# Design, Synthesis and Characterization of Novel Inhibitors Against Mycobacterial β-Ketoacyl CoA Reductase FabG4

Deb Ranjan Banerjee, Debajyoti Dutta, Baisakhee Saha, Sudipta Bhattacharyya, Amit K. Das\* and Amit Basak\*

# **Supporting Information**

### CONTENTS

- S1. NMR spectra of selected compounds (pages 2 16)
- S2. Mass spectra of final compounds (pages 17 18)
- S3. HPLC traces of the synthesized final compounds (page 19)
- S5. Secondary plots of inhibition kinetics (page 20)
- S6. Images of REMA assay (page 20)
- S7. Details interaction from docking studies with distances (pages 21 23)

S8. A typical plot of absorbance vs time with increasing concentration of inhibitor (Compound **4**) in presence of substrate acetoacetyl CoA (positive control) (page 24)



S1. NMR spectra of selected compounds

Compound 6: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) spectrum





Compound 8: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) spectrum

Compound 10: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 200 MHz) spectrum





Compound 10: <sup>13</sup>C NMR (CDCl<sub>3</sub>, 50 MHz) spectrum







Compound 11: <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) spectrum







Compound 12: <sup>13</sup>C NMR (CDCl<sub>3</sub>, 50 MHz) spectrum

Compound 13: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 200 MHz) spectrum



Compound 13: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 50 MHz) spectrum



Compound 16: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 200 MHz) spectrum





Compound 16: <sup>13</sup>C NMR (CDCl<sub>3</sub>, 50 MHz) spectrum

Compound 14: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) spectrum





Compound 14: <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) spectrum







Compound 15: <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) spectrum





Compound 17: <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) spectrum

Compound 19: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) spectrum



Compound 19: <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 MHz) spectrum



Compound 1: <sup>1</sup>H NMR (Acetone-d<sub>6</sub>, 400 MHz) spectrum





Compound 1: <sup>13</sup>C NMR (Acetone-d<sub>6</sub>, 100 MHz) spectrum

Compound 1: DEPT-135 NMR (Acetone-d<sub>6</sub>, 100 MHz) spectrum





Compound 2: <sup>1</sup>H NMR (Acetone-d<sub>6</sub>, 400 MHz) spectrum

Compound 2: <sup>13</sup>C NMR (Acetone-d<sub>6</sub>, 100 MHz) spectrum





Compound 2: DEPT-135 NMR (Acetone-d<sub>6</sub>, 100 MHz) spectrum

Compound 3: <sup>1</sup>H NMR (Acetone-d<sub>6</sub>, 400 MHz) spectrum





Compound 3: <sup>13</sup>C NMR (Acetone-d<sub>6</sub>, 100 MHz) spectrum

# Compound 4: <sup>13</sup>C NMR (Acetone-d<sub>6</sub>, 100 MHz) spectrum



0



Compound 1: LCMS mass spectrum





Compound 2: LCMS mass spectrum





#### Compound 4: HRMS mass spectrum

#### S3. HPLC traces of the synthesized final compounds



HPLC trace of c

HPLC trace of compound 4, Eluent: 100 % methanol, Flow rate: 1 ml /min, Ret. Time: 9.66 min



S5. Secondary plots of inhibition kinetics

Compound 1 (Competitive Inhibitor)



Compound 2 (Mixed Inhibitor)

#### S6. Images of REMA assay





Resazurin assay plate. Pink colour indicates growth and blue indicates inhibition. Row A = only media, negative control; Row B = only culture, growth control; Row C = culture + INH, positive control; Row D = culture + compound **2**; Row E = culture + compound **1**.

#### **S7.** Details interaction from docking studies with distances

Compound 1:



Compound 1 with interacting residues (distances in Å)

| A-subsite of NADH             | P-subsite of NADH      | N-subsite of NADH      | Catalytic tetrad       |
|-------------------------------|------------------------|------------------------|------------------------|
| binding region binding region |                        | binding region         |                        |
| Val268 (H-bond, 3.7 Å)        | Gly297 (H-bond, 2.5 Å) | Ser346 (H-bond, 2.8 Å) | Lys364 (H-bond, 2.9 Å) |
| Leu26 (H-bond, 3.7 Å)         | Thr299 (H-bond, 3.3 Å) | Ser346 (H-bond, 2.6 Å) |                        |
| Gly220 (H-bond, 2.7 Å)        |                        |                        |                        |

Compound **1** totally competes at all three binding subsites of NADH binding region; supports that compound 1 is a competitive inhibitor.

Compound 2:



Compound 2 with interacting residues (distances in Å)

| A-subsite of NADH<br>binding region | P-subsite of NADH<br>binding region | N-subsite of NADH<br>binding region |          | Loop I                    | Catalytic tetrad |          |
|-------------------------------------|-------------------------------------|-------------------------------------|----------|---------------------------|------------------|----------|
| Х                                   | Х                                   | Ser346<br>2.0 Å)                    | (H-bond, | Arg300 (H-bond,<br>3.3 Å) | Ser347<br>3.4 Å) | (H-bond, |
| Х                                   | Х                                   | Gly391<br>3.0 Å)                    | (H-bond, |                           |                  |          |

Compound **2** mainly interacts with catalytic tetrad and loop I; It can bind with free enzyme as well as enzyme-NADH complex resulting mixed inhibition.

Compound 3:



Compound 3 with interacting residues (distance in Å)

Compound 4:





## Compound 4 with interacting residues (distances in Å)

A typical kinetic plot of absorbance vs time with increasing concentration of inhibitor (compound 4) in presence of substrate acetoacetyl CoA (positive control).