Supporting Information

One-pot synthesis of 4-methylisoquinolines via sequential

Pd-catalyzed Heck reaction and intramolecular cyclization

Yulin Tian^{a,b}, Jianguo Qi^b, Chenbin Sun^b, Dali Yin^{a,b}, Xiaojian Wang^{*a,b}, Qiong Xiao^b

^a State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, PR China. E -mail: wangxiaojian@imm.ac.cn; Fax: +86 10 63165248; Tel: +86 10 63165248

63165248 ^b Department of Medicinal Chemistry, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, PR China

Contents

General Information
Experimental Procedures and Characterization Data:
2-acetyl/benzoylphenyl triflates
Experimental Procedures and Characterization Data:
2-benzoylphenyl halide
Experimental Procedures and Characterization Data:
4-methylisoquinolines
Experimental Procedures and Characterization Data:
Isoquinolines derivatives
¹ H and ¹³ C NMR spectra

General Information

Equipment Melting points were determined on Yanaco MP-J3 microscope melting point apparatus. NMR spectra were recorded on Mercury-400 spectrometer. Chemical shifts are referenced to the residual solvent peak and reported in ppm (δ scale) and all coupling constant (*J*) values are given in Hz. The following multiplicity abbreviations are used: (s) singlet, (d) doublet, (t) triplet, (q) quartet, (m) multiplet, and (br) broad. ESI-HRMS data were measured on Thermo Exactive Orbitrap plus spectrometer. Flash column chromatography was performed on Biotage Isolera one.

Solvents and chemicals All the solvents and chemicals were obtained from commercial sources and used without further purification.

Experimental Procedures and Characterization Data: 2-acetyl/benzoylphenyl triflates

General procedure for the synthesis of 2-acetyl/benzoylphenyl triflates (1a-k, 5l-p)¹:

To a solution of 2-acetyl/benzoylphenol (10.0 mmol) in pyridine (10 mL) was added Tf₂O (12.0 mmol) dropwise at 0 °C. The reaction mixture was then allowed to stir at room temperature for 12 h. Then the mixture was diluted by EtOAc (20 mL) and washed with 1M solution of CuSO₄ (10mL×4) and brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The crude residue was purified by flash column chromatography over silica gel (eluting with PE/EA=100/1) to provide the desired product.

1a

2-acetylphenyl triflate 1a.² Yield:98%. Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.82 (dd, J = 7.7, 1.7 Hz, 1H), 7.61 (td, J = 8.2, 1.8 Hz, 1H), 7.49 (td, J = 7.6, 1.0 Hz, 1H), 7.35 (d, J = 8.2 Hz, 1H), 2.64 (s, 3H); ESI-HRMS m/z calcd for C₉H₈O₄F₃S [M+H]⁺ 269.0090, found 269.0083.

1b

2-acetyl-4-methylphenyl triflate 1b.³ Yield:96%.White solid. m.p. 30-32 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.59 (s, 1H), 7.38 (d, *J* = 8.4 Hz, 1H), 7.21 (d, *J* = 8.4 Hz, 1H), 2.62 (s, 3H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 196.86, 144.74, 138.92, 134.12, 131.80, 131.20, 122.46 (d, *J* = 1 Hz), 118.64 (q, *J* = 319 Hz), 29.47, 20.86; ESI-HRMS m/z calcd for C₁₀H₁₀O₄F₃S [M+H]⁺ 283.0246, found 283.0248.

1c

2-acetyl-5-methylphenyl triflate 1c. Yield:98%. Yellow solid. m.p. 48-50 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 7.9 Hz, 1H), 7.28 (d, *J* = 9.0 Hz, 1H), 7.13 (s, 1H), 2.61 (s, 3H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 196.22, 146.90, 145.50, 130.92, 129.19, 129.04, 123.21 (d, *J* = 1 Hz), 118.64 (q, *J* = 319 Hz), 29.24, 21.41; ESI-HRMS m/z calcd for C₁₀H₁₀O₄FS [M+H]⁺ 283.0246, found

283.0245.

2-acetyl-4, 5-dimethylphenyl triflate 1d. Yield:95%. Light yellow solid. m.p. 34-36 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.58 (s, 1H), 7.08 (s, 1H), 2.60 (s, 3H), 2.34 (s, 3H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 196.39, 144.86, 143.85, 137.46, 131.82, 129.03, 123.44 (d, *J* = 1 Hz), 118.65 (q, *J* = 319 Hz) 29.25, 20.00, 19.21; ESI-HRMS m/z calcd for C₁₁H₁₂O₄F₃S [M+H]⁺ 297.0403, found 297.0405.

1e

2-acetyl-4-methoxylphenyl triflate 1e. Yield:95%. Brown oil. ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.23 (m, 2H), 7.06 (dd, J = 9.1, 3.1 Hz, 1H), 3.87 (s, 3H), 2.62 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 196.52, 158.88, 139.98, 132.96, 123.77 (d, J = 1 Hz), 118.61 (q, J = 319 Hz), 118.16, 115.73, 55.90, 29.33; ESI-HRMS m/z calcd for C₁₀H₁₀O₅F₃S [M+H]⁺ 299.0196, found 299.0197.

2-acetyl-4-fluorophenyl triflate 1f. Yield:92%. White solid. m.p. 33-35 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.50 (dd, J = 8.0, 2.7 Hz, 1H), 7.35 (dd, J = 9.0, 4.4 Hz, 1H), 7.32 – 7.25 (m, 1H), 2.64 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 195.26 (d, J = 1.2 Hz), 162.39, 159.88, 142.43 (d, J = 3.4 Hz), 133.83 (d, J = 6.4 Hz), 124.68 (dd, J = 8.4, 0.8 Hz), 118.98 (dd, J = 277.3, 23.7 Hz), 118.59 (q, J = 319 Hz), 29.41; ESI-HRMS m/z calcd for C₉H₇O₄F₄S [M+H]⁺ 286.9996, found 286.9998.

2-acetyl-4-chlorophenyl triflate 1g.⁴ Yield:94%. Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, J

= 2.6 Hz, 1H), 7.56 (dd, J = 8.8, 2.6 Hz, 1H), 7.30 (d, J = 8.8 Hz, 1H), 2.63 (s, 3H); ESI-HRMS m/z calcd for C₉H₇O₄ClF₃S [M+H]⁺ 302.9700, found 302.9699.

1h

1-acetyInaphthalen-2-yl triflate 1h. Yield:92%. White solid. m.p. 35-37 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 9.1 Hz, 1H), 7.92 (dd, J = 6.3, 3.0 Hz, 1H), 7.81 (dd, J = 6.7, 2.7 Hz, 1H), 7.66 – 7.55 (m, 2H), 7.45 (d, J = 9.1 Hz, 1H), 2.73 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 200.69, 142.37, 132.47, 132.00, 131.74, 129.66, 128.65, 128.58, 127.58, 124.93, 119.04, 118.53 (q, J = 318 Hz), 32.77; ESI-HRMS m/z calcd for C₁₃H₁₀O₄F₃S [M+H]⁺ 319.0246, found 319.0249.

1i

2-propionylphenyl triflate 1i. ^{2a} Yield:95%. Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (dd, J = 7.7, 1.7 Hz, 1H), 7.62 – 7.56 (m, 1H), 7.48 (td, J = 7.6, 1.0 Hz, 1H), 7.34 (d, J = 8.2 Hz, 1H), 2.97 (q, J = 7.2 Hz, 2H), 1.22 (t, J = 7.2 Hz, 3H); ESI-HRMS m/z calcd for C₁₀H₁₀O₄F₃S [M+H]⁺ 283.0246, found 283.0241.

1j

2-isobutyrylphenyl triflate 1j.^{2a} Yield:90%. Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.71 (dd, J = 7.7, 1.6 Hz, 1H), 7.58 (td, J = 8.0, 1.6 Hz, 1H), 7.48 (td, J = 7.6, 0.7 Hz, 1H), 7.35 (d, J = 8.2 Hz, 1H), 3.41 – 3.34 (m, 1H), 1.20 (d, J = 6.9 Hz, 6H); ESI-HRMS m/z calcd for C₁₁H₁₂O₄F₃S [M+H]⁺ 297.0403, found 297.0398.

2-(cyclohexanecarbonyl)phenyl triflate 1k. Yield:92%. Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ

7.70 (dd, J = 7.7, 1.7 Hz, 1H), 7.62 – 7.52 (m, 1H), 7.47 (td, J = 7.6, 1.0 Hz, 1H), 7.34 (d, J = 8.2 Hz, 1H), 3.07 (tt, J = 11.3, 3.3 Hz, 1H), 1.89 (d, J = 13.1 Hz, 2H), 1.85 – 1.77 (m, 2H), 1.75 – 1.65 (m, 1H), 1.53 – 1.40 (m, 2H), 1.39 – 1.19 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 202.97, 146.63, 132.87, 132.38, 130.11, 128.44, 122.58 (d, J = 0.8 Hz), 118.59 (q, J = 319 Hz), 48.89, 28.72, 25.79, 25.65; ESI-HRMS m/z calcd for C₁₄H₁₆O₄F₃S [M+H]⁺ 337.0716, found 337.0711.

51

2-(4-fluorobenzoyl)phenyl triflate 5I. Yield:94%. Brown oil. ¹H NMR (400 MHz, Acetone) δ 7.97 – 7.88 (m, 2H), 7.84 (ddd, J = 8.3, 7.3, 2.0 Hz, 1H), 7.77 – 7.59 (m, 3H), 7.40 – 7.30 (m, 2H); ¹³C NMR (100 MHz, Acetone) δ 191.35, 154.00, 150.88, 146.78, 137.04, 133.93, 132.20, 131.68, 131.48, 128.94, 123.73, 122.80, 118.52 (q, J = 318 Hz); ESI-HRMS m/z calcd for C₁₄H₉O₄F₄S [M+H]⁺ 349.0152, found 349.0148.

5m

2-(4-chlorobenzoyl)phenyl triflate 5m. Yield:94%. Yellow solid. m.p. 35-37 °C. ¹H NMR (400 MHz, Acetone) δ 7.89 – 7.82 (m, 3H), 7.74 (dd, J = 7.6, 1.9 Hz, 1H), 7.72 – 7.66 (m, 1H), 7.66 – 7.59 (m, 3H); ¹³C NMR (100 MHz, Acetone) δ 191.05, 146.72, 139.65, 135.21, 133.45, 131.91, 131.64, 131.36, 128.96, 128.75, 122.64 (d, J = 0.6 Hz), 118.50 (q, J = 318 Hz); ESI-HRMS m/z calcd for C₁₄H₉O₄ClF₃S [M+H]⁺ 364.9857, found 364.9853.

5n

2-(4-(trifluoromethyl)benzoyl)phenyl triflate 5n. Yield:91%. White solid. m.p. 62-64 °C. ¹H NMR (400 MHz, Acetone) δ 8.04 (d, J = 8.2 Hz, 2H), 7.97 – 7.92 (m, 2H), 7.89 (td, J = 8.3, 1.8 Hz, 1H), 7.79 (dd, J = 7.7, 1.8 Hz, 1H), 7.72 (dd, J = 7.5, 0.8 Hz, 1H), 7.68 (dd, J = 11.0, 4.6 Hz, 1H); ¹³C NMR (100 MHz, Acetone) δ 191.48, 146.84, 139.84, 133.90, 131.70, 131.53, 130.59, 129.57, 128.86, 125.73 (q, J = 3.8 Hz), 123.89 (q, J = 270 Hz), 122.78 (d, J = 0.6 Hz), 118.51 (q, J = 318 Hz); ESI-HRMS m/z calcd for C₁₅H₉O₄F₆S [M+H]⁺ 399.0120, found 399.0118.

2-(4-cyanobenzoyl)phenyl triflate 50. Yield:95%. Yellow solid. m.p. 79-81 °C. ¹H NMR (400 MHz, Acetone) δ 8.06 – 7.95 (m, 4H), 7.93 – 7.85 (m, 1H), 7.78 (dd, *J* = 7.7, 1.8 Hz, 1H), 7.71 (td, *J* = 7.6, 1.0 Hz, 1H), 7.66 (d, *J* = 8.3 Hz, 1H); ¹³C NMR (100 MHz, Acetone) δ 191.36, 146.83, 139.85, 134.04, 132.63, 131.73, 130.46, 128.90, 128.15, 122.81 (d, *J* = 0.6 Hz), 118.50 (q, *J* = 318 Hz), 117.65, 116.65; ESI-HRMS m/z calcd for C₁₅H₉O₄NF₃S [M+H]⁺ 356.0199, found 356.0199.

5p

2-nicotinoylphenyl triflate 5p. Yield:90%. Brown oil. ¹H NMR (400 MHz, Acetone) δ 8.95 (d, J = 1.6 Hz, 1H), 8.87 (dd, J = 4.8, 1.6 Hz, 1H), 8.22 – 8.15 (m, 1H), 7.89 (ddd, J = 8.3, 7.5, 1.8 Hz, 1H), 7.81 (dd, J = 7.7, 1.8 Hz, 1H), 7.72 (td, J = 7.6, 1.0 Hz, 1H), 7.66 (d, J = 8.4 Hz, 1H), 7.61 (ddd, J = 8.0, 4.8, 0.8 Hz, 1H); ¹³C NMR (100 MHz, Acetone) δ 190.68, 167.30, 164.78, 146.67, 133.28, 132.97, 132.87, 131.25, 128.73, 122.58 (d, J = 0.6 Hz), 118.59 (q, J = 318 Hz), 115.88, 115.66; ESI-HRMS m/z calcd for C₁₃H₉O₄NF₃S [M+H]⁺ 332.0199, found 332.0195.

Experimental Procedures and Characterization Data:

2-benzoylphenyl halide

General procedure for the synthesis of 2-benzoylphenyl halide Method A:(5a-g)⁵:

The substituted 2-bromobenzoic acid (10.0 mmol), thionyl chloride (15 mL) and one drop of N, N-dimethylformamide were heated under reflux for 2 h. The excess thionyl chloride was removed from the cooled reaction mixture and the remaining acid chloride was dissolved in benzene (20 mL). Aluminium chloride (11.0 mmol) was added portion-wise over 10 min to this solution and the resulting suspension was refluxed for 1 h. The reaction mixture was poured slowly into 2N HCl (20 mL) and ice. The organic layer was separated and the aqueous layer extracted with EtOAc (5 mL×3). The combined organic layers were washed with saturated aqueous NaHCO₃ solution and brine, dried over Na₂SO₄, filtered and concentrated *in vacuo*. The crude residue was purified by flash column chromatography over silica gel (eluting with PE/EA=100/1) to provide the desired product.

General procedure for the synthesis of 2-benzoylphenyl halide Method B:(5h-k)⁶:

A solution of 2-iodobenzoic acid (10.0 mmol) and SOCl₂ (25.0 mmol) in CH₂Cl₂ (20 mL) was stirred overnight. The excess SOCl₂ was removed and the remaining acid chloride was dissolved in anhydrous CH₂Cl₂ (20 mL), then substituted benzene (12.0 mmol) was added. After the mixture was cooled to 0 °C, AlCl₃ (11.0 mmol) was added portion-wise over 10 min. The reaction mixture was allowed to stir at room temperature for 6 h, then poured slowly into 2N HCl (20 mL) and ice. The organic layer was separated and the aqueous layer extracted with CH₂Cl₂ (5 mL×3). The combined organic layers were washed with saturated aqueous NaHCO₃ solution and brine, dried over Na₂SO₄, filtered and concentrated *in vacuo*. The crude residue was purified by flash column chromatography over silica gel (eluting with PE/EA=100/1) to provide the desired product.

5a

2-benzoyl-1-bromobenzene 5a.⁷ Yield:85%. Yellow oil. ¹H NMR (400 MHz, Acetone) δ 7.81 – 7.73 (m, 3H), 7.70 (ddd, J = 8.7, 2.5, 1.3 Hz, 1H), 7.60 – 7.53 (m, 3H), 7.50 (td, J = 7.7, 1.9 Hz, 1H), 7.45 (dd, J = 7.3, 1.8 Hz, 1H); ESI-HRMS m/z calcd for C₁₃H₁₀OBr [M+H]⁺ 260.9910, found 260.9910.

5b

2-benzoyl-4-methyl-1-bromobenzene 5b. ⁸ Yield:87%. Yellow solid. m.p. 30-32 °C. ¹H NMR (400 MHz, Acetone) δ 7.81 – 7.74 (m, 2H), 7.72 – 7.64 (m, 1H), 7.63 – 7.50 (m, 3H), 7.31 (dd, J = 8.2, 1.6 Hz, 1H), 7.25 (d, J = 1.5 Hz, 1H), 2.37 (s, 3H); ¹³C NMR (100 MHz, Acetone) δ 195.08, 140.76, 137.85, 136.27, 133.73, 132.74, 132.13, 129.83, 129.38, 128.81, 115.39, 19.98; ESI-HRMS m/z

calcd for $C_{14}H_{12}OBr [M+H]^+ 275.0066$, found 275.0071.

2-benzoyl-5-methyl-1-bromobenzene 5c.^{7a} Yield:82%. White solid. m.p. 28-30 °C. ¹H NMR (400 MHz, Acetone) δ 7.82 – 7.73 (m, 2H), 7.70 – 7.64 (m, 1H), 7.59 – 7.49 (m, 3H), 7.37 – 7.29 (m, 2H), 2.43 (s, 3H); ESI-HRMS m/z calcd for C₁₄H₁₂OBr [M+H]⁺ 275.0066, found 275.0067.

5d

2-benzoyl-4-methoxyl-1-bromobenzene 5d.^{7a} Yield: 78%. Yellow oil. ¹H NMR (400 MHz, Acetone) δ 7.82 – 7.77 (m, 2H), 7.73 – 7.65 (m, 1H), 7.61 (d, *J* = 8.8 Hz, 1H), 7.59 – 7.52 (m, 2H), 7.07 (dd, *J* = 8.8, 3.0 Hz, 1H), 7.02 (d, *J* = 3.0 Hz, 1H), 3.86 (s, 3H); ESI-HRMS m/z calcd for C₁₄H₁₂O₂Br [M+H]⁺ 291.0015, found 291.0019.

5e

2-benzoyl-4, 5-dimethoxyl-1-bromobenzene 5e.⁹ Yield: 80%. Light yellow solid. m.p. 60-62 °C. ¹H NMR (400 MHz, Acetone) δ 7.81 – 7.76 (m, 2H), 7.67 (t, J = 7.4 Hz, 1H), 7.54 (t, J = 7.7 Hz, 2H), 7.22 (s, 1H), 7.03 (s, 1H), 3.94 (s, 3H), 3.84 (s, 3H); ESI-HRMS m/z calcd for C₁₅H₁₄O₃Br [M+H]⁺ 321.0121, found 321.0123.

5f

2-benzoyl-5-fluoro-1-bromobenzene 5f.¹⁰ Yield: 88%. Yellow oil. ¹H NMR (400 MHz, Acetone) δ 7.83 – 7.76 (m, 1H), 7.69 (q, J = 7.0 Hz, 1H), 7.64 – 7.50 (m, 3H), 7.42 – 7.25 (m, 2H), 7.11 (dd, J = 15.8, 7.9 Hz, 1H); ESI-HRMS m/z calcd for C₁₃H₉OBrF [M+H]⁺ 278.9815, found 278.9818.

2-benzoyl-4-chloro-1-bromobenzene 5g.¹¹ Yield: 85%. Yellow solid. m.p. 88-90 °C. ¹H NMR (400 MHz, Acetone) δ 7.82 (d, J = 1.1 Hz, 1H), 7.80 (t, J = 1.6 Hz, 1H), 7.79 – 7.74 (m, 1H), 7.72 (ddd, J = 8.7, 2.5, 1.2 Hz, 1H), 7.59 (d, J = 1.5 Hz, 1H), 7.57 (s, 1H), 7.55 (t, J = 2.1 Hz, 1H), 7.53 (d, J = 1.5 Hz, 1H); ¹³C NMR (100 MHz, Acetone) δ 193.54, 142.55, 135.64, 134.65, 134.14, 133.46, 131.32, 129.90, 128.97, 128.60, 116.99; ESI-HRMS m/z calcd for C₁₃H₉OBrCl [M+H]⁺ 294.9520, found 294.9526.

5g

5h

2-(4-methylbenzoyl)-1-iodobenzene 5h. ¹² Yield: 86%. Light yellow solid. m.p. 42-44 °C. ¹H NMR (400 MHz, Acetone) δ 8.00 (dd, J = 8.0, 0.8 Hz, 1H), 7.66 (d, J = 8.2 Hz, 2H), 7.57 (td, J = 7.5, 1.1 Hz, 1H), 7.36 (d, J = 7.8 Hz, 3H), 7.33 – 7.27 (m, 1H), 2.43 (s, 3H); ESI-HRMS m/z calcd for C₁₄H₁₂OI [M+H]⁺ 322.9927, found 322.9932.

2-(4-ethylbenzoyl)-1-iodobenzene 5i. Yield: 82%. Yellow oil. ¹H NMR (400 MHz, Acetone) δ 8.00 (dd, J = 8.0, 0.8 Hz, 1H), 7.72 – 7.66 (m, 2H), 7.57 (tt, J = 6.0, 3.0 Hz, 1H), 7.42 – 7.35 (m, 3H), 7.30 (td, J = 7.8, 1.7 Hz, 1H), 2.77 – 2.71 (m, 2H), 1.25 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, Acetone) δ 196.01, 150.85, 145.04, 139.54, 133.46, 131.12, 130.40, 128.36, 128.21, 128.10, 91.73, 28.73, 14.84; ESI-HRMS m/z calcd for C₁₅H₁₄OI [M+H]⁺ 337.0084, found 337.0085.

5j

2-(4-isopropylbenzoyl)-1-iodobenzene 5j. Yield: 80%. Brown oil. ¹H NMR (400 MHz, Acetone) δ 8.00 (dd, J = 8.0, 0.8 Hz, 1H), 7.73 – 7.67 (m, 2H), 7.57 (td, J = 7.5, 1.1 Hz, 1H), 7.43 (d, J = 8.2 Hz,

2H), 7.36 (dd, J = 7.6, 1.6 Hz, 1H), 7.34 – 7.26 (m, 1H), 3.02 (hept, J = 6.9 Hz, 1H), 1.27 (d, J = 6.9 Hz, 6H); ¹³C NMR (100 MHz, Acetone) δ 195.97, 155.31, 145.01, 139.66, 133.66, 131.25, 130.61, 128.35, 128.18, 127.05, 92.07, 34.26, 30.10; ESI-HRMS m/z calcd for C₁₆H₁₆OI [M+H]⁺ 351.0240, found 351.0239.

2-(4-methoxylbenzoyl)-1-iodobenzene 5j.¹³ Yield: 77%. White solid. m.p. 78-80 °C. ¹H NMR (400 MHz, Acetone) δ 7.98 (d, J = 8.0 Hz, 1H), 7.73 (d, J = 8.9 Hz, 2H), 7.55 (td, J = 7.5, 0.7 Hz, 1H), 7.34 (dd, J = 7.6, 1.5 Hz, 1H), 7.27 (td, J = 7.8, 1.6 Hz, 1H), 7.05 (d, J = 8.9 Hz, 2H), 3.90 (s, 3H); ESI-HRMS m/z calcd for C₁₄H₁₂O₂I [M+H]⁺ 338.9877, found 338.9879.

Experimental Procedures and Characterization Data:

4-methylisoquinolines

General procedure for the synthesis of 4-methylisoquinolines:

To a solution of the 2-acetyl/benzoylphenyl triflates/halide (1.0 mmol) in ethylene glycol (10 mL) was sequentially added N-Boc allylamine (1.2 mmol), Pd(OA)₂ (0.05 mmol), dppp (0.1 mmol) and NaOAc (2.0 mmol). The reaction mixture was heated at 120 °C under argon for 12 h, then cooled to room temperature. Water (10 mL) was added and the mixture was extracted with $CH_2Cl_2(10mL \times 3)$. The combined organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The crude residue was purified by flash column chromatography over silica gel (eluting with CH₂Cl₂/EA=100/1 to 20/1) to provide the desired product.

4a

1,4-dimethylisoquinoline 4a Yield: 62%. Brown oil. ¹H NMR (400 MHz, CD₃OD) δ 8.09 (d, J = 8.4 Hz, 1H), 7.98 (s, 1H), 7.90 (d, J = 8.4 Hz, 1H), 7.69 (t, J = 7.6 Hz, 1H), 7.57 (t, J = 7.6 Hz, 1H), 2.77 (s, 3H), 2.47 (s, 3H); ¹³C NMR (100 MHz, CD₃OD) δ 156.50, 139.52, 135.30, 130.16, 126.85, 126.70, 126.37, 125.81, 123.33, 20.15, 14.43; ESI-HRMS m/z calcd for C₁₁H₁₂N [M+H]⁺ 158.0964, found 158.0965.

4b

1,4,7-trimethylisoquinoline 4b Yield: 65%. Brown oil. ¹H NMR (400 MHz, CD₃OD) δ 7.79 (s, 1H), 7.67 (s, 1H), 7.60 (d, *J* = 8.5 Hz, 1H), 7.37 (d, *J* = 8.5 Hz, 1H), 2.61 (s, 3H), 2.36 (s, 3H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CD₃OD) δ 155.73, 138.72, 136.98, 133.50, 132.15, 126.86, 126.21, 124.66, 123.18, 20.49, 20.11, 14.41; ESI-HRMS m/z calcd for C₁₂H₁₄N [M+H]⁺172.1121, found 172.1122.

1,4,6-trimethylisoquinoline 4c Yield: 65%. Brown oil. ¹H NMR (400 MHz, CD₃OD) δ 8.04 (d, J = 8.6 Hz, 1H), 7.98 (s, 1H), 7.74 (s, 1H), 7.46 (d, J = 8.6 Hz, 1H), 2.78 (s, 3H), 2.51 (s, 3H), 2.49 (s, 3H); ¹³C NMR (100 MHz, CD₃OD) δ 156.19, 140.97, 139.51, 135.70, 128.95, 125.97, 125.78, 125.11, 122.41, 20.74, 20.01, 14.47; ESI-HRMS m/z calcd for C₁₂H₁₄N [M+H]⁺ 172.1121, found 172.1122.

1,4,6,7-tetramethylisoquinoline 4d Yield: 70%. Brown solid. m.p. 39-42 °C. ¹H NMR (400 MHz, CD₃OD) δ 7.88 (s, 1H), 7.82 (s, 1H), 7.64 (s, 1H), 2.73 (s, 3H), 2.44 (s, 3H), 2.40 (s, 3H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CD₃OD) δ 155.29, 140.66, 138.63, 136.80, 134.16, 125.62, 125.59, 125.12, 122.81, 19.99, 19.25, 18.98, 14.44; ESI-HRMS m/z calcd for C₁₃H₁₆N [M+H]⁺ 186.1277, found 186.1281.

4e

7-methoxy-1,4-dimethylisoquinoline 4e Yield: 72%. Brown oil. ¹H NMR (400 MHz, CD₃OD) δ 7.89 (s, 1H), 7.85 (d, *J* = 9.0 Hz, 1H), 7.37 – 7.29 (m, 2H), 3.88 (s, 3H), 2.75 (s, 3H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CD₃OD) δ 158.34, 154.89, 137.70, 130.70, 128.05, 126.36, 125.06, 122.52, 103.70, 54.54, 20.21, 14.42; ESI-HRMS m/z calcd for C₁₂H₁₄ON [M+H]⁺ 188.1070, found 188.1071.

7-fluoro-1,4-dimethylisoquinoline 4f Yield: 63%. Brown oil. ¹H NMR (400 MHz, CD₃OD) δ 8.05 (dd, J = 8.6, 4.5 Hz, 2H), 7.80 (dd, J = 10.1, 2.4 Hz, 1H), 7.56 (td, J = 8.5, 1.9 Hz, 1H), 2.78 (s, 3H), 2.53 (s, 3H); ¹³C NMR (100 MHz, CD₃OD) δ 162.03, 159.57, 156.16, 156.10, 139.33, 139.30, 132.53, 127.87, 127.78, 126.70, 126.61, 126.52, 126.50, 120.30, 120.05, 109.42, 109.21, 20.22, 14.46; ESI-HRMS m/z calcd for C₁₁H₁₁NF [M+H]⁺ 176.0870, found 176.0874.

4g

7-chloro-1,4-dimethylisoquinoline 4g Yield: 60%. Brown oil. ¹H NMR (400 MHz, CD₃OD) δ 8.11 (s, 1H), 8.04 (s, 1H), 7.93 (d, *J* = 8.9 Hz, 1H), 7.67 (d, *J* = 9.0 Hz, 1H), 2.77 (s, 3H), 2.49 (s, 3H); ¹³C NMR (100 MHz, CD₃OD) δ 155.96, 140.19, 133.76, 132.58, 130.82, 127.51, 126.49, 125.64, 124.81, 20.17, 14.33; ESI-HRMS m/z calcd for C₁₁H₁₁NCl [M+H]⁺ 192.0575, found 192.0578.

4h

1,4-dimethylbenzo[h]isoquinoline 4h Yield: 65%. Brown oil. ¹H NMR (400 MHz, CD₃OD) δ 8.82 (d, J = 8.5 Hz, 1H), 8.26 (s, 1H), 8.00 (d, J = 9.0 Hz, 1H), 7.96 (d, J = 7.7 Hz, 1H), 7.87 (d, J = 9.1 Hz, 1H), 7.69 (t, J = 7.7 Hz, 1H), 7.63 (t, J = 7.4 Hz, 1H), 3.19 (s, 3H), 2.60 (s, 3H); ¹³C NMR (100 MHz, CD₃OD) δ 154.42, 141.89, 136.72, 133.16, 131.82, 130.04, 128.82, 126.86, 126.77, 126.58, 126.53, 124.52, 121.06, 28.19, 15.09; ESI-HRMS m/z calcd for C₁₅H₁₄N [M+H]⁺ 208.1121, found 208.1124.

4i

1-ethyl-4-methylisoquinoline 4i Yield: 64%. Brown oil. ¹H NMR (400 MHz, CD₃OD) δ 8.05 (d, J = 8.4 Hz, 1H), 7.99 (s, 1H), 7.82 (d, J = 8.4 Hz, 1H), 7.65 – 7.58 (m, 1H), 7.55 – 7.47 (m, 1H), 3.11 (q, J = 7.6 Hz, 2H), 2.40 (s, 3H), 1.25 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, MeOD) δ 164.65, 140.06, 135.80, 129.80, 126.71, 125.79, 125.53, 124.95, 123.58, 30.18, 21.14, 14.52; ESI-HRMS m/z calcd for C₁₂H₁₄N [M+H]⁺ 172.1121, found 172.1117.

4j

1-isopropyl-4-methylisoquinoline 4j Yield: 63%. Brown oil. ¹H NMR (400 MHz, CD₃OD) δ 8.18 (d, J = 8.5 Hz, 1H), 8.07 (s, 1H), 7.88 (d, J = 8.4 Hz, 1H), 7.67 – 7.59 (m, 1H), 7.56 – 7.46 (m, 1H), 3.91 – 3.81 (m, 1H), 2.44 (s, 3H), 1.27 (d, J = 6.8 Hz, 6H); ¹³C NMR (100 MHz, MeOD) δ 161.44, 139.76, 135.70, 130.01, 126.81, 126.23, 125.77, 125.47, 123.49, 27.42, 14.46, 13.19; ESI-HRMS m/z calcd for C₁₃H₁₆N [M+H]⁺ 186.1277, found 186.1275.

1-cyclohexyl-4-methylisoquinoline 4k Yield: 66%. Brown oil. ¹H NMR (400 MHz, CD₃OD) δ 8.12 (d,

 $J = 8.5 \text{ Hz}, 1\text{H}, 8.00 \text{ (s, 1H)}, 7.83 \text{ (d, } J = 8.4 \text{ Hz}, 1\text{H}), 7.63 - 7.54 \text{ (m, 1H)}, 7.52 - 7.41 \text{ (m, 1H)}, 3.49 - 3.35 \text{ (m, 1H)}, 2.39 \text{ (s, 3H)}, 1.73 \text{ (d, } J = 11.1 \text{ Hz}, 4\text{H}), 1.67 - 1.51 \text{ (m, 2H)}, 1.49 - 1.33 \text{ (m, 2H)}, 1.26 - 1.15 \text{ (m, 1H)}; {}^{13}\text{C} \text{ NMR} (100 \text{ MHz}, \text{CD}_{3}\text{OD}) \delta 165.35, 141.51, 137.27, 131.22, 128.13, 127.12, 127.03, 126.32, 125.04, 42.32, 33.69, 27.81, 27.35, 15.95; ESI-HRMS m/z calcd for C₁₆H₂₀N [M+H]⁺ 226.1590, found 226.1587.$

4-methyl-1-phenylisoquinoline 6a Yield: 65%. Brown solid. m.p. 58-60 °C. ¹H NMR (400 MHz, CD₃OD) δ 8.17 (s, 1H), 7.93 (d, J = 8.5 Hz, 1H), 7.83 (d, J = 8.6 Hz, 1H), 7.68 – 7.60 (m, 1H), 7.41 – 7.39 (m, 6H), 2.50 (s, 3H); ¹³C NMR (100 MHz, CD₃OD) δ 159.17, 140.26, 138.88, 136.21, 130.35, 129.54, 128.45, 128.05, 127.67, 127.51, 127.06, 126.08, 123.31, 14.66; ESI-HRMS m/z calcd for C₁₆H₁₄N [M+H]⁺ 220.1121, found 220.1122.

4,7-dimethyl-1-phenylisoquinoline 6b Yield: 70%. Brown solid. m.p. 85-88 °C. ¹H NMR (400 MHz, CD₃OD) δ 8.11 (s, 1H), 7.83 (d, *J* = 8.6 Hz, 1H), 7.61 (s, 1H), 7.50 (d, *J* = 8.6 Hz, 1H), 7.42 (s, 5H), 2.49 (s, 3H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CD₃OD) δ 158.50, 139.54, 139.04, 137.07, 134.49, 132.41, 129.50, 128.35, 128.03, 127.37, 126.34, 126.30, 123.22, 20.47, 14.62; ESI-HRMS m/z calcd for C₁₇H₁₆N [M+H]⁺ 234.1277, found 234.1280.

4,6-dimethyl-1-phenylisoquinoline 6c Yield: 70%. Brown solid. m.p. 75-78 °C. ¹H NMR (400 MHz, CD₃OD) δ 8.11 (s, 1H), 7.71 (d, *J* = 9.1 Hz, 2H), 7.40 (s, 5H), 7.24 (d, *J* = 8.7 Hz, 1H), 2.47 (s, 3H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CD₃OD) δ 158.80, 141.09, 140.30, 138.97, 136.47, 129.51, 129.13, 128.37, 128.00, 127.52, 126.91, 124.39, 122.28, 20.78, 14.70; ESI-HRMS m/z calcd for C₁₇H₁₆N [M+H]⁺ 234.1277, found 234.1279.

6d

7-methoxy-4-methyl-1-phenylisoquinoline 6d Yield: 71%. Brown solid. m.p. 91-93 °C. ¹H NMR (400 MHz, CD₃OD) δ 8.10 (s, 1H), 7.91 (d, J = 9.2 Hz, 1H), 7.54 – 7.41 (m, 5H), 7.38 – 7.31 (m, 1H), 7.19 (d, J = 2.4 Hz, 1H), 3.66 (s, 3H), 2.54 (s, 3H); ¹³C NMR (100 MHz, CD₃OD) δ 158.44, 157.65, 139.18, 138.66, 131.72, 129.33, 128.38, 128.16, 127.51, 127.46, 125.08, 122.79, 105.30, 54.33, 14.61; ESI-HRMS m/z calcd for C₁₇H₁₆ON [M+H]⁺ 250.1226, found 250.1228.

6e

6,7-dimethoxy-4-methyl-1-phenylisoquinoline 6e Yield: 75%. Brown solid. m.p. 150-152 °C. ¹H NMR (400 MHz, CD₃OD) δ 8.08 (s, 1H), 7.55 – 7.41 (m, 5H), 7.19 (d, *J* = 8.2 Hz, 2H), 3.95 (s, 3H), 3.69 (s, 3H), 2.54 (s, 3H); ¹³C NMR (100 MHz, CD₃OD) δ 156.58, 153.18, 150.13, 139.34, 139.29, 133.21, 129.32, 128.31, 128.15, 126.35, 122.00, 105.68, 101.76, 55.07, 54.68, 14.85; ESI-HRMS m/z calcd for C₁₈H₁₈O₂N [M+H]⁺ 280.1332, found 280.1335.

6f

6-fluoro-4-methyl-1-phenylisoquinoline 6f Yield: 65%. Brown solid. m.p. 106-109 °C. ¹H NMR (400 MHz, CD₃OD) δ 8.28 (s, 1H), 8.02 (dd, J = 9.3, 5.7 Hz, 1H), 7.70 (dd, J = 10.3, 2.4 Hz, 1H), 7.55 – 7.47 (m, 5H), 7.36 (td, J = 9.1, 2.5 Hz, 1H), 2.58 (s, 3H); ¹³C NMR (100 MHz, CD₃OD) δ 164.60, 162.09, 159.11, 141.18, 138.67, 138.24, 138.14, 131.43, 131.33, 129.48, 128.62, 128.13, 127.36, 127.31, 123.42, 117.22, 116.97, 107.19, 106.98, 14.64; ESI-HRMS m/z calcd for C₁₆H₁₃NF [M+H]⁺ 238.1027, found 238.1028.

6g

6-chloro-4-methyl-1-phenylisoquinoline 6g Yield: 64%. Brown solid. m.p. 80-82 °C. ¹H NMR (400 MHz, CD₃OD) δ 8.27 (s, 1H), 8.03 (d, *J* = 8.9 Hz, 1H), 7.83 (s, 1H), 7.69 (d, *J* = 9.0 Hz, 1H), 7.49 (s, 5H), 2.59 (s, 3H); ¹³C NMR (100 MHz, CD₃OD) δ 158.33, 140.95, 138.27, 134.53, 132.78, 130.93, 129.42, 128.73, 128.22, 127.58, 126.75, 126.17, 125.64, 14.56; ESI-HRMS m/z calcd for C₁₆H₁₃NCl [M+H]⁺ 254.0731, found 254.0734.

6h

4-methyl-1-(p-tolyl)isoquinoline 6h Yield: 70%. Brown solid. m.p. 51-54 °C. ¹H NMR (400 MHz, CD₃OD) δ 8.20 (s, 1H), 7.99 (d, J = 8.5 Hz, 1H), 7.91 (d, J = 8.5 Hz, 1H), 7.70 (dd, J = 8.2, 7.1 Hz, 1H), 7.48 (dd, J = 8.2, 7.2 Hz, 1H), 7.36 (d, J = 7.6 Hz, 2H), 7.26 (d, J = 7.8 Hz, 2H), 2.56 (s, 3H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CD₃OD) δ 159.29, 140.22, 138.56, 136.25, 136.00, 130.31, 129.49, 128.65, 127.79, 127.28, 126.97, 126.17, 123.28, 19.97, 14.63; ESI-HRMS m/z calcd for C₁₇H₁₆N [M+H]⁺ 234.1277, found 234.1280.

1-(4-ethylphenyl)-4-methylisoquinoline 6i Yield: 71%. Brown solid. m.p. 38-40 °C. ¹H NMR (400 MHz, CD₃OD) δ 8.19 (s, 1H), 7.98 (d, *J* = 8.5 Hz, 1H), 7.91 (d, *J* = 8.5 Hz, 1H), 7.69 (dd, *J* = 8.2, 7.1 Hz, 1H), 7.47 (dd, *J* = 8.2, 7.2 Hz, 1H), 7.39 (d, *J* = 7.5 Hz, 2H), 7.28 (d, *J* = 7.8 Hz, 2H), 2.69 – 2.63 (m, 2H), 2.55 (s, 3H), 1.23 – 1.19 (m, 3H); ¹³C NMR (100 MHz, CD₃OD) δ 159.32, 144.98, 140.23, 136.27, 136.25, 130.31, 129.60, 127.81, 127.50, 127.28, 126.98, 126.18, 123.28, 28.30, 14.74, 14.64; ESI-HRMS m/z calcd for C₁₈H₁₈N [M+H]⁺ 248.1435, found 248.1435.

6j

1-(4-isopropylphenyl)-4-methylisoquinoline 6j Yield: 70%. Brown oil. ¹H NMR (400 MHz, CD₃OD) δ 8.21 (s, 1H), 8.01 (d, *J* = 8.5 Hz, 1H), 7.94 (d, *J* = 8.5 Hz, 1H), 7.72 (t, *J* = 7.7 Hz, 1H), 7.49 (t, *J* = 7.7 Hz, 1H), 7.42 (d, *J* = 7.9 Hz, 2H), 7.33 (d, *J* = 7.8 Hz, 2H), 2.93 (hept, *J* = 6.7 Hz, 1H), 2.58 (s, 3H), 1.24 (d, *J* = 6.9 Hz, 6H); ¹³C NMR (100 MHz, CD₃OD) δ 159.29, 149.53, 140.25, 136.42, 136.24, 130.30, 129.62, 127.83, 127.27, 126.98, 126.17, 126.07, 123.28, 33.89, 23.03, 14.65; ESI-HRMS m/z calcd for C₁₉H₂₀N [M+H]⁺ 262.1590, found 262.1595.

6k

1-(4-methoxyphenyl)-4-methylisoquinoline 6k Yield: 75%. Brown solid. m.p. 100-102 °C. ¹H NMR (400 MHz, CD₃OD) δ 8.18 (s, 1H), 7.95 (dd, *J* = 12.6, 8.6 Hz, 2H), 7.68 (t, *J* = 7.6 Hz, 1H), 7.47 (t, *J* = 7.7 Hz, 1H), 7.41 (d, *J* = 8.4 Hz, 2H), 6.99 (d, *J* = 8.5 Hz, 2H), 3.78 (s, 3H), 2.54 (s, 3H); ¹³C NMR (100 MHz, CD₃OD) δ 160.33, 159.00, 140.21, 136.30, 131.14, 130.91, 130.27, 127.82, 127.05, 126.94, 126.20, 123.28, 113.45, 54.46, 14.62; ESI-HRMS m/z calcd for C₁₇H₁₆ON [M+H]⁺ 250.1226, found 250.1228.

61

1-(4-fluorophenyl)-4-methylisoquinoline 61 Yield: 67%. Brown solid. m.p. 140-142 °C. ¹H NMR (400 MHz, CD₃OD) δ 8.24 (s, 1H), 8.03 (d, J = 8.5 Hz, 1H), 7.90 (d, J = 8.5 Hz, 1H), 7.74 (t, J = 7.6 Hz, 1H), 7.53 (dd, J = 8.4, 5.6 Hz, 3H), 7.21 (t, J = 8.7 Hz, 2H), 2.59 (s, 3H); ¹³C NMR (100 MHz, CD₃OD) δ 164.38, 161.92, 158.12, 140.31, 136.28, 135.14, 135.11, 131.63, 131.55, 130.45, 127.73, 127.47, 127.23, 126.10, 123.42, 115.02, 114.80, 14.62; ESI-HRMS m/z calcd for C₁₆H₁₃NF [M+H]⁺ 238.1027, found 238.1028.

6m

1-(4-chlorophenyl)-4-methylisoquinoline 6m Yield: 65%. Brown solid. m.p. 97-99 °C. ¹H NMR (400 MHz, CD₃OD) δ 8.25 (s, 1H), 8.04 (d, *J* = 8.5 Hz, 1H), 7.89 (d, *J* = 8.5 Hz, 1H), 7.75 (t, *J* = 7.7 Hz, 1H), 7.56 – 7.46 (m, 5H), 2.60 (s, 3H); ¹³C NMR (100 MHz, CD₃OD) δ 157.83, 140.40, 137.49, 136.24, 134.58, 131.12, 130.46, 128.23, 127.89, 127.30, 127.29, 125.94, 123.43, 14.65; ESI-HRMS m/z calcd for C₁₆H₁₃NCl [M+H]⁺ 254.0731, found 254.0734.

6n

4-methyl-1-(4-(trifluoromethyl)phenyl)isoquinoline 6n Yield: 63%. Brown solid. m.p. 123-126 °C. ¹H NMR (400 MHz, CD₃OD) δ 8.29 (s, 1H), 8.07 (d, *J* = 8.4 Hz, 1H), 7.88 (d, *J* = 8.5 Hz, 1H), 7.82 – 7.74 (m, 3H), 7.71 (d, *J* = 8.1 Hz, 2H), 7.56 (dd, *J* = 8.1, 7.2 Hz, 1H), 2.62 (s, 3H); ¹³C NMR (100 MHz, CD₃OD) δ 157.58, 142.80, 140.54, 136.26, 130.59, 130.28, 128.36, 127.51, 127.13, 125.92, 125.06, 125.02, 124.99, 124.95, 123.54, 14.66; ESI-HRMS m/z calcd for C₁₇H₁₃NF₃ [M+H]⁺ 288.0995, found 288.0998.

4-(4-methylisoquinolin-1-yl)benzonitrile 60 Yield: 62%. Brown solid. m.p. 139-141 °C. ¹H NMR (400 MHz, CD₃OD) δ 8.31 (s, 1H), 8.08 (d, *J* = 8.5 Hz, 1H), 7.91 – 7.81 (m, 3H), 7.78 (t, *J* = 7.6 Hz, 1H), 7.71 (d, *J* = 8.0 Hz, 2H), 7.57 (t, *J* = 7.6 Hz, 1H), 2.62 (s, 3H); ¹³C NMR (100 MHz, CD₃OD) δ 157.13, 143.56, 140.68, 136.28, 132.00, 130.64, 130.58, 128.59, 127.60, 126.94, 125.77, 123.61, 118.09, 112.24, 14.68; ESI-HRMS m/z calcd for C₁₇H₁₃N₂ [M+H]⁺ 245.1073, found 245.1077.

6p

4-methyl-1-(pyridin-3-yl)isoquinoline 6p. Yield: 62%. Brown solid. m.p. 76-79 °C. ¹H NMR (400 MHz, CD₃OD) δ 8.73 (s, 1H), 8.65 (d, *J* = 4.4 Hz, 1H), 8.35 (s, 1H), 8.11 (d, *J* = 8.5 Hz, 1H), 8.08 – 8.01 (m, 1H), 7.91 (d, *J* = 8.5 Hz, 1H), 7.81 (t, *J* = 7.7 Hz, 1H), 7.67 – 7.53 (m, 2H), 2.65 (s, 3H); ¹³C NMR (100 MHz, CD₃OD) δ 155.40, 149.44, 148.83, 140.87, 138.07, 136.22, 135.38, 130.90, 130.62, 128.47, 127.66, 126.76, 126.08, 123.63, 14.69; ESI-HRMS m/z calcd for C₁₅H₁₃N₂ [M+H]⁺ 221.1073, found 221.1076.

3a

Tert-butyl (2-(2-acetylphenyl)allyl)carbamate 3a. Yield: 85%. Brown oil. ¹H NMR (400 MHz, Acetone) δ 7.62 (d, J = 7.7 Hz, 1H), 7.48 (dd, J = 7.5, 1.2 Hz, 1H), 7.41 (td, J = 7.5, 1.2 Hz, 1H), 7.32 (d, J = 7.6 Hz, 1H), 6.22 (s, 1H), 5.25 (d, J = 1.5 Hz, 1H), 4.90 (d, J = 1.3 Hz, 1H), 4.01 (d, J = 6.1 Hz, 2H), 2.51 (s, 3H), 1.37 (s, 9H); ¹³C NMR (100 MHz, Acetone) δ 202.09, 155.69, 147.95, 139.87, 139.75, 130.55, 129.51, 128.06, 127.47, 113.71, 76.81, 45.60, 29.19, 27.69; ESI-HRMS m/z calcd for C₁₆H₂₁O₃NNa [M+Na]⁺ 298.1414, found 298.1417.

Experimental Procedures and Characterization Data:

Isoquinolines derivatives

General procedure for the synthesis of 1-phenyl-4-(bromomethyl)isoquinoline (7)¹⁴:

A solution of **6a** (220 mg, 1 mmol), NBS (196 mg, 1.1 mmol) and AIBN (17 mg, 0.1 mmol) in benzene (10 mL) was reflux under argon for 1h. After cooled to room temperature, the solvent was removed *in vacuo*. The residue was dissolved in EtOAc (15 mL), washed with brine, dried over Na₂SO₄, filtered and concentrated *in vacuo*. The crude residue was purified by flash column chromatography over silica gel (eluting with CH₂Cl₂/EA=100:1) to provide the desired product (253 mg, 85% yield) as yellow solid. m.p. 225-227 °C. ¹H NMR (400 MHz, Acetone) δ 8.75 (s, 1H), 8.33 (d, *J* = 8.5 Hz, 1H), 8.16 (d, *J* = 8.5 Hz, 1H), 7.97 – 7.89 (m, 1H), 7.74 – 7.67 (m, 3H), 7.62 – 7.52 (m, 3H), 5.22 (s, 2H); ¹³C NMR (100 MHz, Acetone) δ 161.68, 142.88, 139.55, 134.57, 130.48, 130.03, 128.68, 128.19, 127.95, 127.63, 126.78, 126.40, 123.67, 28.78; ESI-HRMS m/z calcd for C₁₆H₁₃NBr [M+H]⁺ 298.0226, found 298.0236.

General procedure for the synthesis of 1-phenyl-4-(hydroxymethyl)isoquinoline (8):

A solution of 7 (230 mg, 0.77 mmol), CH₃COOH (70 mg, 1.2 mmol) and Et₃N (155 mg, 1.5 mmol) in CH₃CN (10 mL) was heated at 60 °C for 30 min. Then solvent was removed *in vacuo* and the residue was dissolved in MeOH (10 mL) followed by NaOH (616 mg, 15.4 mmol) added. The mixture was reflux for 1 h, then cooled to room temperature. After MeOH was removed *in vacuo*, the residue was dissolved in CH₂Cl₂ (10 mL), washed with saturated aqueous NH₄Cl solution and brine, dried over Na₂SO₄, filtered and concentrated *in vacuo*. The crude residue was purified by flash column chromatography over silica gel (eluting with CH₂Cl₂/MeOH=100:1 to 30:1)) to provide the desired product (127 mg, 70%) as yellow solid. m.p. 105-108 °C. ¹H NMR (400 MHz, Acetone) δ 8.60 (s, 1H), 8.29 (d, *J* = 8.5 Hz, 1H), 8.10 (d, *J* = 8.5 Hz, 1H), 7.83 – 7.79 (m, 1H), 7.71 – 7.66 (m, 2H), 7.66 – 7.60 (m, 1H), 7.60 – 7.49 (m, 3H), 5.14 (s, 2H); ¹³C NMR (100 MHz, Acetone) δ 160.25, 140.89, 139.96, 135.14, 129.99, 129.92, 129.63, 128.35, 128.11, 127.49, 126.95, 126.08, 123.89, 60.10;

ESI-HRMS m/z calcd for $C_{16}H_{14}ON [M+H]^+ 236.1070$, found 236.1072.

General procedure for the synthesis of 1-phenylisoquinoline-4-carbaldehyde (9):

9

To a solution of **8** (100 mg, 0.43 mmol) in CH₂Cl₂ (5 mL) was added MnO₂ (740 mg, 8.5 mmol). The mixture was stirred at room temperature for 6 h, then filtered through diatomite and the filtrate was concentrated *in vacuo* to afford **9** (90 mg, 90%) as white solid. m.p. 149-151 °C. ¹H NMR (400 MHz, Acetone) δ 10.49 (s, 1H), 9.31 (d, *J* = 8.6 Hz, 1H), 9.12 (s, 1H), 8.22 (d, *J* = 8.5 Hz, 1H), 8.06 – 7.92 (m, 1H), 7.82 – 7.73 (m, 3H), 7.65 – 7.58 (m, 3H); ¹³C NMR (100 MHz, Acetone) δ 193.04, 166.02, 152.19, 139.15, 133.41, 132.84, 130.18, 129.38, 128.31, 128.23, 128.18, 126.12, 124.29, 123.69; ESI-HRMS m/z calcd for C₁₆H₁₂ON [M+H]⁺ 234.0913, found 234.0915.

Reference

- 1 W. M. Seganish and P. DeShong, J. Org. Chem., 2004, 69, 1137.
- (a) J. W. Coe, K. E. Bianco, B. P. Boscoe, P. R. Brooks, E. D. Cox and M. G. Vetelino, *J. Org. Chem.*, 2003, 68, 9964; (b)
 W. M. Seganish and P. DeShong, *J. Org. Chem.*, 2004, 69, 1137; (c) C. P. Park, A. Nagle, C. H. Yoon, C. Chen and K. W. Jung, *J. Org. Chem.*, 2009, 74, 6231.
- 3 P. G. Ciattini, G. Mastropietro, E. Morera and G. Ortar, *Tetrahedron Lett.*, 1993, 34, 3763.
- 4 J. J. Crawford, P. W. Kenny, J. Bowyer, C. R. Cook, J. E. Finlayson, C. Heyes, A. J. Highton, J. A. Hudson, A. Jestel, S. Krapp, S. Martin, P. A. Macfaul, B. P. McDermott, T. M. McGuire, A. D. Morley, J. J. Morris, K. M. Page, L. R. Ribeiro, H. Sawney, S. Steinbacher, C. Smith and A. G. Dossetter, *J. Med. Chem.*, 2012, 55, 8827.
- 5 C. D. Gabbutt, B. M. Heron and A. C. Instone, *Tetrahedron*, 2006, 62, 737.
- 6 H. A. Reisch, V. Enkelmann and U. Scherf, J. Org. Chem., 1999, 64, 655.
- (a) K. Inamoto, M. Katsuno, T. Yoshino, Y. Arai, K. Hiroya and T. Sakamoto, *Tetrahedron*, 2007, 63, 2695; (b) M. Li, C. Wang and H. Ge, *Org. Lett.*, 2011, 13, 2062; (c) A. Yu, L. Shen, X. Cui, D. Peng and Y. Wu, *Tetrahedron*, 2012, 68, 2283.
- 8 B. F. S. E. De Sousa, A. E. Siegrist, Helv. Chim. Acta, 1978, 61, 2904.
- 9 (a) W. Zhao, X. Feng, S. Ban, W. Lin and Q. Li, *Bioorg. Med. Chem. Lett.*, 2010, 20, 4132; (b) J. N. Moorthy and S. Samanta, J. Org. Chem., 2007, 72, 9786.
- 10 Bui-Khac-Diep, C.R. Acad. Sci., Ser. IIc: Chim., 1966, 263, 145.
- 11 K. Kobayashi, W. Miyatani, N. Matsumoto, Helv. Chim. Acta, 2013, 96, 239.
- 12 C. CopCret, T. Sugihara, G. Wu, I. Shimoyama and E.-i. Negishi, J. Am. Chem. Soc., 1995, 117, 3422.
- 13 Y. Gan, D. H. Blank, J. E. Ney and T. A. Spencer, J. Org. Chem., 2006, 71, 5864.
- 14 J. D. Kendall, G. W. Rewcastle, R. Frederick, C. Mawson, W. A. Denny, E. S. Marshall, B. C. Baguley, C. Chaussade, S. P. Jackson and P. R. Shepherd, *Bioorg. Med. Chem.*, 2007, 15, 7677.

¹H and ¹³C NMR Spectra

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

