Electronic Supplementary Information

Complexation of pentiptycene-derived trans-bis(crown ether) host with different terminal functional paraquat derivatives in solution and solid state: a switchable complexation process controlled by potassium ions

Ying-Xian Ma,^{*a,b*} Ying Han,^{*a*} Jing Cao^{*a*} and Chuan-Feng Chen^{*,*a*}

^{*a*}Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. ^{*b*}University of Chinese Academy of Sciences, Beijing 100049, China.

E-mail: cchen@iccas.ac.cn

Contents

1.	Comparison of partial ¹ H NMR spectra between the host and the guests
2.	Determination of the association constants of the complexes
3.	Comparison of ¹ H NMR spectra by the removal and addition of the K^+ ionsS17
4.	UV-Vis spectra of the complexes
5.	ESI-MS spectra of the complexes
6.	¹ H- ¹ H COSY and ROESY spectra of the complexes
7.	Crystal structures and packing of the complexes

1. Comparison of partial ¹H NMR spectra between the host and the guests

Fig. S1 Partial ¹H NMR spectra (300 MHz, $CD_3CN/CDCl_3=1:1$, v/v, 295K) of (a) free guest **3**, (b) free host **1**, and (c) **1** and 2.0 equiv. of **3**. [**1**]₀=3.0 mM.

Fig. S2 Partial ¹H NMR spectra (300 MHz, $CD_3CN/CDCl_3=1:1$, v/v, 295K) of (a) free guest **4**, (b) free host **1**, and (c) **1** and 2.0 equiv. of **4**. [**1**]₀=3.0 mM.

Fig. S3 Partial ¹H NMR spectra (300 MHz, $CD_3CN/CDCl_3=1:1$, v/v, 295K) of (a) free guest **5**, (b) free host **1**, and (c) **1** and 2.0 equiv. of **5**. [**1**]₀=3.0 mM.

Fig. S4 Partial ¹H NMR spectra (300 MHz, $CD_3CN/CDCl_3=1:1$, v/v, 295K) of (a) free guest **6**, (b) free host **1**, and (c) **1** and 2.0 equiv. of **6**. [**1**]₀=3.0 mM.

Fig. S5 Partial ¹H NMR spectra (300 MHz, $CD_3CN/CDCl_3=1:1$, v/v, 295K) of (a) free guest **7**, (b) free host **1**, and (c) **1** and 2.0 equiv. of **7**. [**1**]₀=3.0 mM.

Fig. S6 Partial ¹H NMR spectra (300 MHz, $CD_3CN/CDCl_3=1:1$, v/v, 295K) of (a) free guest **8**, (b) free host **1**, and (c) **1** and 2.0 equiv. of **8**. [**1**]₀=3.0 mM.

Fig. S7 Partial ¹H NMR spectra (300 MHz, $CD_3CN/CDCl_3=1:1$, v/v, 295K) of (a) free guest **9**, (b) free host **1**, and (c) **1** and 2.0 equiv. of **9**. [**1**]₀=3.0 mM.

Fig. S8 Partial ¹H NMR spectra (300 MHz, $CD_3CN/CDCl_3=1:1$, v/v, 295K) of (a) free guest **10**, (b) free host **1**, and (c) **1** and 2.0 equiv. of **10**. [**1**]₀=3.0 mM.

Fig. S9 Partial ¹H NMR spectra (300 MHz, $CD_3CN/CDCl_3=1:1$, v/v, 295K) of (a) free guest **11**, (b) free host **1**, and (c) **1** and 2.0 equiv. of **11**. [**1**]₀=3.0 mM.

Fig. S10 Plot of ¹H NMR signal shifts observed in the titration of guest 2 with host 1.

Fig. S11 Mole ratio plot for the complexation of 1 and 2 in $CD_3CN/CDCl_3 = 1:1$ at 298 K.

Fig. S12 Plot of ¹H NMR signal shifts observed in the titration of guest 3 with host 1.

Fig. S13 Mole ratio plot for the complexation of 1 and 3 in $CD_3CN/CDCl_3 = 1:1$ at 298 K.

Fig. S14 Plot of ¹H NMR signal shifts observed in the titration of guest 4 with host 1.

Fig. S15 Mole ratio plot for the complexation of 1 and 4 in $CD_3CN/CDCl_3 = 1:1$ at 298 K.

Fig. S16 Plot of ¹H NMR signal shifts observed in the titration of guest 5 with host 1.

Fig. S17 Mole ratio plot for the complexation of 1 and 5 in $CD_3CN/CDCl_3 = 1:1$ at 298 K.

Fig. S16 Plot of ¹H NMR signal shifts observed in the titration of guest 6 with host 1.

Fig. S17 Mole ratio plot for the complexation of **1** and **6** in $CD_3CN/CDCl_3 = 1:1$ at 298 K.

Fig. S18 Plot of ¹H NMR signal shifts observed in the titration of guest 7 with host 1.

Fig. S19 Mole ratio plot for the complexation of 1 and 7 in $CD_3CN/CDCl_3 = 1:1$ at 298 K.

Fig. S20 Plot of ¹H NMR signal shifts observed in the titration of guest 8 with host 1.

Fig. S21 Mole ratio plot for the complexation of **1** and **8** in $CD_3CN/CDCl_3 = 1:1$ at 298 K.

Fig. S22 Plot of ¹H NMR signal shifts observed in the titration of guest 9 with host 1.

Fig. S23 Mole ratio plot for the complexation of 1 and 9 in $CD_3CN/CDCl_3 = 1:1$ at 298 K.

Fig. S24 Plot of ¹H NMR signal shifts observed in the titration of guest **10** with host **1**.

Fig. S25 Mole ratio plot for the complexation of 1 and 10 in $CD_3CN/CDCl_3 = 1:1$ at 298 K.

Fig. S26 Plot of ¹H NMR signal shifts observed in the titration of guest **11** with host **1**.

Fig. S27 Mole ratio plot for the complexation of **1** and **11** in $CD_3CN/CDCl_3 = 1:1$ at 298 K.

3. Comparison of ¹H NMR spectra by the removal and addition of the K⁺ ions

Fig. S28 Partial ¹H NMR spectra (300 MHz, $CD_3CN/CDCl_3 = 1:1$, v/v, 298K) of (1) free **2**, (2) **1** and 2.0 equiv. of **2**, (3) to the solution of 2 was added 4.0 equiv. of KPF₆, and (4) to the solution of 3 was added 6.0 equiv. of [18]-crown-6. [**1**]₀ = 3.0 mM.

Fig. S29 Partial ¹H NMR spectra (300 MHz, $CD_3CN/CDCl_3 = 1:1$, v/v, 298K) of (1) free **3**, (2) **1** and 2.0 equiv. of **3**, (3) to the solution of 2 was added 4.0 equiv. of KPF₆, and (4) to the solution of 3 was added 6.0 equiv. of [18]-crown-6. [**1**]₀ = 3.0 mM.

Fig. S30 Partial ¹H NMR spectra (300 MHz, $CD_3CN/CDCl_3 = 1:1$, v/v, 298K) of (1) free **5**, (2) **1** and 2.0 equiv. of **5**, (3) to the solution of 2 was added 4.0 equiv. of KPF₆, and (4) to the solution of 3 was added 6.0 equiv. of [18]-crown-6. [**1**]₀ = 3.0 mM.

Fig. S31 Partial ¹H NMR spectra (300 MHz, $CD_3CN/CDCl_3 = 1:1$, v/v, 298K) of (1) free **8**, (2) **1** and 2.0 equiv. of **8**, (3) to the solution of 2 was added 4.0 equiv. of KPF₆, and (4) to the solution of 3 was added 6.0 equiv. of [18]-crown-6. [**1**]₀ = 3.0 mM.

Fig. S32 Partial ¹H NMR spectra (300 MHz, $CD_3CN/CDCl_3 = 1:1$, v/v, 298K) of (1) free **9**, (2) **1** and 2.0 equiv. of **9**, (3) to the solution of 2 was added 4.0 equiv. of KPF₆, and (4) to the solution of 3 was added 6.0 equiv. of [18]-crown-6. [**1**]₀ = 3.0 mM.

Fig. S33 Partial ¹H NMR spectra (300 MHz, $CD_3CN/CDCl_3 = 1:1$, v/v, 298K) of (1) free **11**, (2) **1** and 2.0 equiv. of **11**, (3) to the solution of 2 was added 4.0 equiv. of KPF₆, and (4) to the solution of 3 was added 6.0 equiv. of [18]-crown-6. [**1**]₀ = 3.0 mM.

4. UV-Vis spectrum of the complexes

Fig. S34 UV/Vis absorption spectra of (top) free 2 by increasing its concentration, (bottom) 2 by increasing its concentration in the presence of 1 (1.0 mM, $CH_3CN/CH_2Cl_2=1:1, v/v$).

Fig. S35 Dependence of the absorbance at 425 nm of 2 on its concentration in the absence and presence of 1 (1.0 mM, $CH_3CN/CH_2Cl_2= 1:1, v/v$).

Fig. S36 UV/Vis absorption spectra of (top) free 3 by increasing its concentration, (bottom) 3 by increasing its concentration in the presence of 1 (1.0 mM, $CH_3CN/CH_2Cl_2=1:1, v/v$).

Fig. S37 Dependence of the absorbance at 425 nm of 3 on its concentration in the absence and presence of 1 (1.0 mM, $CH_3CN/CH_2Cl_2= 1:1, v/v$).

Fig. S38 UV/Vis absorption spectra of (top) free 4 by increasing its concentration, (bottom) 4 by increasing its concentration in the presence of 1 (1.0 mM, $CH_3CN/CH_2Cl_2=1:1, v/v$).

Fig. S39 Dependence of the absorbance at 425 nm of 4 on its concentration in the absence and presence of 1 (1.0 mM, $CH_3CN/CH_2Cl_2= 1:1, v/v$).

Fig. S40 UV/Vis absorption spectra of (top) free 5 by increasing its concentration, (bottom) 5 by increasing its concentration in the presence of 1 (1.0 mM, $CH_3CN/CH_2Cl_2=1:1, v/v$).

Fig. S41 Dependence of the absorbance at 425 nm of 5 on its concentration in the absence and presence of 1 (1.0 mM, $CH_3CN/CH_2Cl_2= 1:1, v/v$).

Fig. S42 UV/Vis absorption spectra of (top) free 6 by increasing its concentration, (bottom) 6 by increasing its concentration in the presence of 1 (1.0 mM, $CH_3CN/CH_2Cl_2=1:1, v/v$).

Fig. S43 Dependence of the absorbance at 425 nm of 6 on its concentration in the absence and presence of 1 (1.0 mM, $CH_3CN/CH_2Cl_2= 1:1, v/v$).

Fig. S44 UV/Vis absorption spectra of (top) free 7 by increasing its concentration, (bottom) 7 by increasing its concentration in the presence of 1 (1.0 mM, $CH_3CN/CH_2Cl_2=1:1, v/v$).

Fig. S45 Dependence of the absorbance at 425 nm of 7 on its concentration in the absence and presence of 1 (1.0 mM, $CH_3CN/CH_2Cl_2= 1:1, v/v$).

Fig. S46 UV/Vis absorption spectra of (top) free 8 by increasing its concentration, (bottom) 8 by increasing its concentration in the presence of 1 (1.0 mM, $CH_3CN/CH_2Cl_2=1:1, v/v$).

Fig. S47 Dependence of the absorbance at 425 nm of 8 on its concentration in the absence and presence of 1 (1.0 mM, $CH_3CN/CH_2Cl_2= 1:1, v/v$).

Fig. S48 UV/Vis absorption spectra of (top) free 9 by increasing its concentration, (bottom) 9 by increasing its concentration in the presence of 1 (1.0 mM, $CH_3CN/CH_2Cl_2=1:1, v/v$).

Fig. S49 Dependence of the absorbance at 450 nm of 9 on its concentration in the absence and presence of 1 (1.0 mM, $CH_3CN/CH_2Cl_2=1:1$, v/v).

Fig. S50 UV/Vis absorption spectra of (top) free 10 by increasing its concentration, (bottom) 10 by increasing its concentration in the presence of 1 (1.0 mM, $CH_3CN/CH_2Cl_2=1:1, v/v$).

Fig. S51 Dependence of the absorbance at 450 nm of 10 on its concentration in the absence and presence of 1 (1.0 mM, $CH_3CN/CH_2Cl_2= 1:1, v/v$).

Fig. S52 UV/Vis absorption spectra of (top) free 11 by increasing its concentration, (bottom) 11 by increasing its concentration in the presence of 1 (1.0 mM, $CH_3CN/CH_2Cl_2=1:1, v/v$).

Fig. S53 Dependence of the absorbance at 450 nm of 11 on its concentration in the absence and presence of 1 (1.0 mM, $CH_3CN/CH_2Cl_2= 1:1, v/v$).

Fig. S54 ESI-MS of 1 and 2 in acetonitrile-chloroform (1:1, v:v).

Fig. S55 ESI-MS of 1 and 3 in acetonitrile-chloroform (1:1, v:v).

Fig. S56 ESI-MS of 1 and 4 in acetonitrile-chloroform (1:1, v:v).

Fig. S57 ESI-MS of 1 and 5 in acetonitrile-chloroform (1:1, v:v).

Fig. S58 ESI-MS of 1 and 6 in acetonitrile-chloroform (1:1, v:v).

Fig. S59 ESI-MS of 1 and 7 in acetonitrile-chloroform (1:1, v:v).

Fig. S60 ESI-MS of 1 and 8 in acetonitrile-chloroform (1:1, v:v).

Fig. S61 ESI-MS of 1 and 9 in acetonitrile-chloroform (1:1, v:v).

Fig. S62 ESI-MS of 1 and 10 in acetonitrile-chloroform (1:1, v:v).

Fig. S63 ESI-MS of 1 and 11 in acetonitrile-chloroform (1:1, v:v).

6. ¹H-¹H COSY and ROESY spectra of the complexes

Fig. S64 1 H- 1 H COSY spectrum (600 MHz, CD₃CN/CDCl₃=1:1, v/v, 295K) of **1** and 2 equiv of **2**. [**1**]₀ = 3.0 mM.

Fig. S65 ${}^{1}\text{H}{}^{-1}\text{H}$ ROESY spectrum (600 MHz, CD₃CN/CDCl₃=1:1, v/v, 295K) of 1 and 2 equiv of 2. $[1]_{0} = 3.0 \text{ mM}.$

Fig. S66 ${}^{1}\text{H}{}^{-1}\text{H}$ COSY spectrum (600 MHz, CD₃CN/CDCl₃=1:1, v/v, 295K) of **1** and 2 equiv of **3**. [**1**]₀ = 3.0 mM.

Fig. S67 ${}^{1}H{}^{-1}H$ ROESY spectrum (600 MHz, CD₃CN/CDCl₃=1:1, v/v, 295K) of 1 and 2 equiv of 3. $[1]_{0} = 3.0$ mM.

Fig. S68 1 H- 1 H COSY spectrum (600 MHz, CD₃CN/CDCl₃=1:1, v/v, 295K) of **1** and 2 equiv of **5**. [**1**]₀ = 3.0 mM.

Fig. S69 ${}^{1}H{}^{-1}H$ ROESY spectrum (600 MHz, CD₃CN/CDCl₃=1:1, v/v, 295K) of 1 and 2 equiv of 5. $[1]_{0} = 3.0$ mM.

Fig. S70 ${}^{1}\text{H}{}^{-1}\text{H}$ COSY spectrum (600 MHz, CD₃CN/CDCl₃=1:1, v/v, 295K) of **1** and 2 equiv of **8**. [**1**]₀ = 3.0 mM.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

Fig. S71 ¹H-¹H ROESY spectrum (600 MHz, CD₃CN/CDCl₃=1:1, v/v, 295K) of 1 and 2 equiv of 8. $[1]_0 = 3.0$ mM.

Fig. S72 1 H- 1 H COSY spectrum (600 MHz, CD₃CN/CDCl₃=1:1, v/v, 295K) of **1** and 2 equiv of **9**. [**1**]₀ = 3.0 mM.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

Fig. S73 ¹H-¹H ROESY spectrum (600 MHz, $CD_3CN/CDCl_3=1:1$, v/v, 295K) of 1 and 2 equiv of 9. $[1]_0 = 3.0$ mM.

Fig. S74 1 H- 1 H COSY spectrum (600 MHz, CD₃CN/CDCl₃=1:1, v/v, 295K) of **1** and 2 equiv of **11**. [**1**]₀ = 3.0 mM.

and 2 equiv of **11**. $[1]_0 = 3.0 \text{ mM}.$

Fig. S76 (a) Linear supramolecular array of complex $1 \cdot 8_2$ viewed along the *a* axis and (b) packing of the complex $1 \cdot 11_2$ viewed along the a axis. Blue lines denote the non-covalent interactions between the host and the guests. Solvent molecules, PF₆ counterions, and hydrogen atoms not involved in the non-covalent interactions were omitted for clarity.

Fig. S77 Packing of the complex (a) $1 \cdot 2_2$ viewed along the *a* axis, (b) $1 \cdot 8_2$ viewed along the *b* axis and (c) $1 \cdot 11_2$ viewed along the *c* axis. Solvent molecules, guest molecules, and hydrogen atoms were omitted for clarity.