Supporting Information

Palladium-Catalyzed Tandem N–H/C–H Arylation: Regioselective Synthesis of N-Heterocycle-Fused Phenanthridines as Versatile Blue-Emitting Luminophores

Lipeng Yan, Dongbing Zhao, Jingbo Lan,* Yangyang Cheng, Qiang Guo, Xiaoyu Li, Ningjie Wu and Jingsong You*

Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China. Fax: (+86) 28-85412203; E-mail: jingbolan@scu.edu.cn; jsyou@scu.edu.cn

Table of contents

I. Fluorescence lifetimes of compounds 3e, 3h, 3l and 4m	S2
II. Electrochemical properties of compounds 3e, 3h, 3l and 4m	S2
III. Thermal properties of compounds 3e , 3h , 3l and 4m	S3
IV. Copies of ¹ H, ¹³ C and ¹ H- ¹ H NOESY NMR spectra	S4

I. Fluorescence lifetimes of compounds 3e, 3h, 3l and 4m

Compd	Lifetime in MeCN		Compd	Lifetime in MeC	ĽN
3e	$\tau_1 = 16.38 \text{ ns}$	$\chi^2 = 1.06$	31	$\tau_1 = 3.22 \text{ ns} (17.55\%)$ $\tau_2 = 14.78 \text{ ns} (82.45\%)$	$\chi^2 = 1.04$
3h	$\tau_1 = 2.91 \text{ ns} (3.33\%)$ $\tau_2 = 18.35 \text{ ns} (96.67\%)$	$\chi^2 = 1.05$	4m	$\tau_1 = 4.08 \text{ ns} (41.39\%)$ $\tau_2 = 14.26 \text{ ns} (58.61\%)$	$\chi^2 = 1.01$

 Table S1. Fluorescence lifetimes of compounds 3e, 3h, 3l and 4m.^a

^{*a*} Fluorescence lifetimes were determined on a HORIBA TEMPRO-01 instrument at room temperature.

II. Electrochemical properties of compounds 3e, 3h, 3l and 4m

Cyclic voltammetry (CV) measurements were performed on LK2005A using an Ag/Ag^+ (0.01 M of AgNO₃ in dry acetonitrile) reference electrode, a platinum wire counter electrode, and a platinum plate working electrode. CV measurements were carried out in dry acetonitrile using Fc/Fc⁺ as reference at a scanning rate of 100 mV·s⁻¹ with tetrabutylammonium hexafluorophosphate (NBu₄PF₆, 0.1 M) as supporting electrolyte.

Figure S1 Electrochemical properties of compounds 3e, 3h, 3l and 4m.

III. Thermal properties of compounds 3e, 3h, 3l and 4m

Thermal decomposition temperatures were detected by thermogravimetry/differential thermal analysis (TG/DTA) on a NETZSCH-Leading Thermal Analysis in the temperature range of 30-500 °C at a heating rate of 10 °C/min under a nitrogen atmosphere.

Figure S2 TGA curves of the compounds 3e, 3h, 3l and 4m.

IV. Copies of ¹H, ¹³C and ¹H-¹H NOESY NMR spectra

