Supporting Information

In situ Approach for Testing the Enantiopurity of Chiral Amines and Amino Alcohols by ¹H NMR

Sandeep Kumar Mishra, Sachin R. Chaudhari, and N. Suryaprakash^{*}

NMR Research Centre, Solid State and Structural Chemistry Unit,

Indian Institute of Science, Bangalore-560012

*Corresponding Author

e-mail: <u>nsp@nrc.iisc.ernet.in</u> Tel: 0091 80 22933300, 919845124802 Fax: 0091 8023601550

Table of contents

pages

NMR spectra

S1: ¹ H-NMR spectrum of (<i>R/S</i>)-4-fluoro- α -methylbenzylamine
S2: ¹ H-NMR spectrum of (<i>R/S</i>)-4-methoxy- α -Methylbenzylamine
S3: ¹ H-NMR spectrum of (R/S)-4-methyl- α -Methylbenzylamine
S4: ¹ H-NMR spectrum of (<i>R/S</i>)- <i>sec</i> -butylamine7
S5: ¹ H-NMR spectrum of (R/S)- α -ethylbenzylamine
S6: ¹ H-NMR spectrum of (R/S)- α -methylnapthylamine
S7: ¹ H-NMR spectrum of (R/S)- α -methylbenzylamine
S8: ¹ H-NMR spectrum of (R/S)-1,2-diphenylethyalamine
S9: ¹ H-NMR spectrum of (R/S)-1-aminoindane
S10: ¹ H-NMR spectrum of (R/S)-1-cyclohexylethylamine
S11: ¹ H-NMR spectrum of (R/S)-2-methylpiperidine
S12: ¹ H-NMR spectrum of (<i>R/S</i>)-N- α -dimethylbenzylamine
S13: ¹ H-NMR spectrum of (R/S)-2-methylpiperazine
S14: ¹ H-NMR spectrum of (R/S)-ethylpiperidine-3-carboxylate
S15: ¹ H-NMR spectrum of (R/S)-N-methyl-1-(-naphthyl)ethylamine
S16: ¹ H-NMR spectrum of (R/S)-N,N-dimethylphenylethylamine
S17: ¹ H-NMR spectrum of (R/S)-2,amino,1,2-diphenylethanol
S18: ¹ H-NMR spectrum of (R/S)-2-Phenylglycinol
S19: ¹ H-NMR spectrum of (R/S)-1-Amino, 2-indanol
S20: ¹ H-NMR spectrum of (R/S)-2-amino-1-butanol

S21: ¹ H-NMR spectrum of (R/S)- α - α -diphenyl-2-pyrrolidinemethanol
S22: ¹ H-NMR spectrum of (R/S)-2-piperidinemethanol
S23: ¹ H-NMR spectrum of (R/S)-2-fluorobenzylamine
S24: ¹ H-NMR spectrum of (R/S)-benzylamine
S25: ¹ H-NMR spectrum of (<i>R/S</i>)-isopropylamine
S26: ¹ H-NMR spectrum of (<i>R/S</i>)-2-amino-2-methyl-1-propanol
S27: (a): ¹¹ B NMR spectrum of Triphenyl borate (without complexation)
(b): boron complexed with <i>R</i> -BINOL and chiral amine

Figure S6: ¹H-NMR spectrum of (*R/S*)- α -methylnapthylamine.

Figure S12: ¹H-NMR spectrum of (*R/S*)-N-α-dimethylbenzylamine.

Please note: The differential intensity for CH_3 group is arising because of the formation of salt by one enantiomer. This causes the broadening of the signal. However, the equal integrated intensity confirms, there is no kinetic resolution.

Figure S15: ¹H-NMR spectrum of (*R/S*)-N-methyl-1-(-naphthyl)ethylamine.

Please note: The differential intensity for CH_3 group (proton a) is arising because of the formation of salt by one enantiomer. This is confirmed by using enantiopure compound. This causes the broadening of the signal. However, the equal integrated intensity confirms, there is no kinetic resolution.

Figure S21: ¹H-NMR spectrum of (*R/S*)- α - α -diphenyl-2-pyrrolidinemethanol.

Figure S26: ¹H-NMR spectrum of (*R/S*)-2-amino-2-methyl-1-propanol.

Figure S27: Comparison of ¹¹B NMR spectrum of **top trace:** Triphenyl borate (without complexation) **bottom trace:** boron complexed with *R*-BINOL and chiral amine at the optimum condition of amine. Peak around at 8 ppm indicating the formation of a tetragonal boronate species. And it is more intense at the optimum condition

.

