Supporting Information for

Peng Lab

Collective Synthesis of Several 2,7'-Cyclolignans and Their Chemical Correlation by Chemical Transformations

Yu Peng*, Zhen-Biao Luo, Jian-Jian Zhang, Long Luo and Ya-Wen Wang

State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China

pengyu@lzu.edu.cn

Table of Contents

•	¹ H NMR and ¹³ C NMR spectrum of 10	S3-S4
•	¹ H NMR and ¹³ C NMR spectrum of 11	S5-S6
•	¹ H NMR and ¹³ C NMR spectrum of 12	S7-S8
•	¹ H NMR and ¹³ C NMR spectrum of 13	S9-S10
•	¹ H NMR and ¹³ C NMR spectrum of 14	S11-S12
•	¹ H NMR and ¹³ C NMR spectrum of 15	S13-S14
•	¹ H NMR and ¹³ C NMR spectrum of 16	S15-S16
•	¹ H NMR and ¹³ C NMR spectrum of 17	S17-S18
•	¹ H NMR and ¹³ C NMR spectrum of 18	S19-S20
•	¹ H NMR and ¹³ C NMR spectrum of 19	S21-S22
•	¹ H NMR and ¹³ C NMR spectrum of 20	S23-S24
•	¹ H NMR, ¹³ C NMR spectrum of synthetic (\pm)-Kadangustin J (1) and c	hemical shift
	comparison with natural Kadangustin J	S25-S27
•	¹ H NMR and ¹³ C NMR spectrum of 21	S28-S29
•	¹ H NMR, ¹³ C NMR spectrum of synthetic (\pm)-Cyclogalgravin (2) and c	chemical shift
	comparison with natural Cyclogalgravin	S30-S32
•	¹ H NMR and ¹³ C NMR spectrum of 22	S33-S34
•	¹ H NMR and ¹³ C NMR spectrum of 15'	S35-S36

Peng Lab

•	¹ H NMR and ¹³ C NMR spectrum of (\pm)-Galbulin (3)	S37-S38
•	¹ H NMR, ¹³ C NMR spectrum of synthetic (\pm)-Isogalbulin (4) and chemi	cal shift
	comparison with natural Isogalbulin	S39-S41
•	¹ H NMR, ¹³ C NMR spectrum of synthetic (\pm)-8,8'- <i>epi</i> -Aristoligone (5) and	chemical
	shift comparison with natural 8,8'-epi-Aristoligone	S42-S44
•	¹ H NMR, ¹³ C NMR spectrum of (\pm)-Cagayanin (6) and chemical shift cor	nparison
	with natural Cagayanin	S45-S47
•	¹ H NMR, ¹³ C NMR spectrum of (\pm) -8'-epi-Aristoligone (7) and chemi	cal shift
	comparison with natural 8'-epi-Aristoligone	S48-S50
•	¹ H NMR, ¹³ C NMR spectrum of (\pm) -8'- <i>epi</i> -8-OH-Aristoligone (8) and chem	ical shift
	comparison with natural 8'-epi-8-OH-Aristoligone	S51-S53
•	¹ H NMR and ¹³ C NMR spectrum of (\pm)-7,8'- <i>epi</i> -Aristoligol (9')	S54-S55
•	¹ H NMR, ¹³ C NMR spectrum of (\pm) -8'-epi-Aristoligol (9) and chemi	cal shift
	comparison with natural 8'-epi-Aristoligol	S56-S58
•	The X-ray structures of (\pm)-Galbulin (3) and (\pm)-8'-epi-8-OH-Aristoligone	(8) with
	thermal ellipsoids at 50% or 30% probability	S59-S60

No.	Synthetic 1 by us (CDCl ₃ , 400 MHz)	Natural 1^{1} (CDCl ₃ , 500 MHz)	Synthetic 1 by others ² (CDCl ₃ , 400 MHz)	Synthetic 1 by us (CDCl ₃ , 100 MHz)	Natural 1^{1} (CDCl ₃ , 126 MHz)	Synthetic 1 by others ² (CDCl ₃ , 100 MHz)
	$\delta_{\mathrm{H}}, J(\mathrm{Hz})$	$\delta_{ m H}, J({ m Hz})$	$\delta_{ m H}, J({ m Hz})$	$\delta_{ m c}$	$\delta_{ ext{c}}$	$\delta_{ m c}$
2	6.84 <i>d</i> (1.6)	6.83–6.80 overlap	6.88–6.74 <i>m</i>	111.2	111.5	111.3
5	6.78 d (8.0)	6.80–6.78 overlap	6.88–6.74 <i>m</i>	111.1	111.4	111.2
6	6.88 dd (1.6, 8.0)	6.78–6.76 overlap	6.88–6.74 <i>m</i>	119.5	119.7	119.5
7	3.54 <i>d</i> (12.0)	3.53 <i>d</i> (11.8)	3.52 <i>d</i> (12.0)	55.8	55.9	77.2
8	2.66–2.58 m	2.63–2.59 m	2.60 m	35.9	36.0	35.8
9	0.69 <i>d</i> (6.8)	0.68 d (7.0)	0.68 d (8.0)	11.8	11.8	11.7
2'	6.81 <i>d</i> (1.6)	6.83–6.80 overlap	6.88–6.74 <i>m</i>	111.0	111.3	111.1
5'	6.77 d (8.0)	6.80–6.78 overlap	6.88–6.74 <i>m</i>	111.0	111.3	111.1
6'	6.86 dd (1.6, 8.0)	6.78–6.76 overlap	6.88–6.74 <i>m</i>	119.6	119.8	119.6
7′	3.50-3.43 m	3.50-3.46 m	3.45 <i>m</i>	66.9	67.0	66.8
8'	1.81–1.72 <i>m</i>	1.78–1.74 <i>m</i>	1.75 m	36.0	36.1	35.9
9'	0.76 d (7.2)	0.75 <i>d</i> (7.0)	0.74 <i>d</i> (4.0)	9.6	9.6	9.5
$4\times \text{OCH}_3$	3.82 s, 3.82 s, 3.86 s, 3.87 s	3.82 s, 3.82 s, 3.86 s, 3.86 s	3.80 s, 3.80 s, 3.84 s, 3.85 s	55.7 (2C), 55.8 (2C)	55.8 (2C), 55.9 (2C)	55.7 (4C)
1		OH	,	137.1	137.2	137.1
3			le	148.7	148.9	148.7
4		MeO 3 2 17 8 M	le	147.1	147.3	147.1
1′		6'2" °	1	137.6	137.7	137.6
3'			DMe	148.8	149.0	148.8
4'		Kadangustin J (1) OMe		147.1	147.3	147.1

 Table S1: ¹H and ¹³C Chemical Shift (*ppm*) Comparison of Synthetic and Natural Kadangustin 1

(1) Gao, X.-M.; Pu, J.-X.; Huang, S.-X.; Yang, L.-M.; Huang, H.; Xiao, W.-L.; Zheng, Y.-T.; Sun, H.-D. J. Nat. Prod. 2008, 71, 558–563. (2) Rye, C. E.; Barker, D. J. Org. Chem. 2011, 76, 6636–6648.

No.	Synthetic 2 by us (CDCl ₃ , 400 MHz)	Natural 2^3 (CDCl ₃ , 500 MHz)	Synthetic 2 by others ² (CDCl ₃ , 300 MHz)	Synthetic 2 by us (CDCl ₃ , 100 MHz)	Natural 2^3 (CDCl ₃ , 126 MHz)	Synthetic 2 by others ² (CDCl ₃ , 75 MHz)
	$\delta_{ m H}, J(m Hz)$	$\delta_{ m H}, J(m Hz)$	$\delta_{ m H}, J(m Hz)$	$\delta_{ m c}$	$\delta_{ m c}$	$\delta_{ m c}$
3	6.56 s	6.48 <i>s</i>	6.54–6.57 <i>m</i>	112.8	113.0	112.8
6	6.63 s	6.55 s	6.62 s	108.9	109.1	108.9
7	6.15 br <i>s</i>	6.11 br <i>s</i>	6.14 <i>s</i>	121.1	121.1	121.1
9	1.80 s	1.73 d (1.0)	1.79 d (3.0)	22.2	22.1	22.1
2'	6.67 d (2.0)	6.59 d (2.0)	6.66 d (3.0)	110.9	111.1	111.0
5'	6.72 d (8.0)	6.64 <i>d</i> (8.5)	6.72 d (9.0)	110.8	111.0	110.9
6'	6.56 dd (2.0, 8.0)	6.49 dd (2.0, 8.5)	6.54–6.57 m	119.6	119.6	119.6
7'	3.69 d (2.8)	3.60 <i>d</i> (3.5)	3.67 d (3.0)	50.8	50.9	50.8
8'	2.40 dq (3.2, 6.8)	2.32 dq (3.5, 7.0)	2.40 m	42.0	42.0	42.0
9′	1.09 d (7.2)	1.01 d (7.0)	1.08 d (9.0)	18.7	18.7	18.6
$4 \times \text{OCH}_3$	3.79 s, 3.79 s, 3.83 s, 3.89 s	3.71 <i>s</i> , 3.71 <i>s</i> , 3.75 <i>s</i> , 3.81 <i>s</i>	3.78 s, 3.78 s, 3.82 s, 3.88 s	55.7 (2C), 55.9 (2C)	55.8 (2C), 55.9 (2C)	55.7, 55.8, 55.9 (2C)
1				127.1	127.3	127.1
2		MeO 5 6 1 7 8	Me	127.3	127.4	127.3
4			9'	147.5	147.6	147.5
5		$MeO^{-4} \xrightarrow{3}{3} 2 \xrightarrow{7}{3} 8$	Me	147.6	147.5	147.6
8			2'	138.8	138.8	138.8
1'		5	3 ³ OMo	138.1	138.2	138.1
3'	C	vclogalgravin (2) OMe	Olvie	148.6	148.7	148.6
4'			•	147.3	147.8	147.3

 Table S2: ¹H and ¹³C Chemical Shift (*ppm*) Comparison of Synthetic and Natural Cyclogalgravin 2

(3) da Silva, T.; Lopes, L. M. X. Phytochemistry 2006, 67, 929–937.

14510 50. 1	i unu e entenneu.	eempun) eempun		atarar 180 Bure anni 1
	Synthetic 4 by us	Natural 4 ⁴	Synthetic 4 by us	Synthetic 4 by others ⁵
No.	(CDCl ₃ , 400 MHz)	(CDCl ₃ , 90 MHz)	(CDCl ₃ , 150 MHz)	(CDCl ₃ , 75 MHz)
	$\delta_{ m H}, J({ m Hz})$	$\delta_{ m H}, J({ m Hz})$	$\delta_{ ext{c}}$	$\delta_{ m c}$
3	6.34 <i>s</i>	6.37 <i>s</i>	113.3	113.4
6	6.60 s	6.64 <i>s</i>	110.6	110.7
7	2.46 dd (8.0, 16.8)	2.48 dd (7.0, 18.0)	40.0	41.0
8	2.86 dd (5.2, 16.8)	2.88 dd (5.0, 18.0)	40.8	41.0
8	1.97–1.90 m	2.00 m	28.6	28.7
9	0.92 <i>d</i> (6.8)	0.92 d (7.0)	15.4	15.5
2'	6.58 d (2.0)	6.60 d (2.0)	112.2	112.3
5'	6.75 d (8.4)	6.80 d (8.0)	111.2	111.3
6'	6.51 dd (2.0, 8.4)	6.52 dd (2.0, 8.0)	121.3	121.5
7'	3.69 <i>d</i> (6.0)	3.63 <i>d</i> (6.0)	50.9	51.0
8'	2.07–1.98 m	2.00 m	34.7	34.9
9'	0.91 <i>d</i> (6.8)	0.92 d (7.0)	16.5	16.7
4 × 0CH	3.67 s, 3.80 s,	3.70 s, 3.83 s,	55.72, 55.77, 55.81,	55.87, 55.91, 55.95,
4 × 0CH ₃	3.85 s, 3.87 s	3.88 s, 3.90 s	55.86	56.00
1	6	7 9	128.5	128.6
2	MeO	1 * Me	129.5	129.6
4	MeO 4	2	147.1	147.2
5	6	9' 9'	147.3	147.4
1'	5'		139.8	140.0
3'		```OMe	148.6	148.7
4'	Isogalbulin (4) OMe	147.1	147.2

Table S3: ¹H and ¹³C Chemical Shift (*ppm*) Comparison of Synthetic and Natural Isogalbulin 4

(4) Li, L.-n.; Xue, H. Planta Med. 1985, 51, 217-219. (5) Kasatkin, A. N.; Checksfield, G.; Whitby, R. J. J. Org. Chem. 2000, 65, 3236-3238.

	Synthetic 5 by us	Natural 5^6	Synthetic 5 by us	Natural 5^6
No.	(CDCl ₃ , 400 MHz)	(CDCl ₃ , 500 MHz)	(CDCl ₃ , 100 MHz)	(CDCl ₃ , 126 MHz)
	$\delta_{ m H}, J({ m Hz})$	$\delta_{ m H}, J({ m Hz})$	$\delta_{ m c}$	$\delta_{ m c}$
3	6.19 <i>s</i>	6.13 <i>s</i>	111.0	111.2
6	7.54 <i>s</i>	7.48 s	108.0	108.1
8	2.39 dq (6.4, 12.0)	2.33 dq (6.5, 12.5)	48.5	48.5
9	1.32 <i>d</i> (6.4)	1.27 <i>d</i> (6.5)	12.6	12.6
2'	6.58 d (1.6)	6.53 d (2.0)	111.6	111.8
5'	6.87 <i>d</i> (8.0)	6.81 <i>d</i> (8.0)	110.8	111.0
6'	6.76 dd (1.6, 8.0)	6.70 dd (2.0, 8.0)	122.1	122.2
7′	3.71 <i>d</i> (11.2)	3.65 <i>d</i> (11.5)	53.3	53.3
8'	2.14–2.00 m	2.03 ddq (6.0, 11.5, 12.5)	43.7	43.8
9'	0.94 <i>d</i> (6.4)	0.89 <i>d</i> (6.0)	18.0	18.0
$4 \times \text{OCH}_3$	3.63 s, 3.82 s, 3.92 s, 3.93 s	3.57 s, 3.76 s, 3.86 s, 3.87 s	55.8 (2C), 55.9, 56.0	55.8, 55.9, 56.0 (2C)
1		0	125.6	125.7
2	MeO	5 6 1 7 8, We	141.5	141.5
4			153.1	153.2
5	MeO-	4 3 2 7' 8' Me 9'	147.9	148.0
7		6' 1' 2'	198.8	198.8
1′		5"	136.1	136.1
3'	8 8'-eni-Aristol	$T_{4'}$ Urite	149.1	149.3
4′	0,0-001-7413101		147.8	147.9

 Table S4: ¹H and ¹³C Chemical Shift (*ppm*) Comparison of Synthetic and Natural 8,8'-epi-aristoligone 5

⁽⁶⁾ da Silva, T.; Lopes, L. M. X. Phytochemistry 2004, 65, 751-759.

	Synthetic 6 by us	Natural 6 ⁷	Synthetic 6 by us	Synthetic 6 by others ⁸
No.	(CDCl ₃ , 400 MHz)	(CDCl ₃ , 60 MHz)	(CDCl ₃ , 100 MHz)	(CDCl ₃ , 75 MHz)
	$\delta_{\mathrm{H}}, J(\mathrm{Hz})$	$\delta_{ m H}, J({ m Hz})$	$\delta_{ m c}$	$\delta_{ m c}$
3	6.16 <i>s</i>	6.15 s	109.2	109.1
6	6.52 s	6.68 <i>s</i>	107.6	107.6
7	2.57 dd (11.6, 16.0)	2.53 dd (7.2, 10.6) ^a	42.0	42.0
7	2.70 dd (4.4, 16.4)	2.71 <i>dd</i> (4.5, 10.6) ^{<i>a</i>}	43.9	43.8
8	1.51–1.42 <i>m</i>	1.52–1.44 <i>m</i>	35.4	35.4
9	1.05 d (6.4)	1.03 <i>d</i> (6.0)	17.1	17.1
2'	6.52 s	6.50 s	107.7	107.7
5'	6.74 <i>d</i> (7.6)	6.70 <i>d</i> (8.0)	109.6	109.6
6'	6.62 dd (1.6, 8.0)	6.55 d (8.0)	122.8	122.8
7′	3.38 d (10.4)	3.38 d (10.0)	54.6	54.6
8′	1.65–1.53 m	1.65–1.52 m	39.5	39.4
9'	0.87 d (6.0)	0.85 <i>d</i> (6.0)	19.9	19.9
2 ×	5.81 d(1.2) 5.92 s	579 5 5 88 5	100 5 100 8	100 5 100 8
-OCH ₂ O-	5.61 u (1.2), 5.92 s	5.77 8, 5.86 8	100.5, 100.6	100.5, 100.6
1	6	7 9	130.1	130.1
2		¹ ⁸ ⁸ Me	133.4	133.4
4		2 8' Me	147.8	147.8
5	3		145.9	145.9
1'	5		140.5	140.5
3'		4 0	145.6	145.6
4'	Cagayanin (6) 0-/	145.4	Not observed

Table S5: ¹H and ¹³C Chemical Shift (*ppm*) Comparison of Synthetic and Natural Cagayanin 6 (^a in 300 MHz)

(7) Kuo, Y.-H.; Lin, S.-T.; Wu, R.-E. Chem. Pharm. Bull. 1989, 37, 2310–2312. (8) Datta, P. K.; Yau, C.; Hooper, T. S.; Yvon, B. L.; Charlton, J. L. J. Org. Chem. 2001, 66, 8606–8611.

	Synthetic 7 by us	Natural 7 ⁶	Synthetic 7 by us	Natural 7 ⁶
No.	(CDCl ₃ , 400 MHz)	(CDCl ₃ , 500 MHz)	(CDCl ₃ , 150 MHz)	(CDCl ₃ , 126 MHz)
	$\delta_{ m H}, J({ m Hz})$	$\delta_{ m H}, J(m Hz)$	$\delta_{ ext{c}}$	$\delta_{ m c}$
3	6.43 <i>s</i>	6.36 s	111.8	111.7
6	7.57 s	7.49 s	108.1	108.2
8	2.82–2.74 m	2.70 dq (6.5, 12.5)	42.7	42.7
9	1.14 <i>d</i> (6.8)	1.06 <i>d</i> (6.9)	11.9	11.9
2'	6.62 d (1.6)	6.54 <i>d</i> (1.8)	111.8	111.9
5'	6.78 <i>d</i> (8.4)	6.71 <i>d</i> (8.4)	110.9	111.0
6'	6.55 dd (1.6, 8.0)	6.47 <i>dd</i> (1.8, 8.4)	121.1	121.1
7′	3.98 <i>d</i> (5.2)	3.91 <i>d</i> (5.4)	50.3	50.3
8'	2.46-2.40 m	2.35 ddq (4.2, 5.4, 6.9)	42.5	42.5
9'	0.99 <i>d</i> (6.8)	0.92 <i>d</i> (6.9)	15.9	15.9
	3.78 s, 3.81 s,	3.78 s, 3.81 s, 3.70 s, 3.75 s,		55 8 55 0 56 0 (20)
$4 \times \text{OCH}_3$	3.87 s, 3.95 s	3.79 s, 3.88 s	55.9 (2C), 56.0 (2C)	55.8, 55.9, 56.0 (2C)
1		ο	125.5	125.6
2	MeO、₅		138.7	138.7
4	Ì		153.6	153.7
5	MeO 4	3 2 7' 8' Me	148.1	148.0
7		6'	200.0	200.0
1′		5	136.2	136.2
3'	9' oni Aristolia		149.0	149.1
4'	8'-epi-Aristoligone (7) OMe		147.7	147.9

 Table S6: ¹H and ¹³C Chemical Shift (*ppm*) Comparison of Synthetic and Natural 8'-epi-aristoligone 7

	Synthetic 8 by us ^{<i>a</i>}	Natural 8 ³	Synthetic 8 by us	Natural 8 ³
No.	(CDCl ₃ , 400 MHz)	$(\text{CDCl}_3, 500 \text{ MHz})^b$	(CDCl ₃ , 150 MHz)	(CDCl ₃ , 126 MHz)
	$\delta_{ m H}, J(m Hz)$	$\delta_{ m H}, J({ m Hz})$	$\delta_{ m c}$	$\delta_{ m c}$
3	6.23 s	6.17 <i>s</i>	110.9	111.9
6	7.49 s	7.43 s	108.3	108.4
9	1.31 <i>s</i>	1.25 s	19.3	19.3
2'	6.54 <i>br</i> s	6.48 br s	111.3	Not observed
5'	6.85 d (8.4)	6.79 <i>d</i> (8.0)	111.3	111.4
6'	6.76 <i>br d</i> (6.4)	6.69 <i>br d</i> (8.0)	122.1	122.0
7′	3.69 <i>d</i> (11.2)	3.62 br d (11.0)	51.0	51.0
8'	2.37 dq (6.4, 11.2)	2.31 dq (6.5, 11.0)	46.6	46.7
9'	0.99 <i>d</i> (6.8)	0.94 <i>d</i> (6.5)	12.4	12.4
$4 \times OCH_2$	3.65 s, 3.79 br s,	3.58 s, 3.73 br s,	55.8 (2C) 55.9 56.0	558 559 560 561
1 ··· Oelig	3.91 <i>s</i> , 3.94 <i>s</i>	3.84 s, 3.88 s	55.6 (20), 55.9, 56.6	55.0, 55.9, 50.0, 50.1
1		0	122.7	122.7
2	MeO		141.6	141.7
4		¶ Ѷ′́Ѓон	154.1	154.2
5	MeO		148.0	148.2
7	lineo	3 7' 9'	201.3	201.3
8		⁶	75.6	75.6
1'		5'	135.5	135.6
3'	91 ani 9 OLI Arista		148.4	148.5
4'	o <i>-epi-</i> o-On-Aristo		149.3	149.4

T-hl. 67. 111	¹³ C Chaminal Shift (mm			V 9 OII amintalizzana 9
Table S/: H and	C Chemical Shift (pp)	n) Comparison of Sy	Inthetic and Natural 8	<i>s</i> - <i>epi</i> -8-OH-aristoligone 8

^{*a*} 4.07 (s, 1H, –O*H*). ^{*b*} 4.00 (s, 1H, –O*H*).

	Synthetic 9 by us	Natural 9^3	Synthetic 9 by us	Natural 9^3
No.	(CDCl ₃ , 400 MHz)	(CDCl ₃ , 500 MHz)	(CDCl ₃ , 150 MHz)	(CDCl ₃ , 126 MHz)
	$\delta_{ m H}, J({ m Hz})$	$\delta_{ m H}, J(m Hz)$	$\delta_{ m c}$	$\delta_{ m c}$
3	6.28 s	6.22 s	112.5	112.6
6	6.88 s	6.83 s	111.7	111.8
7	4.46 d (4.0)	4.40 <i>d</i> (4.5)	74.0	74.0
8	2.10-2.02 m	2.00 ddq (4.5, 3.1, 7.0)	39.2	39.2
9	0.92 d (6.8)	0.87 <i>d</i> (7.0)	12.0	12.0
2'	6.62 d (2.4)	6.56 d (2.0)	112.1	112.3
5'	6.79 d (8.0)	6.73 d (8.0)	110.7	110.9
6'	6.64 <i>dd</i> (1.8, 8.4)	6.58 dd (2.0, 8.0)	121.7	121.7
7'	3.50 d (9.2)	3.45 d (9.0)	49.3	49.3
8'	2.41–2.32 m	2.30 ddq (3.1, 7.0, 9.0)	35.8	35.9
9'	0.93 d (7.2)	0.86 d (7.0)	16.8	16.7
4×0 CH.	3.63 s, 3.81 s,	3.57 s, 3.75 s,	55.9, 55.83 (2C),	56 0 55 9 (2C) 55 8
4 ^ 00113	3.88 s, 3.90 s	3.82 <i>s</i> , 3.84 <i>s</i>	55.75	<i>50.0, 55.7 (2C), 55.8</i>
1		ŌН	129.3	129.4
2	MeO 5	⁶ 178 ^M e	131.8	131.9
4			148.8	148.9
5	MeO ⁴	3 2 7 ⁷ 8' Me	147.8	147.9
1′		⁶	138.2	138.2
3'		⁵ • • • • • • • • • • • • • • • • • • •	148.7	148.8
4'	8'- <i>epi-</i> Aristoli	gol (9) OMe	147.4	147.5

Table S8: ¹H and ¹³C Chemical Shift (*ppm*) Comparison of Synthetic and Natural 8'-*epi*-Aristoligol 9

Figure S1. The X-ray structure of (\pm) -Galbulin (3) with thermal ellipsoids at 50% probability.

Figure S2. The X-ray structure of 8'-epi-8-OH-Aristoligone (8) with thermal ellipsoids at 30% probability.