum of the PNA705 conjugate of LB2_54

Figure S25. MALDI-TOF mass-spectrum of the PNA705 conjugate of LB2_68

Figure S26. MALDI-TOF mass-spectrum of the PNA705 conjugate of LB2_71

Figure S27. MALDI-TOF mass-spectrum of the PNA705 conjugate of LB2_31

Example HPLC graphs of CPP-PNA705 conjugates obtained by SELPEPCON

Below in **Figures S28** and **S29**, two example HPLC graphs of **LB2**–PNA705 conjugates are shown. These are recorded on a Phenomenex analytical C18 Jupiter column (250 x 4.6 mm, 5 micron) using the following gradient (A: 0.1% TFA, B: 90% acetonitrile, 0.1% TFA) 0-2 min 10% B 2-20 min 10%-30% B 20-30 min 30%-50% B 30-35 min 50%-90% B. Unconjugated PNA impurities (\pm 10%) can be observed which are likely the results of a small amount of PNA-impurties without an azide functional group. In addition, impurities are observed that share a mass close to that expected of the conjugate. These can be the result of either impurities in the peptide or degradation of the conjugate.

Figure S28. HPLC-graph of the LB2_21–PNA705 conjugate obtained by SELPEPCON.

Figure S29. HPLC-graph of the LB2_22–PNA705 conjugate obtained by SELPEPCON.

Figure S30. Fold increase in luminescence caused by PNA705 conjugates of LB1-peptides obtained by SELPEPCON (Crude) and RP-HPLC purified (Purified) compared to a buffer blank induced by the conversion of Beetle luciferin into oxyluciferin by expressed luciferase via splicing redirection in HeLa pLuc705 cells at 1 and 2 μ M conjugate concentration.

Figure S31. Fold increase in luminescence caused by PNA705 conjugates of LB2-peptides compared to a buffer blank induced by the conversion of Beetle luciferin into oxyluciferin by expressed luciferase via splicing redirection in HeLa pLuc705 cells in a single point screening assay at 5 μ M conjugate concentration.