Supporting Information

A Facile Synthesis of 5-Amino-[1,2,3]triazolo[5,1-*a*]isoquinoline Derivatives through Copper-Catalyzed Cascade Reactions

Yunfeng Chen^{a,*}, Shilei Zhou^a, Shan Ma^a, Wenqian Liu^a, Zhiquan Pan^a, Xiaodong Shi^{b,*}
^a Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430073, P. R. China, E-mail: chyfch@hotmail.com
^b C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA. Fax: 1-304-293-4904; Tel:1-304-293-3435 x6438; E-mail: Xiaodong.Shi@mail.wvu.edu

Table of contents

I. General Methods and Materials	S2
II. Experimental	S3-S4
III. Compounds Characterization	\$5-\$13
IV. NMR spectra data	S14-S77
V. X-ray diffraction analysis of compounds	S78

I. General Methods and materials:

All of the reactions dealing with air and/or moisture-sensitive reactions were carried out under an atmosphere of argon using pear-shaped Schlenk flask and standard syringe/septa techniques. Unless otherwise noted, all commercial reagents and solvents were obtained from the commercial provider and used without further purification. ¹H NMR and ¹³C NMR spectra were recorded on Varian 600 MHz and 400 MHz spectrometers. Chemical shifts were reported relative to internal tetramethylsilane (TMS) (0.00 ppm) or CDCl₃ (7.26 ppm) for ¹H, CDCl₃ (77.0 ppm) for ¹³C and d⁶-DMSO (2.5 ppm) for ¹H, (39.5 ppm) for ¹³C. Flash column chromatography was performed on 200-300 mesh silica gel. Analytical thin layer chromatography was performed with precoated glass baked plates (250µ) and visualized by fluorescence. MS were measured on a Finnigan Trace MS spectrometer; HRMS were recorded on LTQ-FTUHRA and Bruker Apex IV FTMS spectrometer. Melting points were measured on a melting point tester RY-1G apparatus and uncorrected.

II. Experimental

The nitrostyrenes were synthesized according to the literatures as below:

1. Ming-Yu Wu; Ming-Qi Wang; Kun Li; Xing-Wen Feng; Ting He; Na Wang; Xiao-Qi Yu. *Tetrahedron Lett.* **2011**, *52*, 679-683.

2. Béatrice Quiclet-Sire; Samir Z. Zard. Synthesis. 2005, 19, 3319-3326.

Typical experimental procedure for synthesis of 1a, 1b, 1c, 1f, 1g and 1h.

A solution of nitrostyrene in DMSO was added dropwise over 12 h to a hot (80-90 °C) solution of NaN₃ in DMSO (0.1M). The mixture was cooled and poured into water, then extract with EtOAc, and the combined organic layer further washed with brine and dried with Na₂SO₄. Concentration under reduced pressure and purification of the residue by flash chromatography on silica gel or purified by simple recrystallization.

Representative experimental procedure for synthesis of 1d and 1e.

1-Bromo-2-iodobenzene, PdCl₂(PPh₃)₂, CuI were added to a pear-shaped Schlenk tube charged with a magnetic stirrer. The tube was evacuated and backfilled with argon and then degassed Et₃N and DMF was introduced, then the terminal alkyne was introduced, the mixtures were heating at 80 °C for 4-5 hours. Then poured into water and extracted with EtOAc, the organic layer further washed with brine and dried with anhydrous Na₂SO₄. After filtration, the organic layer was concentrated under reduced pressure and the residue was purified by short flash column chromatography (silica gel) to give oil. The oil and NaN₃ were dissolved in DMSO, the solution was heating at 160°C. The reaction was monitored by TLC, after the completion of the reaction, the mixture poured into water and extracted with EtOAc. The organic layer was washed with brine and dried with anhydrous Na₂SO₄. Concentration under reduced pressure and purification of the residue by flash chromatography on silica gel gives the target product.

Experimental procedure for synthesis of 1i.

To a solution of (1.00 g, 4.46 mmol) in dichloromethane (20 mL, 0.2 M), was added N-Bromosuccinimide (1.19 g, 6.69 mmol). The reaction mixture was stirred at room temperature, and monitored by TLC. After the reaction was completed, the solvent was removed under reduced pressure and the residue was purified by flash chromatography on silica gel (ethyl acetate/ petroleum ether, V/V, 1:7) to give (yield: 1.25 g, 92.6%) as colorless crystals.

Representative experimental procedure for synthesis of **3a**.

Substituted 5-(2-bromophenyl)-*1H*-1,2,3-triazole (112 mg, 0.5 mmol) and CuI (10 mg, 0.05 mmol), K_2CO_3 (104 mg, 0.75 mmol), 1,10-phenanthroline (18 mg, 0.1 mmol) were added to a pear-shaped Schlenk tube charged with a magnetic stirrer. The tube was evacuated and backfilled with argon and then DMSO (2.0 mL) and ethyl 2-cyanoacetate (85 mg, 0.75 mmol) were added to the tube under a stream of argon. The tube was sealed and the mixture was stirred at 80 °C under an argon atmosphere. The reaction was monitored by TLC (about 4h), after completion of the reaction, the mixture was diluted with EtOAc, then washed with water and extracted with EtOAc .The combined organic layer was washed with brine then dried with anhydrous Na₂SO₄. After filtration, the solvent was removed under reduced pressure to give a residue, the residue was purified by column chromatography on silica gel to provide the **3a** as white solid (118 mg, yield: 92%).

III. Compounds Characterization

5-(2-bromophenyl)-1H-1,2,3-triazole (1a)

White solid, mp: 83-85 °C, ¹H NMR (600 MHz, CDCl₃) δ 8.17 (s, 1H), 7.68 (s, 1H), 7.52 (d, J = 7.8 Hz, 1H), 7.22 (t, J = 7.8 Hz, 1H), 7.08 (t, J = 7.8 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 133.6, 133.5, 130.8, 129.9, 129.7, 127.7, 127.6, 121.8; ESI-MS(m/z): 222.9[M]⁺, 224.9 [M+2]⁺(1:1). HRMS (ESI) calcd. For C₈H₆BrN₃+H⁺ 223.9818. found 223.9817.

5-(2-chlorophenyl)-1H-1,2,3-triazole (1b)

White solid, mp: 92-96 , ¹H NMR (400 MHz, d⁶-DMSO) δ 8.35 (s, 1H), 7.92 (s, 1H), 7.54 (d, J = 10.4 Hz, 1H), 7.43-7.35 (m, 2H); ¹³C NMR (100 MHz, d⁶-DMSO) δ 131.0, 130.3, 129.7, 129.3, 127.5; ESI-MS(m/z):179.2[M]⁺, 178.2[M-1]⁺ (3:1); HRMS (ESI) calcd. For C₈H₆ClN₃+H⁺ 180.0323. found 180.0322.

5-(2-bromophenyl)-4-methyl-1H-1,2,3-triazole (1c)

White solid, mp: 136-138 , ¹H NMR (600 MHz, CDCl₃) δ 7.69 (d, *J* = 7.8 Hz, 1H), 7.39 (d, *J* = 4.8 Hz, 1H), 7.31-7.25 (m, 2H), 2.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 133.0, 132.0, 131.5, 130.3, 127.3, 123.7, 10.3; ESI-MS(m/z):237.1[M]⁺, 239.1[M+2]⁺(1:1); HRMS (ESI) calcd. For C₉H₈BrN₃+H⁺ 237.99744. found 237.99741.

5-(2-bromophenyl)-4-phenyl-1H-1,2,3-triazole (1d)

Yellow oil.¹H NMR (600 MHz, CDCl₃) δ 7.50 (d, J = 7.2 Hz, 1H), 7.35 (s, 2H), 7.23 (d, J = 7.2 Hz, 1H), 7.20-7.11 (m, 5H); ¹³C NMR (150 MHz, CDCl₃) δ 133.1, 133.1, 132.2, 132.0, 130.6, 130.4, 128.7, 128.5, 128.2, 127.6, 127.4, 126.9, 126.8, 124.0; ESI-MS(m/z): 299.0[M]+, 301.0[M+2]+(1:1). ESI-MS(m/z): 299.0[M]⁺, 301.0[M+2]⁺(1:1). HRMS (ESI) calcd. For C₁₄H₁₀BrN₃+H⁺ 300.0131. found 300.0128.

5-(2-bromophenyl)-4-(4-nitrophenyl)-1H-1,2,3-triazole (1e)

Yellow solid, mp: 165-169 , ¹H NMR (600 MHz, d⁶-DMSO) δ 8.20 (d, J = 9.0 Hz, 2H), 7.80 (d, J = 7.8 Hz, 1H), 7.65 (d, J = 9.0 Hz, 2H), 7.55-7.47 (m, 3H); ¹³C NMR (150 MHz, d⁶-DMSO) δ 146.8, 133.2, 133.1, 132.4, 132.3, 131.6, 128.43, 128.37, 126.9, 125.2, 124.3, 124.1, 123.4, 123.2; ESI-MS(m/z): 344.0[M]⁺, 346.0 [M+2]⁺(1:1); HRMS (ESI) calcd. For C₁₄H₉BrN₄O₂+H⁺ 344.9982. found 344.9981.

5-(2-bromo-4-fluorophenyl)-1H-1,2,3-triazole (1f)

White solid, mp: 128-130 , ¹H NMR (600 MHz, CDCl₃) δ 8.23 (s, 1H), 7.80 (s, 1H), 7.45 (d, J = 7.8 Hz, 1H), 7.15 (t, J = 7.8 Hz, 1H); ¹³C NMR (100 MHz, d⁶-DMSO) δ 161.5(d, J = 248 Hz, 1C) 132.3, 128.2, 121.9, 120.5(d, J = 25 Hz, 1C), 115.3(d, J = 21 Hz, 1C), 109.7; ESI-MS(m/z): 241.0[M]⁺, 243.0[M+2]⁺(1:1); HRMS (ESI) calcd. For C₈H₅BrFN₃+H⁺ 241.9724. found 241.9723.

5-(2-bromo-4-fluorophenyl)-4-methyl-1H-1,2,3-triazole (1g)

White solid, mp: 127-129 , ¹H NMR (600 MHz, CDCl₃) δ 7.43 (dd, J = 8.4, 1.8 Hz, 1H), 7.37 (dd, J = 8.4, 1.8 Hz, 1H), 7.14-7.08 (m, 1H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.5(d, J = 252 Hz, 1C), 133.1, 133.0, 127.8, 124.2, 124.1, 120.4(d, J = 25 Hz, 1C), 114.8(d, J = 21 Hz, 1C), 10.1; ESI-MS(m/z):255.1[M]⁺, 257.1[M+2]⁺(1:1); HRMS (ESI) calcd. For C₉H₇BrFN₃+H⁺ 255.98801. found 255.98796.

5-(2-bromo-5-fluorophenyl)-1H-1,2,3-triazole (1h)

White solid, mp: 155-156 , ¹H NMR (400 MHz, d⁶-DMSO) δ 8.41 (s, 1H), 7.79-7.50 (m, 2H), 7.16 (s, 1H); ¹³C NMR (100 MHz, d⁶-DMSO) δ 161.3(d, J = 243 Hz, 1C), 135.4, 135.3, 133.4, 117.1(t, J = 21 Hz, 1C), 115.6; ESI-MS(m/z): 241.1[M]⁺, 243.1[M+2]⁺ (1:1); HRMS (ESI) calcd.

For C₈H₅BrFN₃+H⁺ 241.9724. found 241.9725.

4-bromo-5-(2-bromophenyl)-1H-1,2,3-triazole (1i)

White solid, mp: 152-155 , ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 8.4 Hz, 1H), 7.45-7.39 (m, 2H), 7.36-7.32 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 133.3, 132.0, 131.1, 127.4, 123.6; ESI-MS(m/z): 300.8[M]⁺, 302.9[M+2]⁺, 304.9[M+4]⁺(1:2:1); HRMS (ESI) calcd. For C₈H₅Br₂N₃+H⁺ 301.8923. found 301.8924.

ethyl 5-amino-[1,2,3]triazolo[5,1-a]isoquinoline-6-carboxylate (3a)

White solid, mp: 161-162 °C.¹H NMR (600 MHz, CDCl₃) δ 8.67 (d, J = 8.4 Hz, 1H), 8.37 (s, 1H), 8.00 (d, J = 7.8 Hz, 1H), 7.77 (s, 2H), 7.56 (t, J = 7.8 Hz, 1H), 7.38 (t, J = 8.4 Hz, 1H), 4.53 (q, J = 7.8 Hz, 2H), 1.52 (t, J = 7.8 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 168.4, 144.1, 133.2, 129.7, 129.5, 129.4, 125.5, 125.3, 124.2, 124.1, 116.3, 61.2, 14.9; ESI-MS(m/z): 257.1[M]⁺; HRMS (ESI) calcd. For C₁₃H₁₂N₄O₂+H⁺ 257.10330. found 257.10330.

methyl 5-amino-[1,2,3]triazolo[5,1-a]isoquinoline-6-carboxylate (3b)

White solid, mp: 180-182 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.66 (d, *J* = 8.4 Hz, 1H), 8.40 (s, 1H), 8.03 (d, *J* = 7.8 Hz, 1H), 7.79 (s, 2H), 7.59 (t, *J* = 7.8 Hz, 1H), 7.41 (t, *J* = 8.4 Hz, 1H), 4.06 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 168.9, 144.3, 133.3, 129.8, 129.4, 126.2, 125.5, 124.4, 124.1, 116.4, 52.0; ESI-MS(m/z): 242.0[M]⁺; HRMS (ESI) calcd. For C₁₂H₁₀N₄O₂+H⁺ 243.0877. found 243.0876.

tert-butyl 5-amino-[1,2,3]triazolo[5,1-a]isoquinoline-6-carboxylate (3c)

White solid, mp: 129-131 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.68 (d, J = 8.4 Hz, 1H), 8.39 (s, 1H),

8.04 (d, J = 7.8 Hz, 1H), 7.68 (s, 2H), 7.57 (t, J = 7.8 Hz, 1H), 7.40 (t, J = 8.4 Hz, 1H), 1.72 (s, 9H). 13C NMR (75 MHz, CDCl₃) δ 167.6, 143.7, 133.1, 129.8, 126.6, 125.5, 124.2, 124.0, 116.4, 82.8, 28.6; ESI-MS(m/z): 284.1[M]⁺; HRMS (ESI) calcd. For C₁₅H₁₆N₄O₂+H⁺ 285.13460. found 285.13463.

methyl 5-amino-[1,2,3]triazolo[5,1-a]isoquinoline-6-carboxylate (3d)

White solid, mp: 232-234°C, ¹H NMR (600 MHz, d⁶-DMSO) δ 8.83 (s, 1H), 8.52 (s, 2H), 8.26 (d, J = 7.8 Hz, 1H), 7.67 (s, 2H), 7.45 (d, J = 7.8 Hz, 1H); ¹³C NMR (150 MHz, d⁶-DMSO) δ 145.3, 133.2, 130.4, 129.3, 127.8, 127.7, 124.7, 121.7, 116.1, 115.3; ESI-MS(m/z): 209.1[M]⁺; HRMS (ESI) calcd. For C₁₁H₇N₅+H⁺ 210.07742. found 210.07735.

methyl 5-amino-1-phenyl-[1,2,3]triazolo[5,1-a]isoquinoline-6-carboxylate (3e)

White solid, mp: 198-200 . ¹H NMR (600 MHz, CDCl₃) δ 8.62 (d, *J* = 8.4 Hz, 1H), 8.09 (d, *J* = 8.4 Hz, 1H), 7.79-7.73 (m, 4H), 7.59-7.49 (m, 4H), 7.21-7.16 (m, 1H), 3.98 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 168.8, 144.1, 141.9, 131.7, 129.7, 129.54, 129.49, 129.4, 128.9, 128.8, 128.7, 125.4, 123.9, 117.2, 52.1; ESI-MS(m/z): 319.0[M]⁺; HRMS (ESI) calcd. For C₁₈H₁₄N₄O₂+H⁺ 319.11895. found 319.11897.

ethyl 5-amino-1-phenyl-[1,2,3]triazolo[5,1-a]isoquinoline-6-carboxylate (3f)

White solid, mp: 163-166 . ¹H NMR (600 MHz, CDCl₃) δ 8.68 (d, J = 8.4 Hz, 1H), 8.11 (d, J = 8.4 Hz, 1H), 7.77-7.50 (m, 4H), 7.58-7.52 (m, 4H), 7.20 (t, J = 7.6 Hz, 1H), 4.55 (q, J = 7.8 Hz, 2H), 1.52 (t, J = 7.8 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 168.3, 144.0, 141.9, 131.7, 129.7, 129.4, 128.9, 128.8, 128.7, 125.4, 123.9, 123.3, 117.3, 61.3, 14.4; ESI-MS(m/z): 332.4[M]⁺; HRMS (ESI) calcd. For C₁₉H₁₆N₄O₂+H⁺ 333.1346. found 333.1347.

tert-butyl 5-amino-1-phenyl-[1,2,3]triazolo[5,1-a]isoquinoline-6-carboxylate (3g)

White solid, mp: 177-179 . ¹H NMR (600 MHz, CDCl₃) δ 8.63 (d, *J* = 8.4 Hz, 1H), 8.10 (d, *J* = 7.8 Hz, 1H), 7.76-7.73 (m, 2H), 7.67(s, 2H), 7.58-7.48 (m, 4H), 7.20-7.15(m, 1H), 1.72 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ 167.5, 143.5, 141.8, 131.8, 129.9, 129.7, 129.1, 128.8, 128.6, 125.4, 123.8, 123.7, 117.3, 82.9, 28.6; ESI-MS(m/z): 360.95[M]⁺; HRMS (ESI) calcd. For C₂₁H₂₀N₄O₂+H⁺ 361.1659. found 361.1660.

5-amino-1-phenyl-[1,2,3]triazolo[5,1-a]isoquinoline-6-carbonitrile (3h)

White solid, mp: 233-234 . ¹H NMR (600 MHz, d⁶-DMSO) δ 8.58 (s, 2H), 7.89 (d, J = 8.4 Hz, 1H), 7.72-7.70 (m, 3H), 7.64-7.57 (m, 4H), 7.27 (t, J = 8.4 Hz, 1H); ¹³C NMR (150 MHz, d⁶-DMSO) δ 145.2, 141.4, 131.2, 129.7, 129.6, 129.2, 129.0, 128.5, 122.9, 116.1, 115.8; ESI-MS(m/z): 285.2 [M]⁺; HRMS (ESI) calcd. For C₁₇H₁₁N₅+H⁺ 286.10872. found 286.10871.

tert-butyl 5-amino-1-(4-nitrophenyl)-[1,2,3]triazolo[5,1-a]isoquinoline-6-carboxylate (3i) O₂N

Yellow solid, mp: 187-189 . ¹H NMR (600 MHz, CDCl₃) δ 8.68 (d, J = 8.4 Hz, 1H), 8.43 (d, J = 8.4 Hz, 2H), 8.04 (d, J = 8.4 Hz, 1H), 8.00 (d, J = 8.4 Hz, 2H), 7.68 (s, 2H), 7.58-7.55 (m, 1H), 7.27-7.22 (m, 1H), 1.73 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 167.3, 147.9, 143.3, 139.5, 138.6, 130.5, 130.4, 129.9, 129.3, 125.8, 124.1, 124.1, 123.1, 116.6, 83.2, 28.6; ESI-MS (m/z): 405.10[M]⁺; HRMS (ESI) calcd. For C₂₁H₁₉N₅O₄+H⁺ 406.1510. found 406.1511.

ethyl 5-amino-1-methyl-[1,2,3]triazolo[5,1-a]isoquinoline-6-carboxylate (3j)

White solid, mp: 195-196 . ¹H NMR (600 MHz, CDCl₃) δ 8.71 (d, J = 8.4 Hz, 1H), 8.12 (d, J = 7.8 Hz, 1H), 7.72 (s, 2H), 7.56 (t, J = 7.8 Hz, 1H), 7.42 (t, J = 8.4 Hz, 1H), 4.54 (d, J = 7.8 Hz, 2H), 2.90 (s, 3H), 1.52 (t, J = 7.8 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 168.4, 144.1, 137.3, 129.3, 128.9, 128.7, 125.3, 124.2, 123.5, 123.3, 117.9, 61.2, 29.7, 14.0; ESI-MS(m/z): 284.1[M]⁺; HRMS (ESI) calcd. For C₁₄H₁₄N₄O₂+H⁺ 271.1190. found 270.1186.

tert-butyl 5-amino-1-methyl-[1,2,3]triazolo[5,1-a]isoquinoline-6-carboxylate (3k)

White solid, mp: 130-135 . ¹H NMR (600 MHz, CDCl₃) δ 8.47 (d, J = 13.2 Hz, 1H), 8.06 (d, J = 8.4 Hz, 1H), 7.81 (s, 2H), 7.14 (t, J = 8.4 Hz, 1H), 2.87 (s, 3H), 1.73 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) 167.5, 143.5, 137.1, 129.4, 128.6, 128.4, 128.2, 125.2, 123.8, 123.2, 117.8, 82.6, 28.6, 13.4; ESI-MS(m/z): 298.2[M]⁺; HRMS (ESI) calcd. For C₁₆H₁₈N₄O₂+H⁺ 299.1503. found 299.1506.

tert-butyl 5-amino-8-fluoro-[1,2,3]triazolo[5,1-a]isoquinoline-6-carboxylate (31)

White solid, mp: 172-174°C. ¹H NMR (600 MHz, CDCl₃) δ 8.46 (dd, J = 13.2, 2.4 Hz, 1H), 8.33 (s, 1H), 8.00 (dd, J =13.2, 2.4 Hz, 1H), 7.85 (s, 2H), 7.16-7.10 (m, 1H), 1.73 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 167.3, 163.2(d, J = 245 Hz, 1C), 144.6, 132.7, 132.0, 131.8, 126.2, 126.0(d, J = 9Hz, 1C), 112.9, 112.7(d, J = 24 Hz, 1C), 111.5(d, J = 27 Hz, 1C), 83.3, 28.5; ESI-MS(m/z): 302.2[M]⁺; HRMS (ESI) calcd. For C₁₅H₁₅FN₄O₂+H⁺ 303.1252. found 303.1253.

ethyl 5-amino-8-fluoro-[1,2,3]triazolo[5,1-a]isoquinoline-6-carboxylate (3m)

White solid, Mp: 189-190 . ¹H NMR (600 MHz, CDCl₃) δ 8.47 (dd, J = 10.8, 3.0 Hz, 1H), 8.35 (s, 1H), 8.02 (dd, J = 8.6, 6.1 Hz, 1H), 7.93 (s, 2H), 7.16 (dd, J = 10.8, 3.0 Hz, 1H), 4.55 (q, J = 7.8 Hz, 2H), 1.54 (t, J = 7.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 163.4(d, J = 248 Hz, 1C), 145.0, 132.9, 126.4, 126.2(d, J = 9 Hz, 1C), 112.97, 112.96(d, J = 24 Hz, 1C), 112.8, 111.7(d, J = 26 Hz, 1C), 61.5, 14.4; ESI-MS(m/z):274.3[M]⁺; HRMS (ESI) calcd. For C₁₃H₁₁FN₄O₂+H⁺ 275.09388. found 275.09387.

5-amino-8-fluoro-[1,2,3]triazolo[5,1-a]isoquinoline-6-carbonitrile (3n)

White solid, mp: 265-268 . ¹H NMR (600 MHz, d⁶-DMSO) δ 8.74 (s, 1H), 8.62 (s, 2H), 8.30 (s, 1H), 7.28 (s, 2H); ¹³C NMR (100 MHz, d⁶-DMSO) δ 163.0(d, J = 246 Hz, 1C), 145.7, 132.8, 131.8(d, J = 10 Hz, 1C), 127.7, 127.6, 127.4, 115.7, 113.0(d, J = 24 Hz, 1C), 112.1, 106.9(d, J = 25 Hz, 1C); ESI-MS(m/z): 227.2[M]⁺; HRMS (ESI) calcd. For C₁₁H₆FN₅+H⁺ 228.0680. found 228.0679.

methyl 5-amino-9-fluoro-[1,2,3]triazolo[5,1-a]isoquinoline-6-carboxylate (30)

White solid, mp: 195-198 . ¹H NMR (600 MHz, CDCl₃) δ 8.68 (dd, J = 9.6, 5.4 Hz, 1H), 8.37 (s, 1H), 7.75 (s, 2H), 7.67 (dd, J = 8.4, 2.4 Hz, 1H), 7.35-7.28 (m, 1H), 4.06 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 159.2(d, J = 245 Hz, 1C), 143.9, 132.6, 128.1(d, J = 7 Hz, 1C), 127.2, 125.9, 118.2(d, J = 22 Hz, 1C), 117.2, 117.4, 109.3(d, J = 23 Hz, 1C), 52.1; ESI-MS(m/z): 260.2[M]⁺; HRMS (ESI) calcd. For C₁₂H₉FN₄O₂+H⁺ 261.07823. found 261.07824.

ethyl 5-amino-9-fluoro-[1,2,3]triazolo[5,1-a]isoquinoline-6-carboxylate (3p)

White solid, mp: 167-169 . ¹H NMR (600 MHz, CDCl₃) δ 8.72 (s, 1H), 8.36 (s, 1H), 7.73 (s, 2H), 7.67 (d, J = 7.2 Hz, 1H), 7.30 (s, 1H), 4.54 (q, J = 7.8 Hz, 2H), 1.52 (t, J = 7.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 159.2(d, J = 245 Hz, 1C), 143.8, 132.6, 128.1(d, J = 8 Hz, 1C), 127.2, 126.0, 118.1(d, J = 22 Hz, 1C), 117.5(d, J = 9 Hz, 1C), 110.0, 109.3(d, J = 22 Hz, 1C), 61.5, 14.4; ESI-MS(m/z): 274.2[M]⁺; HRMS (ESI) calcd. For C₁₃H₁₁FN₄O₂+H⁺ 275.0939. found 275.0940.

tert-butyl 5-amino-9-fluoro-1-methyl-[1,2,3]triazolo[5,1-a]isoquinoline-6-carboxylate (3q)

White solid, mp: 155-157 . ¹H NMR (600 MHz, CDCl₃) δ 8.70 (dd, J = 9.6, 5.4 Hz, 1H), 8.36 (s, 1H), 7.68-7.63(m, 3H), 7.33-7.25 (m, 1H), 1.72 (s, 9H); ¹³C (75 MHz, CDCl₃) δ 167.3, 159.2(d, J = 245 Hz, 1C), 143.4, 132.4, 128.1 (d, J = 10 Hz, 1C), 127.1, 126.3, 126.2, 117.9(d, J = 22 Hz, 1C), 117.5(d, J = 23 Hz, 1C), 109.2(d, J = 23 Hz, 1C), 83.3, 28.5; ESI-MS(m/z): 302.3[M]⁺; HRMS (ESI) calcd. For C₁₅H₁₅FN₄O₂+H⁺ 303.12518. found 303.12532.

ethyl 5-amino-8-fluoro-1-methyl-[1,2,3]triazolo[5,1-a]isoquinoline-6-carboxylate (3r)

White solid, mp: 192-193 . ¹H NMR (600 MHz, d⁶-DMSO) δ 8.34 (s, 3H), 8.05 (s, 1H), 7.13 (s, 1H), 4.50 (q, J = 7.8 Hz, 2H), 2.82 (s, 3H), 1.50 (t, J = 7.8 Hz, 3H); ¹³C NMR (100 MHz, d⁶-DMSO) δ 167.2, 160.0(d, J = 241 Hz, 1C), 144.6, 136.4, 131.6, 128.0, 126.1, 113.8, 112.0(d, J = 25 Hz, 1C), 110.0(d, J = 27 Hz, 1C), 61.1. 14.2, 12.9; ESI-MS(m/z): 288.3[M]⁺; HRMS (ESI) calcd. For C₁₄H₁₃FN₄O₂+H⁺ 289.1095. found 289.1094.

tert-butyl 5-amino-8-fluoro-1-methyl-[1,2,3]triazolo[5,1-a]isoquinoline-6-carboxylate (3s)

White solid, mp: 167-170 . ¹H NMR (600 MHz, CDCl₃) δ 8.46 (d, J = 13.2 Hz, 1H), 8.09 – 8.03 (m, 1H), 7.81 (s, 2H), 7.15 (t, J = 8.4 Hz, 1H), 2.87 (s, 3H), 1.73 (s, 9H); ¹³C (75 MHz, CDCl₃) δ 167.3, 162.6(d, J = 244 Hz, 1C), 144.5, 131.8, 131.7, 125.3, 125.2, 114.5, 114.4, 112.3(d, J = 24 Hz, 1C), 111.5(d, J = 27 Hz, 1C), 83.2, 28.6, 13.4; ESI-MS(m/z): 316.3[M]⁺; HRMS (ESI) calcd. For C₁₆H₁₇FN₄O₂+H⁺ 317.1408. found 317.1409.

5-amino-1-bromo-[1,2,3]triazolo[5,1-a]isoquinoline-6-carbonitrile (3t)

White solid, mp > 240 (decomp). ¹H NMR (600 MHz, d⁶-DMSO) δ 8.59 (s, 2H), 8.57 (s, 1H), 7.72-7.65 (m, 2H), 7.49-7.45 (m, 1H); ¹³C NMR (100 MHz, d⁶-DMSO) δ 144.8, 130.8, 129.8, 128.9, 124.6, 122.7, 121.9, 115.8, 114.7, 113.8, 71.6; ESI-MS(m/z): 287.2[M]⁺, 289.3[M+2]⁺ (1:1); HRMS (ESI) calcd. For C₁₁H₆BrN₅+H⁺ 287.98793. found 287.98787.

tert-butyl 5-amino-1-bromo-[1,2,3]triazolo[5,1-a]isoquinoline-6-carboxylate (3u)

White solid, mp: 152-155 . ¹H NMR (600 MHz, CDCl₃) δ 8.85 (d, J = 8.4 Hz, 1H), 8.68 (d, J = 9.0 Hz, 1H), 7.64-7.59 (m, 1H), 7.57 (s, 2H), 7.48-7.44 (m, 1H), 1.72 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 167.1, 142.8, 129.7, 129.6, 128.6, 125.1, 124.0, 122.8, 116.0, 113.5, 83.1, 28.6; ESI-MS(m/z): 362.1[M]⁺, 364.1[M+2]⁺ (1:1); HRMS (ESI) calcd. For C₁₅H₁₅BrN₄O₂+H⁺ 363.0451. found 363.0453.

1-benzyl-4-(2-bromophenyl)-1H-1,2,3-triazole (4)

White solid, mp: 78-79 , ¹H NMR (400 MHz, CDCl₃) δ 8.17-8.07 (m, 2H), 7.61 (d, *J* = 3.6 Hz, 1H), 7.39-7.29 (m, 5H), 7.19-7.13 (m, 1H), 5.59 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 145.6, 134.6, 133.4, 131.2, 130.5, 129.2, 129.0, 128.6, 127.8, 127.6, 123.0, 121.1, 54.1; ESI-MS(m/z): 312.9 [M]⁺, 314.9[M+2]⁺ (1:1); HRMS (ESI) calcd. For C₁₅H₁₂BrN₃+H⁺ 314.0287. found 314.0289.

tert-butyl 2-(2-(1-benzyl-1H-1,2,3-triazol-4-yl)phenyl)-2-cyanoacetate (5)

Yellow oil, ¹H NMR (400 MHz, CDCl₃) δ 7.72 (s, 1H), 7.66 (d, J = 7.2 Hz, 1H), 7.50-7.29 (m, 8H), 6.07 (s, 1H), 5.57 (s, 2H), 1.41 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 164.2, 147.0, 134.3, 129.3, 129.2, 129.0, 128.1, 121.9, 116.8, 84.1, 54.3, 41.8, 27.6; ESI-MS(m/z): 374.4[M]⁺; HRMS (ESI) calcd. For C₂₂H₂₂N₄O₂+H⁺ 375.18155. found 375.18163.

22: 22 21: 00 22: 22

62 .92 00 .77 27. 22

-1.0 -0.5 0.0 0.5 1.0 1.52.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 251.5 101.7 101.7 101.7 202.7 101.7 202.7 101.7 202.7 -- EO .I 7.5 -20.1 008.7-----98.0 8.0 -00.1 ß °. 9.0 ١Ω 9.

10.0

5 10.

11.0

1.0

-1.0 -0.5 0.0 -0. 000 0.5 1.0 1.5999 .1 — -20.6 2.0 2.5 3.0 3. 5 4.0 4.5 5.0 ŝ 5. 6.0 6.5 7.0 2, 260 2, 451 2, 1, 03 × 1, 73 × 1, 27 × 7.5 8.0 ŝ ^{₹29.8} 689.8 ^{689.8} ^{528.8} \$ -26.0 -00.1 9.0 9.5 CO2Bu-t 10.0

10.5

11.0

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

Ä

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

V. X-ray diffraction analysis of compound 3a and 3d.

Compound 3a (25.0 mg) was dissolved in methyl alcohol (5.0 mL) and water, it was crystallized to give crystal as colorless prisms after the solvent was slowly volatilized in 8 days at room temperature.

Compound **3d** (25.0 mg) was dissolved in dichloromethane and petroleum ether (V/V, 1:4), it was crystallized to give crystal as colorless prisms after the solvent was slowly volatilized in 3 days at room temperature.

3a: CCDC number 938029; 3d: CCDC number 938028.

