Design of environmentally sensitive fluorescent 8-aza-7-deaza-2'-deoxyadenosine derivative with dual fluorescence; specific detection of thymine

Azusa Suzuki,[†] Nobukatsu Nemoto,[†] Isao Saito[‡] and Yoshio Saito^{*†}

[†]Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, Koriyama, Fukushima 963-8642, Japan, [‡]NEWCAT Institute, College of Engineering, Nihon University, Koriyama, Fukushima 963-8642, Japan Email Address: <u>saitoy@chem.ce.nihon-u.ac.jp</u>

List of Contents

- 1. Page S2: Figure S1: HOMO and LUMO of N^9 -methylated ^{cna}A
- 2. **Page S3: Figure S2:** Fluorescence spectra of (a) 6-ethynyl-2-naphthonitrile and (b) 2-naphthonitrile in various solvents
- 3. **Page S4: Figure S3:** CD spectra of DNA 1 ($\mathbf{X} = {}^{cna}\mathbf{A}$) hybridized (a) with DNA 2 ($\mathbf{N} = T, C, G, A$) and (b) with RNA 1 ($\mathbf{N} = U, C, G, A$)
- 4. **Page S5: Figure S4:** (a) Fluorescence and (b) UV absorption spectra of DNA 3 ($\mathbf{X} = {}^{cna}\mathbf{A}$) hybridized with ODN 4 ($\mathbf{N} = T, C, G, A$)
- 5. Page S6: Figure S5: ¹H-NMR spectra of ^{cna}A (1)
- 6. Page S7: Figure S6: ¹³C-NMR spectra of ^{cna}A (1)
- 7. Page S8: Figure S7: ¹H-NMR spectra of compound 3
- 8. Page S9: Figure S8: ¹³C-NMR spectra of compound 3
- 9. Page S10: Figure S9: ¹H-NMR spectra of compound 4
- 10. Page S11: Figure S10: ¹³C-NMR spectra of compound 4

Figure S1. HOMO and LUMO of N^9 -methylated ^{cna}A calculated at the DFT(B3LYP)/6-31G* level.

Figure S2. Fluorescence spectra of (a) 6-ethynyl-2-naphthonitrile (100 μ M) and (b) 2-naphthonitrile (100 μ M) in various solvents.

Figure S3. CD spetra of DNA 1 ($\mathbf{X} = ^{cna}\mathbf{A}$) hybridized (a) with DNA 2 ($\mathbf{N} = T$, C, G, A, Ab) and (b) with RNA 1 ($\mathbf{N} = U$, C, G, A). black line: (a) DNA 1 ($\mathbf{X} = A$) / DNA 2 ($\mathbf{N} = T$), (b) DNA 1 ($\mathbf{X} = A$) / RNA 1 ($\mathbf{N} = U$). "Ab" denotes abasic site (2.5 uM ODNs, 50 mM sodium phoshate, 0.1 M sodium chloride, pH 7.0, rt).

DNA 3: 5'-CGCAAT X AAACGC-3' ($X = {}^{cna}A$ or A) DNA 4: 3'-GCGTTA N TTTGCG-5' (N = T, C, G, A)

Figure S4. (a) Fluorescence and (b) UV absorption spectra of DNA 3 ($\mathbf{X} = ^{cna}\mathbf{A}$) hybridized with DNA 4 ($\mathbf{N} = T, C, G, A$). "Ab" denotes abasic site and "ss" denotes a single-strand DNA 3 (2.5 μ M duplex, 0.1 M sodium chloride, 50 mM sodium phosphate buffer, pH 7.0, rt).

Figure S5. ¹H-NMR spectra of $^{cna}A(1)$

Figure S6. ¹³C-NMR spectra of $^{cna}A(1)$

Figure S7. ¹H-NMR spectra of compound 3

Figure S8. ¹³C-NMR spectra of compound 3

Figure S9. ¹H-NMR spectra of compound 4

Figure S10. ¹³C-NMR spectra of compound 4