SUPPORTING INFORMATION

Advanced and novel one-pot synthetic method for diverse benzo[c[chromen-6-ones by transition-metal free mild base-promoted domino reactions of substituted 2-hydroxychalcones with β -ketoesters and its application to polysubstituted terphenyls

Tej Narayan Poudel and Yong Rok Lee*

School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea Email: yrlee@yu.ac.kr Phone: +82-53-810-2529; Fax: +82-53-810-4631

¹ H NMR and ¹³ C NMR Spectra of compounds (16-45)	2-31
¹ H NMR and ¹³ C NMR Spectra of compounds (49-54)	.32-37
X-ray structure and data of compound 26	.38-55

127

133.375

__150.723 149.520

160.266 165.115

¹H-NMR

¹³C-NMR

¹H NMR and ¹³C NMR Spectra of compounds 49-54

X-ray data of compound 26

ent for No6.
No6
$C_{44} H_{36} O_6$
660.73
200(2) K
0.71073 Å
Triclinic
P-1
$a = 10.8607(14) \text{ Å} = 83.181(3)^{\circ}.$
$b = 11.4179(14) \text{ Å} = 80.292(3)^{\circ}.$
$c = 15.2714(19) \text{ Å} = 61.859(2)^{\circ}.$
1644.3(4) Å ³
2
1.335 Mg/m ³
0.088 mm ⁻¹
696
0.42 x 0.22 x 0.18 mm ³
1.35 to 26.08°.
-8<=h<=13, -13<=k<=14, -18<=l<=18
10459
6463 [R(int) = 0.0454]
99.2 %

None
Full-matrix least-squares on F^2
6463 / 0 / 459
1.030
R1 = 0.0642, wR2 = 0.1559
R1 = 0.1161, wR2 = 0.2354
0.307 and -0.429 e.Å ⁻³

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3)

for No6. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	У	Z	U(eq)	
O(1)	-613(3)	2167(3)	3992(2)	58(1)	
C(1)	-273(4)	3052(3)	3788(2)	43(1)	
O(2)	-1096(2)	4220(2)	4189(1)	46(1)	
C(2)	-775(4)	5278(3)	4045(2)	39(1)	
C(3)	-1659(4)	6385(3)	4533(2)	43(1)	
C(4)	-1393(4)	7456(3)	4428(2)	45(1)	
C(5)	-240(3)	7446(3)	3848(2)	38(1)	
C(6)	15(4)	8637(3)	3764(2)	52(1)	
C(7)	609(3)	6327(3)	3380(2)	38(1)	
C(8)	381(3)	5213(3)	3450(2)	32(1)	
C(9)	1239(3)	4009(3)	2954(2)	34(1)	
C(10)	919(3)	2946(3)	3141(2)	36(1)	
C(11)	1712(4)	1773(3)	2672(2)	40(1)	
O(3)	1450(3)	716(2)	2843(2)	53(1)	
C(12)	2810(3)	1659(3)	1992(2)	36(1)	
C(13)	3651(4)	355(3)	1544(2)	48(1)	
C(14)	3048(3)	2762(3)	1784(2)	35(1)	
C(15)	2311(3)	3895(3)	2273(2)	35(1)	
C(16)	4070(3)	2778(3)	994(2)	37(1)	
C(17)	5127(4)	3092(3)	1057(2)	46(1)	

C(18)	6020(4)	3147(4)	308(2)	55(1)
C(19)	5872(4)	2912(3)	-532(2)	45(1)
C(20)	6866(4)	2942(4)	-1335(2)	66(1)
C(21)	4794(3)	2620(3)	-593(2)	41(1)
C(22)	3908(3)	2549(3)	155(2)	41(1)
O(4)	4320(3)	11448(2)	4171(2)	52(1)
C(23)	4652(4)	10348(3)	3910(2)	43(1)
O(5)	3857(2)	9759(2)	4299(1)	46(1)
C(24)	4168(4)	8482(3)	4087(2)	40(1)
C(25)	3321(4)	7964(4)	4566(2)	49(1)
C(26)	3562(4)	6718(3)	4389(2)	47(1)
C(27)	4649(4)	5967(3)	3746(2)	42(1)
C(28)	4908(4)	4598(4)	3556(2)	56(1)
C(29)	5473(3)	6516(3)	3289(2)	39(1)
C(30)	5265(3)	7785(3)	3444(2)	36(1)
C(31)	6100(3)	8413(3)	2967(2)	36(1)
C(32)	5797(3)	9675(3)	3223(2)	36(1)
C(33)	6592(4)	10306(3)	2794(2)	40(1)
O(6)	6375(3)	11487(2)	3053(2)	51(1)
C(34)	7652(4)	9727(3)	2092(2)	39(1)
C(35)	8534(4)	10410(3)	1701(2)	49(1)
C(36)	7883(3)	8512(3)	1808(2)	36(1)
C(37)	7140(3)	7855(3)	2260(2)	36(1)
C(38)	8872(3)	7896(3)	1001(2)	35(1)
C(39)	8788(3)	8616(3)	194(2)	39(1)
C(40)	9636(3)	8014(3)	-569(2)	42(1)
C(41)	10610(4)	6682(3)	-554(2)	40(1)
C(42)	11524(4)	6028(4)	-1398(2)	52(1)
C(43)	10722(4)	5965(3)	251(2)	43(1)
C(44)	9852(3)	6561(3)	1019(2)	40(1)

O(1)-C(1)	1.221(4)	
C(1)-O(2)	1.355(4)	
C(1)-C(10)	1.454(4)	
O(2)-C(2)	1.392(4)	
C(2)-C(3)	1.383(4)	
C(2)-C(8)	1.396(4)	
C(3)-C(4)	1.369(5)	
C(3)-H(3)	0.9500	
C(4)-C(5)	1.402(4)	
C(4)-H(4)	0.9500	
C(5)-C(7)	1.369(4)	
C(5)-C(6)	1.499(5)	
C(6)-H(6A)	0.9800	
C(6)-H(6B)	0.9800	
C(6)-H(6C)	0.9800	
C(7)-C(8)	1.396(4)	
C(7)-H(7)	0.9500	
C(8)-C(9)	1.461(4)	
C(9)-C(15)	1.392(4)	
C(9)-C(10)	1.398(4)	
C(10)-C(11)	1.407(4)	
C(11)-O(3)	1.354(4)	
C(11)-C(12)	1.409(4)	
O(3)-H(3A)	0.8400	
C(12)-C(14)	1.392(4)	
C(12)-C(13)	1.505(4)	
C(13)-H(13A)	0.9800	
C(13)-H(13B)	0.9800	
C(13)-H(13C)	0.9800	
C(14)-C(15)	1.387(4)	
C(14)-C(16)	1.500(4)	
C(15)-H(15)	0.9500	
C(16)-C(17)	1.375(4)	
C(16)-C(22)	1.392(4)	

Table 3. Bond lengths [Å] and angles [°] for No6.

C(17)-C(18)	1.385(4)
C(17)-H(17)	0.9500
C(18)-C(19)	1.392(5)
C(18)-H(18)	0.9500
C(19)-C(21)	1.379(5)
C(19)-C(20)	1.499(5)
C(20)-H(20A)	0.9800
C(20)-H(20B)	0.9800
C(20)-H(20C)	0.9800
C(21)-C(22)	1.385(4)
C(21)-H(21)	0.9500
C(22)-H(22)	0.9500
O(4)-C(23)	1.229(4)
C(23)-O(5)	1.353(4)
C(23)-C(32)	1.444(4)
O(5)-C(24)	1.398(4)
C(24)-C(30)	1.383(4)
C(24)-C(25)	1.384(5)
C(25)-C(26)	1.373(5)
C(25)-H(25)	0.9500
C(26)-C(27)	1.395(5)
C(26)-H(26)	0.9500
C(27)-C(29)	1.376(4)
C(27)-C(28)	1.507(5)
C(28)-H(28A)	0.9800
C(28)-H(28B)	0.9800
C(28)-H(28C)	0.9800
C(29)-C(30)	1.400(4)
C(29)-H(29)	0.9500
C(30)-C(31)	1.460(4)
C(31)-C(37)	1.386(4)
C(31)-C(32)	1.408(4)
C(32)-C(33)	1.406(4)
C(33)-O(6)	1.351(4)
C(33)-C(34)	1.395(4)
O(6)-H(6)	0.8400

C(34)-C(36)	1.397(4)
C(34)-C(35)	1.511(4)
C(35)-H(35A)	0.9800
C(35)-H(35B)	0.9800
C(35)-H(35C)	0.9800
C(36)-C(37)	1.398(4)
C(36)-C(38)	1.488(4)
C(37)-H(37)	0.9500
C(38)-C(44)	1.388(4)
C(38)-C(39)	1.388(4)
C(39)-C(40)	1.382(4)
C(39)-H(39)	0.9500
C(40)-C(41)	1.384(5)
C(40)-H(40)	0.9500
C(41)-C(43)	1.384(4)
C(41)-C(42)	1.516(4)
C(42)-H(42A)	0.9800
C(42)-H(42B)	0.9800
C(42)-H(42C)	0.9800
C(43)-C(44)	1.393(4)
C(43)-H(43)	0.9500
C(44)-H(44)	0.9500
O(1)-C(1)-O(2)	116.6(3)
O(1)-C(1)-C(10)	124.9(3)
O(2)-C(1)-C(10)	118.5(3)
C(1)-O(2)-C(2)	121.9(3)
C(3)-C(2)-O(2)	116.0(3)
C(3)-C(2)-C(8)	122.3(3)
O(2)-C(2)-C(8)	121.7(3)
C(4)-C(3)-C(2)	118.8(3)
C(4)-C(3)-H(3)	120.6
C(2)-C(3)-H(3)	120.6
C(3)-C(4)-C(5)	121.5(3)
C(3)-C(4)-H(4)	119.2
C(5)-C(4)-H(4)	119.2

C(7)-C(5)-C(4)	117.6(3)
C(7)-C(5)-C(6)	122.9(3)
C(4)-C(5)-C(6)	119.5(3)
C(5)-C(6)-H(6A)	109.5
C(5)-C(6)-H(6B)	109.5
H(6A)-C(6)-H(6B)	109.5
C(5)-C(6)-H(6C)	109.5
H(6A)-C(6)-H(6C)	109.5
H(6B)-C(6)-H(6C)	109.5
C(5)-C(7)-C(8)	123.4(3)
C(5)-C(7)-H(7)	118.3
C(8)-C(7)-H(7)	118.3
C(7)-C(8)-C(2)	116.3(3)
C(7)-C(8)-C(9)	125.5(3)
C(2)-C(8)-C(9)	118.2(3)
C(15)-C(9)-C(10)	118.4(3)
C(15)-C(9)-C(8)	123.0(3)
C(10)-C(9)-C(8)	118.4(3)
C(9)-C(10)-C(11)	120.2(3)
C(9)-C(10)-C(1)	121.0(3)
C(11)-C(10)-C(1)	118.8(3)
O(3)-C(11)-C(10)	122.0(3)
O(3)-C(11)-C(12)	117.0(3)
C(10)-C(11)-C(12)	121.0(3)
C(11)-O(3)-H(3A)	109.5
C(14)-C(12)-C(11)	117.5(3)
C(14)-C(12)-C(13)	124.4(3)
C(11)-C(12)-C(13)	118.1(3)
C(12)-C(13)-H(13A)	109.5
C(12)-C(13)-H(13B)	109.5
H(13A)-C(13)-H(13B)	109.5
C(12)-C(13)-H(13C)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5
C(15)-C(14)-C(12)	121.4(3)
C(15)-C(14)-C(16)	118.0(3)

C(12)-C(14)-C(16)	120.6(3)
C(14)-C(15)-C(9)	121.2(3)
C(14)-C(15)-H(15)	119.4
C(9)-C(15)-H(15)	119.4
C(17)-C(16)-C(22)	118.0(3)
C(17)-C(16)-C(14)	122.1(3)
C(22)-C(16)-C(14)	119.8(3)
C(16)-C(17)-C(18)	120.7(3)
C(16)-C(17)-H(17)	119.7
C(18)-C(17)-H(17)	119.7
C(17)-C(18)-C(19)	121.7(3)
C(17)-C(18)-H(18)	119.1
C(19)-C(18)-H(18)	119.1
C(21)-C(19)-C(18)	117.3(3)
C(21)-C(19)-C(20)	121.4(3)
C(18)-C(19)-C(20)	121.3(3)
C(19)-C(20)-H(20A)	109.5
C(19)-C(20)-H(20B)	109.5
H(20A)-C(20)-H(20B)	109.5
C(19)-C(20)-H(20C)	109.5
H(20A)-C(20)-H(20C)	109.5
H(20B)-C(20)-H(20C)	109.5
C(19)-C(21)-C(22)	121.1(3)
C(19)-C(21)-H(21)	119.4
C(22)-C(21)-H(21)	119.4
C(21)-C(22)-C(16)	121.1(3)
C(21)-C(22)-H(22)	119.4
C(16)-C(22)-H(22)	119.4
O(4)-C(23)-O(5)	116.1(3)
O(4)-C(23)-C(32)	124.7(3)
O(5)-C(23)-C(32)	119.2(3)
C(23)-O(5)-C(24)	121.4(2)
C(30)-C(24)-C(25)	122.6(3)
C(30)-C(24)-O(5)	121.6(3)
C(25)-C(24)-O(5)	115.7(3)
C(26)-C(25)-C(24)	118.8(3)

C(26)-C(25)-H(25)	120.6
C(24)-C(25)-H(25)	120.6
C(25)-C(26)-C(27)	121.2(3)
C(25)-C(26)-H(26)	119.4
C(27)-C(26)-H(26)	119.4
C(29)-C(27)-C(26)	118.0(3)
C(29)-C(27)-C(28)	121.1(3)
C(26)-C(27)-C(28)	120.9(3)
C(27)-C(28)-H(28A)	109.5
C(27)-C(28)-H(28B)	109.5
H(28A)-C(28)-H(28B)	109.5
C(27)-C(28)-H(28C)	109.5
H(28A)-C(28)-H(28C)	109.5
H(28B)-C(28)-H(28C)	109.5
C(27)-C(29)-C(30)	122.8(3)
C(27)-C(29)-H(29)	118.6
C(30)-C(29)-H(29)	118.6
C(24)-C(30)-C(29)	116.4(3)
C(24)-C(30)-C(31)	118.9(3)
C(29)-C(30)-C(31)	124.7(3)
C(37)-C(31)-C(32)	118.3(3)
C(37)-C(31)-C(30)	123.7(3)
C(32)-C(31)-C(30)	118.0(3)
C(33)-C(32)-C(31)	119.9(3)
C(33)-C(32)-C(23)	119.4(3)
C(31)-C(32)-C(23)	120.6(3)
O(6)-C(33)-C(34)	117.3(3)
O(6)-C(33)-C(32)	121.4(3)
C(34)-C(33)-C(32)	121.3(3)
C(33)-O(6)-H(6)	109.5
C(33)-C(34)-C(36)	118.2(3)
C(33)-C(34)-C(35)	118.7(3)
C(36)-C(34)-C(35)	123.1(3)
C(34)-C(35)-H(35A)	109.5
C(34)-C(35)-H(35B)	109.5
H(35A)-C(35)-H(35B)	109.5

C(34)-C(35)-H(35C)	109.5
H(35A)-C(35)-H(35C)	109.5
H(35B)-C(35)-H(35C)	109.5
C(34)-C(36)-C(37)	120.5(3)
C(34)-C(36)-C(38)	122.0(3)
C(37)-C(36)-C(38)	117.4(3)
C(31)-C(37)-C(36)	121.6(3)
C(31)-C(37)-H(37)	119.2
C(36)-C(37)-H(37)	119.2
C(44)-C(38)-C(39)	117.9(3)
C(44)-C(38)-C(36)	120.9(3)
C(39)-C(38)-C(36)	121.1(3)
C(40)-C(39)-C(38)	121.0(3)
C(40)-C(39)-H(39)	119.5
C(38)-C(39)-H(39)	119.5
C(39)-C(40)-C(41)	121.3(3)
C(39)-C(40)-H(40)	119.4
C(41)-C(40)-H(40)	119.4
C(40)-C(41)-C(43)	118.1(3)
C(40)-C(41)-C(42)	120.9(3)
C(43)-C(41)-C(42)	121.0(3)
C(41)-C(42)-H(42A)	109.5
C(41)-C(42)-H(42B)	109.5
H(42A)-C(42)-H(42B)	109.5
C(41)-C(42)-H(42C)	109.5
H(42A)-C(42)-H(42C)	109.5
H(42B)-C(42)-H(42C)	109.5
C(41)-C(43)-C(44)	120.8(3)
C(41)-C(43)-H(43)	119.6
C(44)-C(43)-H(43)	119.6
C(38)-C(44)-C(43)	120.9(3)
C(38)-C(44)-H(44)	119.6
C(43)-C(44)-H(44)	119.6

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U13	U ¹²	
O(1)	70(2)	63(2)	56(2)	-2(1)	7(1)	-48(2)	
C(1)	48(2)	50(2)	36(2)	0(2)	-1(2)	-29(2)	
O(2)	46(2)	50(1)	43(1)	-5(1)	6(1)	-26(1)	
C(2)	41(2)	42(2)	33(2)	1(1)	-4(2)	-20(2)	
C(3)	35(2)	54(2)	30(2)	-5(2)	3(2)	-14(2)	
C(4)	48(2)	41(2)	38(2)	-7(1)	-3(2)	-14(2)	
C(5)	30(2)	45(2)	36(2)	-7(1)	-5(1)	-13(2)	
C(6)	64(3)	43(2)	47(2)	-14(2)	1(2)	-24(2)	
C(7)	40(2)	41(2)	29(2)	-7(1)	3(2)	-18(2)	
C(8)	28(2)	38(2)	28(2)	-3(1)	0(1)	-13(1)	
C(9)	35(2)	35(2)	32(2)	1(1)	-6(1)	-16(1)	
C(10)	37(2)	39(2)	31(2)	-1(1)	-4(1)	-18(2)	
C(11)	45(2)	42(2)	38(2)	3(1)	-8(2)	-26(2)	
O(3)	69(2)	46(1)	54(2)	0(1)	1(1)	-38(1)	
C(12)	37(2)	35(2)	35(2)	-2(1)	-5(2)	-15(2)	
C(13)	49(2)	40(2)	51(2)	-9(2)	-3(2)	-17(2)	
C(14)	33(2)	37(2)	34(2)	-4(1)	-2(1)	-13(2)	
C(15)	32(2)	38(2)	36(2)	-3(1)	0(1)	-19(2)	
C(16)	37(2)	33(2)	39(2)	-7(1)	0(2)	-15(1)	
C(17)	57(2)	61(2)	36(2)	-7(2)	-2(2)	-39(2)	
C(18)	55(2)	73(3)	52(2)	-8(2)	0(2)	-44(2)	
C(19)	47(2)	49(2)	41(2)	-6(2)	3(2)	-26(2)	
C(20)	73(3)	81(3)	53(2)	-5(2)	7(2)	-49(3)	
C(21)	42(2)	43(2)	37(2)	-8(1)	-2(2)	-19(2)	
C(22)	36(2)	44(2)	46(2)	-11(2)	2(2)	-21(2)	
O(4)	56(2)	44(1)	54(1)	-21(1)	5(1)	-20(1)	
C(23)	47(2)	37(2)	42(2)	-13(2)	-2(2)	-17(2)	
O(5)	51(2)	43(1)	47(1)	-14(1)	8(1)	-26(1)	
C(24)	44(2)	37(2)	40(2)	-12(1)	-3(2)	-18(2)	
C(25)	49(2)	57(2)	42(2)	-9(2)	8(2)	-29(2)	
C(26)	55(2)	51(2)	45(2)	-3(2)	-1(2)	-35(2)	

Table 4. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for No6. The anisotropic displacement factor exponent takes the form: $-2 \quad 2[h^2 a^{*2}U^{11} + ... + 2h k a^{*} b^{*} U^{12}]$

C(27)	46(2)	48(2)	39(2)	-3(2)	-2(2)	-27(2)	
C(28)	70(3)	51(2)	60(2)	-4(2)	-5(2)	-41(2)	
C(29)	42(2)	41(2)	36(2)	-5(1)	-2(2)	-20(2)	
C(30)	40(2)	36(2)	34(2)	-4(1)	-4(2)	-20(2)	
C(31)	40(2)	32(2)	35(2)	-6(1)	-3(2)	-17(2)	
C(32)	40(2)	32(2)	35(2)	-5(1)	-4(2)	-16(2)	
C(33)	47(2)	31(2)	43(2)	-8(1)	-5(2)	-18(2)	
O(6)	62(2)	39(1)	60(2)	-16(1)	2(1)	-28(1)	
C(34)	43(2)	37(2)	40(2)	-6(1)	-3(2)	-20(2)	
C(35)	54(2)	49(2)	53(2)	-9(2)	3(2)	-34(2)	
C(36)	38(2)	37(2)	36(2)	-5(1)	-3(2)	-20(2)	
C(37)	38(2)	32(2)	40(2)	-11(1)	-4(2)	-16(2)	
C(38)	36(2)	37(2)	38(2)	-6(1)	-1(2)	-21(2)	
C(39)	36(2)	40(2)	42(2)	-5(1)	-2(2)	-19(2)	
C(40)	45(2)	49(2)	41(2)	-5(2)	0(2)	-31(2)	
C(41)	43(2)	43(2)	38(2)	-9(1)	4(2)	-23(2)	
C(42)	53(2)	58(2)	49(2)	-18(2)	0(2)	-27(2)	
C(43)	38(2)	40(2)	47(2)	-14(2)	1(2)	-13(2)	
C(44)	42(2)	36(2)	43(2)	0(1)	-9(2)	-18(2)	

	х	у	Z	U(eq)	
H(3)	-2438	6403	4934	52	
H(4)	-2003	8224	4755	54	
H(6A)	770	8527	3276	77	
H(6B)	291	8728	4321	77	
H(6C)	-848	9436	3639	77	
H(7)	1395	6309	2986	45	
H(3A)	753	900	3238	79	
H(13A)	3189	354	1046	72	
H(13B)	3710	-374	1973	72	
H(13C)	4601	238	1322	72	
H(15)	2543	4607	2140	42	
H(17)	5246	3273	1619	56	
H(18)	6753	3350	370	66	
H(20A)	7242	2120	-1650	98	
H(20B)	7642	3022	-1148	98	
H(20C)	6363	3706	-1730	98	
H(21)	4656	2466	-1158	49	
H(22)	3178	2340	95	50	
H(25)	2586	8463	5011	58	
H(26)	2978	6359	4709	56	
H(28A)	4285	4673	3133	84	
H(28B)	4715	4151	4110	84	
H(28C)	5891	4081	3301	84	
H(29)	6215	6012	2850	47	
H(6)	5671	11778	3445	77	
H(35A)	9466	9747	1449	73	
H(35B)	8636	10865	2168	73	
H(35C)	8072	11061	1232	73	

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for No6.

H(37)	7353	7005	2079	43
H(39)	8138	9535	167	47
H(40)	9547	8525	-1115	50
H(42A)	12400	5268	-1245	78
H(42B)	11744	6672	-1783	78
H(42C)	11019	5721	-1710	78
H(43)	11401	5055	280	52
H(44)	9931	6047	1563	48

Table 6. Torsion angles [°] for No6.

O(1)-C(1)-O(2)-C(2)	176.7(3)
C(10)-C(1)-O(2)-C(2)	-4.5(5)
C(1)-O(2)-C(2)-C(3)	-176.6(3)
C(1)-O(2)-C(2)-C(8)	2.7(5)
O(2)-C(2)-C(3)-C(4)	179.4(3)
C(8)-C(2)-C(3)-C(4)	0.1(5)
C(2)-C(3)-C(4)-C(5)	-0.8(5)
C(3)-C(4)-C(5)-C(7)	0.7(5)
C(3)-C(4)-C(5)-C(6)	-179.4(3)
C(4)-C(5)-C(7)-C(8)	0.2(5)
C(6)-C(5)-C(7)-C(8)	-179.8(3)
C(5)-C(7)-C(8)-C(2)	-0.8(5)
C(5)-C(7)-C(8)-C(9)	178.8(3)
C(3)-C(2)-C(8)-C(7)	0.7(5)
O(2)-C(2)-C(8)-C(7)	-178.6(3)
C(3)-C(2)-C(8)-C(9)	-179.0(3)
O(2)-C(2)-C(8)-C(9)	1.8(4)
C(7)-C(8)-C(9)-C(15)	-7.3(5)
C(2)-C(8)-C(9)-C(15)	172.3(3)
C(7)-C(8)-C(9)-C(10)	176.2(3)
C(2)-C(8)-C(9)-C(10)	-4.1(4)
C(15)-C(9)-C(10)-C(11)	2.8(5)
C(8)-C(9)-C(10)-C(11)	179.4(3)

C(15)-C(9)-C(10)-C(1)	-174.3(3)
C(8)-C(9)-C(10)-C(1)	2.3(4)
O(1)-C(1)-C(10)-C(9)	-179.4(3)
O(2)-C(1)-C(10)-C(9)	2.0(5)
O(1)-C(1)-C(10)-C(11)	3.5(5)
O(2)-C(1)-C(10)-C(11)	-175.2(3)
C(9)-C(10)-C(11)-O(3)	178.9(3)
C(1)-C(10)-C(11)-O(3)	-3.9(5)
C(9)-C(10)-C(11)-C(12)	-2.0(5)
C(1)-C(10)-C(11)-C(12)	175.2(3)
O(3)-C(11)-C(12)-C(14)	177.2(3)
C(10)-C(11)-C(12)-C(14)	-1.9(5)
O(3)-C(11)-C(12)-C(13)	-3.2(4)
C(10)-C(11)-C(12)-C(13)	177.6(3)
C(11)-C(12)-C(14)-C(15)	5.1(5)
C(13)-C(12)-C(14)-C(15)	-174.5(3)
C(11)-C(12)-C(14)-C(16)	-172.2(3)
C(13)-C(12)-C(14)-C(16)	8.3(5)
C(12)-C(14)-C(15)-C(9)	-4.3(5)
C(16)-C(14)-C(15)-C(9)	173.0(3)
C(10)-C(9)-C(15)-C(14)	0.3(5)
C(8)-C(9)-C(15)-C(14)	-176.2(3)
C(15)-C(14)-C(16)-C(17)	54.1(4)
C(12)-C(14)-C(16)-C(17)	-128.5(4)
C(15)-C(14)-C(16)-C(22)	-121.9(3)
C(12)-C(14)-C(16)-C(22)	55.4(4)
C(22)-C(16)-C(17)-C(18)	-1.4(5)
C(14)-C(16)-C(17)-C(18)	-177.6(3)
C(16)-C(17)-C(18)-C(19)	1.1(6)
C(17)-C(18)-C(19)-C(21)	0.0(6)
C(17)-C(18)-C(19)-C(20)	-178.5(3)
C(18)-C(19)-C(21)-C(22)	-0.8(5)
C(20)-C(19)-C(21)-C(22)	177.8(3)
C(19)-C(21)-C(22)-C(16)	0.4(5)
C(17)-C(16)-C(22)-C(21)	0.7(5)
C(14)-C(16)-C(22)-C(21)	176.9(3)

O(4)-C(23)-O(5)-C(24)	-177.1(3)
C(32)-C(23)-O(5)-C(24)	3.8(5)
C(23)-O(5)-C(24)-C(30)	-2.8(5)
C(23)-O(5)-C(24)-C(25)	176.5(3)
C(30)-C(24)-C(25)-C(26)	-1.1(5)
O(5)-C(24)-C(25)-C(26)	179.6(3)
C(24)-C(25)-C(26)-C(27)	0.8(5)
C(25)-C(26)-C(27)-C(29)	-0.3(5)
C(25)-C(26)-C(27)-C(28)	179.9(3)
C(26)-C(27)-C(29)-C(30)	0.1(5)
C(28)-C(27)-C(29)-C(30)	179.8(3)
C(25)-C(24)-C(30)-C(29)	0.8(5)
O(5)-C(24)-C(30)-C(29)	-179.9(3)
C(25)-C(24)-C(30)-C(31)	179.7(3)
O(5)-C(24)-C(30)-C(31)	-1.0(5)
C(27)-C(29)-C(30)-C(24)	-0.3(5)
C(27)-C(29)-C(30)-C(31)	-179.1(3)
C(24)-C(30)-C(31)-C(37)	-174.2(3)
C(29)-C(30)-C(31)-C(37)	4.6(5)
C(24)-C(30)-C(31)-C(32)	3.7(5)
C(29)-C(30)-C(31)-C(32)	-177.6(3)
C(37)-C(31)-C(32)-C(33)	-3.3(5)
C(30)-C(31)-C(32)-C(33)	178.8(3)
C(37)-C(31)-C(32)-C(23)	175.3(3)
C(30)-C(31)-C(32)-C(23)	-2.7(5)
O(4)-C(23)-C(32)-C(33)	-1.5(5)
O(5)-C(23)-C(32)-C(33)	177.6(3)
O(4)-C(23)-C(32)-C(31)	180.0(3)
O(5)-C(23)-C(32)-C(31)	-0.9(5)
C(31)-C(32)-C(33)-O(6)	-176.7(3)
C(23)-C(32)-C(33)-O(6)	4.7(5)
C(31)-C(32)-C(33)-C(34)	2.4(5)
C(23)-C(32)-C(33)-C(34)	-176.2(3)
O(6)-C(33)-C(34)-C(36)	-179.3(3)
C(32)-C(33)-C(34)-C(36)	1.6(5)
O(6)-C(33)-C(34)-C(35)	3.2(5)

C(32)-C(33)-C(34)-C(35)	-175.9(3)
C(33)-C(34)-C(36)-C(37)	-4.6(5)
C(35)-C(34)-C(36)-C(37)	172.7(3)
C(33)-C(34)-C(36)-C(38)	172.8(3)
C(35)-C(34)-C(36)-C(38)	-9.8(5)
C(32)-C(31)-C(37)-C(36)	0.2(5)
C(30)-C(31)-C(37)-C(36)	178.1(3)
C(34)-C(36)-C(37)-C(31)	3.8(5)
C(38)-C(36)-C(37)-C(31)	-173.8(3)
C(34)-C(36)-C(38)-C(44)	133.0(3)
C(37)-C(36)-C(38)-C(44)	-49.5(4)
C(34)-C(36)-C(38)-C(39)	-51.0(5)
C(37)-C(36)-C(38)-C(39)	126.6(3)
C(44)-C(38)-C(39)-C(40)	1.2(5)
C(36)-C(38)-C(39)-C(40)	-175.0(3)
C(38)-C(39)-C(40)-C(41)	-1.0(5)
C(39)-C(40)-C(41)-C(43)	-0.4(5)
C(39)-C(40)-C(41)-C(42)	179.3(3)
C(40)-C(41)-C(43)-C(44)	1.6(5)
C(42)-C(41)-C(43)-C(44)	-178.1(3)
C(39)-C(38)-C(44)-C(43)	0.0(5)
C(36)-C(38)-C(44)-C(43)	176.2(3)
C(41)-C(43)-C(44)-C(38)	-1.4(5)

Symmetry transformations used to generate equivalent atoms: