## Fluorescent macrocyclic probes with pendant functional groups as markers of acidic organelles within live cells

Prashant D. Wadhavane,<sup>†</sup> M. Ángeles Izquierdo,<sup>†</sup> Dennis Lutters,<sup>†</sup>, M. Isabel Burguete,<sup>†</sup> María J. Marín,<sup>‡</sup> David A. Russell,<sup>‡</sup> Francisco Galindo<sup>†,\*</sup> and Santiago V. Luis<sup>†,\*</sup>

<sup>†</sup>Universitat Jaume I, Departamento de Química Inorgánica y Orgánica,

Av. Sos Baynat, s/n, E-12071 Castellón (Spain)

<sup>‡</sup>School of Chemistry, University of East Anglia, Norwich, Norfolk NR4 7TJ (UK)

E-mail: francisco.galindo@uji.es, luiss@uji.es

## **Supporting Information**

| Spectroscopic characterization of compounds  | 52 |
|----------------------------------------------|----|
|                                              |    |
| Photophysical characterization of compoundsS | 12 |
|                                              |    |

Microscopic characterization of compounds......S13



**Figure S-1. A)** <sup>1</sup>H NMR spectrum of compound **8** in DMSO- $d_6$ . **B)** <sup>13</sup>C NMR spectrum of compound **8** in DMSO- $d_6$ . **C)** ESI-TOF spectrum of compound **8** and simulated pattern for  $[M+H]^+$ .



**Figure S-2.** A) <sup>1</sup>H NMR spectrum of compound **9** in DMSO- $d_6$ . B) <sup>13</sup>C NMR spectrum of compound **9** in CDCl<sub>3</sub>. C) ESI-TOF spectrum of compound **9** and simulated pattern for [M+H]<sup>+</sup>.



**Figure S-3. A)** <sup>1</sup>H NMR spectrum of compound **10** in CDCl<sub>3</sub>. **B)** <sup>13</sup>C NMR spectrum of compound **10** in CDCl<sub>3</sub>. **C)** ESI-TOF spectrum of compound **10** and simulated pattern for  $[M+H]^+$ .



**Figure S-4.** A) <sup>1</sup>H NMR spectrum of compound **1** in DMSO- $d_6$ . B) <sup>13</sup>C NMR spectrum of compound **1** in DMSO- $d_6$ . C) ESI-TOF spectrum of compound **1** and simulated pattern for  $[M+H]^+$ .



**Figure S-5. A)** <sup>1</sup>H NMR spectrum of compound **2** in DMSO- $d_{\delta}$ . **B)** <sup>13</sup>C NMR spectrum of compound **2** in DMSO- $d_{\delta}$ . **C)** ESI-TOF spectrum of compound **2** and simulated pattern for [M+H]<sup>+</sup>.



**Figure S-6.** A) <sup>1</sup>H NMR spectrum of compound **16** in DMSO- $d_6$ . B) <sup>13</sup>C NMR spectrum of compound **16** in DMSO- $d_6$ . C) ESI-TOF spectrum of compound **16** and simulated pattern for [M+H]<sup>+</sup>.



**Figure S-7. A)** <sup>1</sup>H NMR spectrum of compound **17** in DMSO- $d_6$ . **B)** <sup>13</sup>C NMR spectrum of compound **17** in CDCl<sub>3</sub>. **C)** ESI-TOF spectrum of compound **17** and simulated pattern for [M+H]<sup>+</sup>.



**Figure S-8.** A) <sup>1</sup>H NMR spectrum of compound **18** in DMSO- $d_6$ . B) <sup>13</sup>C NMR spectrum of compound **18** in DMSO- $d_6$ . C) ESI-TOF spectrum of compound **18** and simulated pattern for [M+H]<sup>+</sup>.



**Figure S-9. A)** <sup>1</sup>H NMR spectrum of compound **3** in CD<sub>3</sub>CN. **B)** <sup>13</sup>C NMR spectrum of compound **3** in CD<sub>3</sub>CN. **C)** ESI-TOF spectrum of compound **3** and simulated pattern for  $[M+H]^+$ .



**Figure S-10.** A) <sup>1</sup>H NMR spectrum of compound **4** in DMSO- $d_6$ . B) <sup>13</sup>C NMR spectrum of compound **4** in DMSO- $d_6$ . C) ESI-TOF spectrum of compound **4** and simulated pattern for  $[M+H]^+$ .



**Figure S-11. A)** Normalized absorption spectra of the anthracenophanes **1-4** in H<sub>2</sub>O (0.2% DMSO) at pH 1.7, probe concentration 2  $\mu$ M. **B**) Normalized emission spectra of the anthracenophanes **1-4** in H<sub>2</sub>O (0.2% DMSO) at pH 1.7, probe concentration 2  $\mu$ M,  $\lambda_{exc} = 374$  nm.



Figure S-12. Fluorescence decay traces of the anthracenophanes; A) 1 and 2, and B) 3 and 4 in H<sub>2</sub>O (0.2% DMSO) at pH 1.7 ( $\lambda_{exc}$  = 372 nm,  $\lambda_{em}$  = 420 nm). Probe concentration 2  $\mu$ M.



**Figure S-13**. Distribution and colocalization experiments with probe **2** and LysoSensor Green DND-189. **A**) Fluorescence images of the compound **2**, collected with a confocal laser scanning microscope in the blue channel **B**) Fluorescence images of the DND-189 probe collected with a confocal laser scanning microscope in the green channel. **C**) Differential interference contrast (DIC) images collected with a confocal laser scanning microscope in the DIC mode. **D**) Composite images of blue, green and DIC channels.



**Figure S-14**. Distribution and colocalization experiments with probe **1** and LysosSensor Green DND-189. **A**) Fluorescence image of the compound **1**, collected with a confocal laser scanning microscope in the blue channel. **B**) Fluorescence image of the DND-189 probe collected with a confocal laser scanning microscope in the green channel. **C**) Merged image of the blue and the green channels. **D**) DIC image collected with a confocal laser scanning microscope in the DIC mode. **E**) Composite image of blue, green and DIC channels.



**Figure S-15**. Distribution and colocalization experiments with probe **1** and LysoSensor Green DND-189. **A**) Fluorescence images of the compound **1**, collected with a confocal laser scanning microscope in the blue channel. **B**) Fluorescence images of the DND-189 probe collected with a confocal laser scanning microscope in the green channel. **C**) DIC images collected with a confocal laser scanning microscope in the DIC mode. **D**) Composite images of blue, green and DIC channels.



Figure S-16. Fluorescence emission spectra of probe 2 from within the intracellular environment.



Figure S-17. Intracellular emission spectra of probe 1. A) DIC image was collected with a confocal microscope in the DIC mode. B) Fluorescence image of 1 was collected with a confocal microscope in the blue channel. C) Composite image of blue and DIC channels.
D) Fluorescence spectra of compound 1 inside the cell selecting different areas within the cell.



**Figure S-18**. Fluorescence emission spectra of probe **1** from within the intracellular environment.