Electronic Supplementary Information

Copper-Catalyzed Redox-Neutral C-H Amination with Amidoximes

Hui Chen and Shunsuke Chiba*

Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.

E-mail: shunsuke@ntu.edu.sg

Table of Contents

General	S2
Synthesis of O-acetyl amidoxime 1	S2
Synthesis of N-acetyl amidoxime 1s	S16
Synthesis of N-bezoyl amidoxime_6	S17
Copper-catalyzed synthesis of dihydroimidazoles 2	S29
Copper-catalyzed synthesis of imidazoles 3	S37
Copper-catalyzed synthesis of quinazolinones 7	S39
References	S46
	General Synthesis of <i>O</i> -acetyl amidoxime 1 Synthesis of <i>N</i> -acetyl amidoxime 1s Synthesis of <i>N</i> -bezoyl amidoxime_6 Copper-catalyzed synthesis of dihydroimidazoles 2 Copper-catalyzed synthesis of imidazoles 3 Copper-catalyzed synthesis of quinazolinones 7 References

Appendix: ¹ H and ¹³ C NMR	spectra for new compounds	S48
--	---------------------------	------------

1. General

¹H NMR (400 MHz) spectra were recorded on a Bruker Avance 400 spectrometer in CDCl₃ [using CDCl₃ (for ¹H, $\delta = 7.26$) as the internal standard unless otherwise stated]. ¹³C NMR (100 MHz) spectra on a Bruker Avance 400 spectrometer in CDCl₃ [using CDCl₃ (for ¹³C, $\delta = 77.00$) as internal standard]. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublet, tt = triplet of triplet, sep = septet, m = multiplet, br = broad. IR spectra were recorded on a Shimadzu IR Prestige-21 FT-IR Spectrometer. High-resolution mass spectra were obtained with a Q-Tof Premier LC HR mass spectrometer. Melting points were uncorrected and were recorded on a Buchi B-54 melting point apparatus. Flash column chromatography was performed using Merck silica gel 60 with distilled solvents. CuI, *m*-xylene (anhydrous) and K₃PO₄ were purchased from Sigma-Aldrich Co., Inc.

2. Synthesis of O-acetyl amidoxime 1

A typical procedure for synthesis of amidoxime 1a:

To a 50 mL two-neck round-bottomed flask (fitted with a water bath) was added *N*-benzyl-2-phenylpropan-1-amine¹ (4.074 g, 18.1 mmol) and triethylamine (3.78 mL, 27.1 mmol) in DMF (12 mL). *N*-Hydroxybenzimidoyl chloride² (3.094 g, 19.9 mmol) in DMF (8 mL) was added dropwise to the stirred mixture. After the addition was complete, the reaction mixture was stirred at room temperature for 1 h. The reaction was quenched with water, and the aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with brine, dried over MgSO₄, and concentrated. The resulting residue was purified by flash column chromatography (silica gel; hexane:ethyl acetate = 85:15) to afford *N*-benzyl-*N*-hydroxy-*N*-(2-phenylpropyl)benzimidamide (4.444 g, 12.9 mmol, *E/Z* mixture, *E/Z* not determined, ratio 5:1) in 71% yield as a yellow oil. This amidoxime was unstable and used immediately in the next acetylation. For amidoximes **1b**, **1c**, **1e-1h**, **1j**, **1m**, **1q-1r**, the corresponding crude amidoximes was directly used for the next acetylation without further purification.

To a 50 mL two-neck round-bottomed flask was added *N*-benzyl-*N*-hydroxy-*N*-(2-phenylpropyl)benzimidamide (4.444 g, 12.9 mmol), triethylamine (2.70 mL, 19.4 mmol) and *N*,*N*-dimethylpyridin-4-amine (0.158 g, 0.13 mmol) in THF (30 mL). Acetic anhydride (1.46 mL, 15.5 mmol) was added in a dropwise manner. The reaction mixture was stirred at room temperature for 2 h. The reaction was quenched with water, and the aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with brine, dried over MgSO₄, and concentrated. The resulting residue was purified by flash column chromatography (silica gel; hexane:ethyl acetate = 90:10 then 85:15) to afford **1a** in 93% combined yield (4.644 g, 12.0 mmol, *E/Z* not determined, major:minor = 1.7:1). The *E/Z* mixture could be partially separated by column chromatography to give the less polar major stereoisomer (1.689 g, 4.37 mmol) in 34% yield, the *E/Z* mixture (2.185 g, 5.65 mmol, major:minor = 1.3:1) in 44% yield and the polar minor stereoisomer (0.770 g, 1.99 mmol) in 15% yield.

N'-Acetoxy-N-benzyl-N-(2-phenylpropyl)benzimidamide (1a):

The major stereoisomer:

Colorless oil. IR (NaCl) 2964, 2930, 1748, 1557, 1495, 1452, 1425, 1363, 1219, 1003 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.22 (3H, d, *J* = 6.8 Hz), 1.82 (3H, s), 3.22-3.29 (1H, m), 3.48 (2H, s br), 3.83 (1H, s br), 4.17 (1H, s br), 7.05-7.11 (4H, m), 7.21-7.34 (11H, m); ¹³C NMR (100 MHz, CDCl₃) δ 19.0, 19,6, 36.9, 52.7, 54.5, 126.6, 127.3, 127.4, 127.5, 127.7, 128.3, 128.5, 128.6, 129.3, 131.4, 137.5, 144.6, 166.9, 169.5; ESIHRMS: Found: m/z 387.2074. Calcd for C₂₅H₂₇N₂O₂: (M+H)⁺ 387.2073.

The minor stereoisomer:

Colorless oil. IR (NaCl) 3028, 2965, 2930, 1748, 1589, 1557, 1454, 1402, 1366, 1209, 1155 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.17 (3H, d, *J* = 6.8 Hz), 2.14 (3H, s), 3.04-3.13 (1H, m), 3.25 (1H, dd, *J* = 9.2, 14.0 Hz), 3.38 (1H, dd, *J* = 6.0, 14.0 Hz), 4.17 (1H, d, *J* = 15.2 Hz), 4.35 (1H, d, *J* = 15.2 Hz), 7.14 (2H, d, *J* = 6.8 Hz), 7.23-7.39 (13H, m); ¹³C NMR (100 MHz, CDCl₃) δ 19.4, 19,9, 38.5, 56.3, 57.4, 126.7, 127.3, 127.5, 127.7, 128.2, 128.5, 128.6, 130.0, 130.4, 132.5, 137.6, 144.0, 159.5, 168.6; ESIHRMS: Found: m/z 387.2060. Calcd for C₂₅H₂₇N₂O₂: (M+H)⁺ 387.2073.

N'-Acetoxy-N-benzyl-2-methyl-N-(2-phenylpropyl)benzimidamide (1b):

44% yield (two steps) as a pale yellow oil (single stereoisomer, E/Z not determined) from *N*-hydroxy-2-methylbenzimidoyl chloride³ and *N*-benzyl-2-phenylpropan-1-amine.

IR (NaCl) 3028, 2965, 2928, 1755, 1732, 1591, 1568, 1485, 1454, 1362, 1215, 1150 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.20 (3H, d, J = 7.2 Hz), 2.09 (3H, s), 2.29 (3H, s), 3.07-3.16 (1H, m), 3.34 (1H, dd, J = 8.0, 14.0 Hz), 3.48 (1H, dd, J = 6.4, 14.0 Hz), 4.06 (1H, d, J = 15.6 Hz), 4.32 (1H, d, J = 15.6 Hz), 6.98 (1H, d, J = 7.2 Hz), 7.07 (1H, t, J = 7.6 Hz), 7.11-7.14 (3H, m), 7.17-7.35 (9H, m); ¹³C NMR (100 MHz, CDCl₃) δ 19.56, 19,64, 20.0, 39.3, 56.6, 57.9, 125.6, 126.7, 127.3, 127.5 (overlapped), 128.56, 128.59, 129.5, 130.2, 130.4, 132.3, 137.6, 137.8, 144.1, 157.2, 168.6; ESIHRMS: Found: m/z 401.2221. Calcd for C₂₆H₂₉N₂O₂: (M+H)⁺ 401.2229.

N'-Acetoxy-N-benzyl-N-(2-phenylpropyl)-1-naphthimidamide (1c):

51% yield (two steps) as a pale yellow oil (single stereoisomer, E/Z not determined) from *N*-hydroxy-1-naphthimidoyl chloride⁴ and *N*-benzyl-2-phenylpropan-1-amine.

IR (NaCl) 2965, 2930, 1749, 1574, 1495, 1454, 1366, 1219, 1250, 1193 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.19 (3H, d, *J* = 6.8 Hz), 2.14 (3H, s), 3.17-3.22 (1H, m), 3.35-3.41 (1H, m), 3.50-3.53 (1H, m), 4.09 (1H, d, *J* = 15.2 Hz), 4.34 (1H, d, *J* = 15.6 Hz), 7.15 (2H, d, *J* = 7.6 Hz), 7.21 (2H, d, *J* = 7.6 Hz), 7.25-7.45 (10H, m), 7.77-7.80 (1H, m), 7.82 (1H, d, *J* = 8.0 Hz), 7.98 (1H, d, *J* = 7.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 19.7, 20.0, 39.4, 56.8, 58.1, 124.9 (overlapped), 126.0, 126.8, 126.9, 127.4, 127.52, 127.54, 128.1, 128.60, 128.62, 128.8, 130.07, 130.14, 132.1, 133.4, 137.5, 144.1, 156.8, 168.6; ESIHRMS: Found: m/z 436.2225. Calcd for C₂₉H₂₉N₂O₂: (M+H)⁺ 436.2229.

N'-Acetoxy-N-benzyl-4-methoxy-N-(2-phenylpropyl)benzimidamide (1d):

93% combined yield (E/Z not determined, major:minor = 1.3:1) from acetic anhydride and *N*-benzyl-*N*'-hydroxy-4-methoxy-*N*-(2-phenylpropyl)benzimidamide (unstable, used immediately for the next acetylation), which was prepared from *N*-hydroxy-4-methoxybenzimidoyl chloride⁵ and *N*-benzyl-2-phenylpropan-1-amine in 78% yield. The E/Z mixture could be partially separated by column chromatography to give the less polar major stereoisomer in 47% yield, the E/Z mixture (major:minor = 1:5.9) in 34% yield and the polar minor stereoisomer in 12% yield.

The major stereoisomer:

Pale yellow oil. IR (NaCl) 2962, 2932, 1748, 1611, 1557, 1513, 1423, 1364, 1296, 1250, 1175 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.21 (3H, d, *J* = 6.4 Hz), 1.86 (3H, s), 3.22-3.29 (1H, m), 3.46-3.48 (2H, m), 3.79 (3H, s), 3.86 (1H, d, *J* = 15.6 Hz), 4.22 (1H, d, *J* = 15.2 Hz), 6.84 (2H, d, *J* = 8.8 Hz), 7.00 (2H, d, *J* = 8.0 Hz), 7.11 (2H, d, *J* = 7.2 Hz), 7.19-7.32 (8H, m); ¹³C NMR (100 MHz, CDCl₃) δ 18.9, 19,6, 36.8, 52.6, 54.4, 55.1, 113.6, 123.2, 126.4, 127.2, 127.3, 127.4, 128.3, 128.5, 129.3, 137.5, 144.5, 160.1, 166.6, 169.4; ESIHRMS: Found: m/z 439.2005. Calcd for C₂₆H₂₈N₂O₃Na: (M+Na)⁺ 439.1998.

The minor stereoisomer:

Pale yellow oil. IR (NaCl) 3028, 2963, 2932, 1755, 1732, 1607, 1557, 1514, 1362, 1254, 1215, 1172 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.17 (3H, d, *J* = 6.8 Hz), 2.14 (3H, s), 3.04-3.13 (1H, m), 3.23 (1H, dd, *J* = 8.8, 14.0 Hz), 3.36 (1H, dd, *J* = 6.4, 14.0 Hz), 3.79 (3H, s), 4.17 (1H, d, *J* = 15.2 Hz), 4.34 (1H, d, *J* = 14.8 Hz), 6.78 (2H, d, *J* = 8.8 Hz), 7.14-7.17 (4H, m), 7.23-7.36 (8H, m); ¹³C NMR (100 MHz, CDCl₃) δ 19.5, 20.0, 38.4, 55.3, 56.2, 57.2, 113.7, 124.5, 126.7, 127.4, 127.6, 127.8, 128.5, 128.7, 131.6, 137.8, 144.1, 159.7, 161.5, 168.8; ESIHRMS: Found: m/z 417.2173. Calcd for C₂₆H₂₉N₂O₃: (M+H)⁺ 417.2178.

N'-Acetoxy-*N*-benzyl-*N*-(2-phenylpropyl)-4-(trifluoromethyl)benzimidamide (1e):

59% yield (two steps) as a white solid (single stereoisomer, E/Z not determined) from *N*-hydroxy-1-naphthimidoyl chloride⁶ and *N*-benzyl-2-phenylpropan-1-amine.

mp: 49-51 °C; IR (NaCl) 2932, 1761, 1593, 1566, 1454, 1366, 1323, 1207, 1167, 1128 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.18 (3H, d, *J* = 7.2 Hz), 2.17 (3H, s), 3.06-3.15 (1H, m), 3.26 (1H, dd, *J* = 9.6, 14.0 Hz), 3.46 (1H, dd, *J* = 5.6, 14.0 Hz), 4.15 (1H, d, *J* = 15.2 Hz), 4.31 (1H, d, *J* = 14.8 Hz), 7.17 (2H, d, *J* = 7.2 Hz), 7.21-7.37 (10H, m), 7.51 (2H, d, *J* = 8.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 19.5, 19.8, 38.6, 56.2, 57.5, 123.7 (q, *J* = 270.7 Hz), 125.2 (q, *J* = 3.7 Hz), 126.9, 127.3, 127.6, 127.7, 128.6, 128.7, 130.3, 132.2 (q, *J* = 32.3 Hz), 136.4, 137.2, 143.8, 158.1, 168.2; ESIHRMS: Found: m/z 455.1943. Calcd for C₂₆H₂₆F₃N₂O₂: (M+H)⁺ 455.1946.

N'-Acetoxy-N-benzyl-3,5-difluoro-N-(2-phenylpropyl)benzimidamide (1f):

72% yield (two steps) as a colorless oil (single stereoisomer, E/Z not determined) from 3,5difluoro-*N*-hydroxybenzimidoyl chloride⁷ and *N*-benzyl-2-phenylpropan-1-amine.

IR (NaCl) 3028, 2965, 2930, 1769, 1755, 1620, 1402, 1362, 1331, 1200, 1121, 1001 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.18 (3H, d, *J* = 7.2 Hz), 2.16 (3H, s), 3.04-3.13 (1H, m), 3.24 (1H, dd, *J* = 9.6, 14.0 Hz), 3.44 (1H, dd, *J* = 5.6, 14.0 Hz), 4.14 (1H, d, *J* = 14.8 Hz), 4.30 (1H, d, *J* = 14.8 Hz), 6.61-6.65 (2H, m), 6.81 (1H, tt, *J* = 2.4, 8.8 Hz), 7.16-7.38 (10H, m); ¹³C NMR (100 MHz, CDCl₃) δ 19.5, 19.8, 38.5, 56.1, 57.4, 105.9 (t, *J* = 25.2 Hz), 113.0 (dd, *J* = 7.5, 19.0 Hz), 127.0, 127.3, 127.6, 127.8, 128.6, 128.8, 136.1 (t, *J* = 9.5 Hz), 137.0, 143.6, 157.4 (t, *J* = 2.8 Hz), 162.5 (dd, *J* = 2.3, 248.1 Hz), 168.1; ESIHRMS: Found: m/z 423.1880. Calcd for C₂₅H₂₅F₂N₂O₂: (M+H)⁺ 423.1884.

N'-Acetoxy-N-benzyl-N-(2-phenylpropyl)nicotinimidamide (1g):

72% yield (two steps) as a yellow oil (single stereoisomer, E/Z not determined) from *N*-hydroxynicotinimidoyl chloride⁵ and *N*-benzyl-2-phenylpropan-1-amine.

IR (NaCl) 3028, 2965, 1759, 1591, 1495, 1454, 1398, 1366, 1207, 1192, 1155 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.18 (3H, d, *J* = 6.8 Hz), 2.17 (3H, s), 3.05-3.14 (1H, m), 3.26 (1H, dd,

J = 9.6, 14.0 Hz), 3.45 (1H, dd, J = 5.6, 14.0 Hz), 4.18 (1H, d, J = 14.8 Hz), 4.33 (1H, d, J = 14.8 Hz), 7.15-7.37 (11H, m), 7.42 (1H, d, J = 8.0 Hz), 8.35 (1H, d, J = 2.0 Hz), 8.59 (1H, d, J = 4.8 Hz);¹³C NMR (100 MHz, CDCl₃) δ 19.4, 19.8, 38.5, 56.2, 57.5, 123.1, 126.9, 127.2, 127.5, 127.7, 128.6, 128.70, 128.74, 137.0, 137.4, 143.6, 150.6, 151.1, 156.9, 168.2; ESIHRMS: Found: m/z 388.2022. Calcd for C₂₄H₂₆N₃O₂: (M+H)⁺ 388.2025.

N'-Acetoxy-N-benzyl-N-(2-phenylpropyl)cyclohexanecarboximidamide (1h):

81% yield (two steps) as a colorless oil (inseparable E/Z mixture, E/Z not determined, major:minor = 5:1) from *N*-hydroxycyclohexanecarbimidoyl chloride⁵ and *N*-benzyl-2-phenylpropan-1-amine.

IR (NaCl) 2959, 2930, 2853, 1748, 1732, 1557, 1454, 1421, 1364, 1221 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.03-1.25 (6H × 1 + 6H × 0.2 , m), 1.51-1.93 (7H × 1 + 7H × 0.2 , m), 2.03 (3H × 0.2, s), 2.14 (3H × 1, s), 2.29-2.45 (1H × 1 + 1H × 0.2 , m), 2.98-3.50 (3H × 1 + 3H × 0.2 , m), 4.07-4.46 (2H × 1 + 2H × 0.2 , m), 7.10-7.31 (10H × 1 + 10H × 0.2 , m); ¹³C NMR (100 MHz, CDCl₃) major: δ 18.7, 20.0, 25.9, 26.70, 26.71, 28.26, 28.32, 37.7, 40.9, 53.8, 57.4, 126.4, 126.96, 127.0, 127.4, 128.36, 128.44, 138.4, 144.7, 167.4, 169.3; ESIHRMS: Found: m/z 415.2363. Calcd for C₂₅H₃₂N₂O₂Na: (M+Na)⁺ 415.2361.

N'-Acetoxy-N-benzyl-N-(3-methyl-2-phenylbutyl)benzimidamide (1i):

86% combined yield (E/Z not determined, major:minor = 11.4:1) from acetic anhydride and N-benzyl-N'-hydroxy-4-methoxy-N-(2-phenylpropyl)benzimidamide (unstable, used immediately for the next acetylation), which was prepared from N-hydroxybenzimidoyl chloride and N-butyl-3-methyl-2-phenylbutan-1-amine **A** (preparation method was shown below) in 79% yield. The E/Z mixture could be partially separated by column chromatography to give the less polar major stereoisomer in 5% yield and the E/Z mixture (major:minor = 10.6:1) in 81% yield. Only the major stereoisomer was characterized.

Colorless oil. IR (NaCl) 2959, 2930, 2872, 1749, 1557, 1498, 1470, 1427, 1364, 1221 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.71-0.74 (6H, m), 0.98-1.06 (5H, m), 1.30-1.33 (2H, m), 1.74-1.88 (4H, m), 2.50 (1H, s br), 2.77 (1H, s br), 2.96 (1H, s br), 3.49-3.55 (1H, m), 3.82-3.84 (1H, m), 6.84 (2H, s br), 7.19-7.33 (8H, m); ¹³C NMR (100 MHz, CDCl₃) δ 13.6, 19.6, 19.7, 20.8, 21.0, 29.6, 31.6, 48.8, 50.1, 50.6, 126.2, 127.7, 128.0 (overlapped), 128.8, 128.9, 131.6, 142.4, 166.4, 169.5; ESIHRMS: Found: m/z 381.2542. Calcd for C₂₄H₃₃N₂O₂: (M+H)⁺ 381.2542.

Preparation of N-butyl-3-methyl-2-phenylbutan-1-amine A.

To a 50 mL two-neck round-bottomed flask under a nitrogen atmosphere was added 3-methyl-2-phenylbutan-1-amine⁸ (1.572 g, 9.62 mmol), butyraldehyde (0.91 mL, 10.10 mmol) and anhydrous MgSO₄ (1.02 g, 8.47 mmol) in CH₂Cl₂ (10 mL). The reaction mixture was stirred at room temperature for 4 h. The mixture was then filterd and washed with CH₂Cl₂. The filtrate was then concentrated to give the crude imine, which was dissolved in 10 mL methanol. NaBH₄ (0.546 g, 14.43 mmol) was then added in four portions at room temperature. The reaction mixture was stirred for 0.5h after addition of the NaBH₄. The solvent was removed in vacuo and water (15 mL) was added. The mixture was then extracted with ethyl acetate and the combined organic layers were washed with brine, and then dried over MgSO₄. Removal of the solvents in vacuo gave the crude product, which was purified by flash column chromatography (silica gel; hexane:ethyl acetate = 75:25) to give amine **A** (0.578 g, 2.63 mmol) in 27% yield as a colorless oil.

IR (NaCl) 3312, 2955, 2928, 2870, 1493, 1452, 1385, 1366, 1130 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.71 (3H, d, *J* = 6.8 Hz), 0.84 (3H, t, *J* = 7.2 Hz), 0.98 (3H, d, *J* = 6.4 Hz), 1.16-1.39 (5H, m), 1.79-1.88 (1H, m), 2.44-2.60 (3H, m), 2.79-2.84 (1H, m), 2.99 (1H, dd, *J* = 4.0, 11.2 Hz), 7.15-7.32 (5H, m); ¹³C NMR (100 MHz, CDCl₃) δ 13.9, 20.3, 20.9, 21.0, 31.9, 32.0, 49.7, 52.7, 53.1, 126.2, 128.2, 128.4, 142.8; ESIHRMS: Found: m/z 220.2064. Calcd for C₁₅H₂₆N: (M+H)⁺ 220.2065.

N'-Acetoxy-N-phenyl-N-(2-phenylpropyl)benzimidamide (1j):

17% yield (two steps) as a yellow oil (single stereoisomer, E/Z not determined) from *N*-hydroxybenzimidoyl chloride and *N*-(2-phenylpropyl)aniline⁹. For this substrate, the intermediate *N*-hydroxy-*N*-phenyl-*N*-(2-phenylpropyl)benzimidamide (used for the next acetylation without purification) was prepared at elevated temperature (50 °C) and the *N*-hydroxybenzimidoyl chloride was added through a syringe pump over 0.5 h.

IR (NaCl) 3028, 2965, 2932, 1765, 1749, 1587, 1557, 1495, 1366, 1205, 1159 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.28 (3H, d, *J* = 6.8 Hz), 1.72 (3H, s), 3.12-3.21 (1H, m), 3.68-3.79 (2H, m), 6.92 (2H, d, *J* = 8.0 Hz), 6.97 (1H, t, *J* = 7.2 Hz), 7.06-7.08 (2H, m), 7.20-7.43 (10H, m); ¹³C NMR (100 MHz, CDCl₃) δ 18.9, 19.0, 40.2, 59.6, 119.9, 122.6, 126.8, 127.4, 128.38, 128.43, 128.8, 129.8, 130.7, 131.9, 143.5, 146.5, 158.0, 167.8; ESIHRMS: Found: m/z 373.1917. Calcd for C₂₄H₂₅N₂O₂: (M+H)⁺ 373.1916.

N'-Acetoxy-*N*-benzyl-*N*-(2,2-diphenylethyl)benzimidamide (1k):

96% combined yield (E/Z not determined, major:minor = 7.7:1) from acetic anhydride and *N*-benzyl-*N*-(2,2-diphenylethyl)-*N*'-hydroxybenzimidamide (recrystallized from CH₂Cl₂/hexane, unstable, used immediately for the next acetylation), which was prepared from *N*-hydroxybenzimidoyl chloride and *N*-benzyl-2,2-diphenylethanamine¹⁰ in 61% yield. The E/Z mixture could be separated by column chromatography to give polar major stereoisomer in 85% yield and the less polar minor stereoisomer in 11% yield.

The major stereoisomer:

White solid. mp: 118-119 °C; IR (NaCl) 3063, 3028, 3005, 1765, 1748, 1591, 1557, 1495, 1454, 1366, 1209, 1144 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.03 (3H, s), 3.88 (2H, d, *J* = 8.0 Hz), 4.22 (2H, s), 4.37 (1H, d, *J* = 8.0 Hz), 7.13 (2H, d, *J* = 7.2 Hz), 7.23-7.38 (18H, m); ¹³C NMR (100 MHz, CDCl₃) δ 19.8, 49.2, 55.2, 56.6, 126.8, 127.5, 127.6, 128.0, 128.2, 128.6, 128.7, 130.0, 130.5, 132.4, 137.5, 141.5, 159.4, 168.4; ESIHRMS: Found: m/z 449.2228. Calcd for C₃₀H₂₉N₂O₂: (M+H)⁺ 449.2229.

The minor stereoisomer:

Sticky colorless oil. IR (NaCl) 3061, 3028, 2926, 1755, 1748, 1603, 1557, 1495, 1452, 1364, 1219, 1150 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.83 (3H, s), 3.90 (2H, s), 3.94 (2H, d, J = 7.6 Hz), 4.87 (1H, s br), 6.99-7.00 (2H, m), 7.09 (2H, d, J = 7.2 Hz), 7.19-7.31 (16H, m); ¹³C NMR (100 MHz, CDCl₃) δ 19.5, 47.3, 52.1, 52.9, 126.5, 127.1, 127.3, 127.7, 128.3, 128.4 (overlapped), 128.6, 129.2, 131.1, 137.4, 142.1, 166.6, 169.3; ESIHRMS: Found: m/z 449.2237. Calcd for C₃₀H₂₉N₂O₂: (M+H)⁺ 449.2229.

N'-Acetoxy-*N*-benzyl-*N*-(2-phenyl-2-(1-tosyl-1*H*-indol-3-yl)ethyl)benzimidamide (11):

95% yield as a white solid (single stereoisomer, E/Z not determined) from acetic anhydride and *N*-benzyl-*N*'-hydroxy-*N*-(2-phenyl-2-(1-tosyl-1*H*-indol-3-yl)ethyl)benzimidamide (recrystallized from CH₂Cl₂/hexane, unstable, used immediately for the next acetylation), which was prepared from *N*-hydroxybenzimidoyl chloride and *N*-benzyl-2-phenyl-2-(1-tosyl-1*H*-indol-3-yl)ethanamine **B** (preparation method was shown below) in 41% yield as a white solid.

mp: 76-77 °C; IR (NaCl) 3009, 2962, 1755, 1591, 1566, 1447, 1368, 1211, 1173, 1132 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.92 (3H, s), 2.31 (3H, s), 3.65 (1H, dd, J = 9.6, 14.4 Hz), 3.95 (1H, dd, J = 6.0, 14.0 Hz), 4.14 (1H, d, J = 15.2 Hz), 4.33 (1H, d, J = 14.8 Hz), 4.44 (1H, dd, J = 6.4, 8.8 Hz), 6.99 (1H, d, J = 7.6 Hz), 7.04 (1H, t, J = 8.0 Hz), 7.15 (2H, d, J = 8.0 Hz), 7.20-7.40 (17H, m), 7.68 (2H, d, J = 8.0 Hz), 7.89 (1H, d, J = 8.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 19.7, 21.5, 41.2, 54.6, 56.5, 113.6, 119.7, 122.8, 123.09. 123.14, 124.8, 126.7, 127.3, 127.80, 127.83, 128.2, 128.4, 128.7, 128.8, 129.8, 129.99, 130.03, 130.6, 132.3, 135.0, 135.1, 137.3, 140.1, 144.9, 159.5, 168.4; ESIHRMS: Found: m/z 642.2426. Calcd for C₃₉H₃₆N₃O₄S: (M+H)⁺ 642.2427.

Preparation of N-benzyl-2-phenyl-2-(1-tosyl-1H-indol-3-yl)ethanamine B.

Amine **B** was prepared in a similar way to amine **A** from 2-phenyl-2-(1-tosyl-1*H*-indol-3-yl)ethanamine¹¹ and benzaldehyde (1 equiv was used).

Yield: 88%; Pale yellow oil; IR (NaCl) 3331, 2920, 2824, 1599, 1447, 1368, 1277, 1173, 1123, 1092 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.46 (1H, s br), 2.29 (3H, s), 3.18 (1H, dd, J = 7.6, 11.6 Hz), 3.29 (1H, dd, J = 6.4, 11.6 Hz), 3.79 (1H, d, J = 13.6 Hz), 3.83 (1H, d, J = 13.2 Hz), 4.34 (1H, t, J = 7.2 Hz), 7.08 (1H, t, J = 7.6 Hz), 7.13 (2H, d, J = 8.0 Hz), 7.19-7.32 (12H, m), 7.46 (1H, s), 7.69 (2H, d, J = 8.0 Hz), 7.94 (1H, d, J = 8.8 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 21.5, 42.8, 53.6, 53.8, 113.7, 120.0, 123.0, 123.1, 124.5, 124.7, 126.7, 126.87, 126.94, 127.9, 128.0, 128.4, 128.6, 129.7, 130.5, 135.1, 135.5, 140.1, 141.3, 144.7; ESIHRMS: Found: m/z 481.1951. Calcd for C₃₀H₂₉N₂O₂S: (M+H)⁺ 481.1950.

N'-Acetoxy-N-isobutyl-N-phenylbenzimidamide (1m):

25% yield (two steps) as a yellow oil (inseparable E/Z mixture, E/Z not determined, major:minor = 5:1) from *N*-hydroxybenzimidoyl chloride and *N*-isobutylaniline¹². For this substrate, the intermediate *N*-hydroxy-*N*-isobutyl-*N*-phenylbenzimidamide (used for the next acetylation without purification) was prepared at elevated temperature (50 °C). *N*-Hydroxybenzimidoyl chloride (2.5 equiv) was added through a syringe pump over 0.5 h and triethylamine (3.5 equiv) was used.

IR (NaCl) 2961, 2934, 2870, 1765, 1759, 1587, 1557, 1495, 1385, 1366, 1207 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.90 (6H × 1, d, *J* = 6.4), 1.01 (6H × 0.2, d, *J* = 6.4), 1.71 (3H × 1, s), 1.88 (3H × 0.2, s), 2.00-2.10 (1H × 1, m), 2.18-2.29 (1H × 0.2, m), 3.38 (2H × 1, d, *J* = 7.2), 3.71 (2H × 0.2, d, *J* = 7.6), 6.97-7.02 (3H × 1 + 3H × 0.2, m), 7.10 (2H × 0.2, t, *J* = 8.0), 7.18-7.27 (2H × 1 + 5H × 0.2, m), 7.38-7.48 (3H × 1, m), 7.63-7.65n (2H × 1, m); ¹³C NMR (100 MHz, CDCl₃) major: δ 18.9, 20.0, 29.2, 59.3, 119.6, 122.3, 128.5, 128.8, 129.7, 130.7, 132.2, 146.4, 158.7, 167.9; ESIHRMS: Found: m/z 311.1762. Calcd for C₁₉H₂₃N₂O₂: (M+H)⁺ 311.1760.

N'-Acetoxy-*N*-benzyl-*N*-(chroman-4-ylmethyl)benzimidamide (1n):

90% combined yield (E/Z not determined, ratio 1.7:1) from acetic anhydride and *N*-benzyl-*N*-(chroman-4-ylmethyl)-*N*'-hydroxybenzimidamide (unstable, used immediately for the next acetylation), which was prepared from *N*-hydroxybenzimidoyl chloride and *N*-benzyl-1-(chroman-4-yl)methanamine **D** (preparation method was shown below) in 77% yield. The E/Z mixture could be separated by column chromatography to give the polar major stereoisomer in 57% yield and the less polar minor stereoisomer in 33% yield.

The major stereoisomer:

Colorless oil. IR (NaCl) 3063, 3028, 2945, 1748, 1607, 1582, 1557, 1427, 1364, 1269, 1223, 1152 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.90-1.94 (1H, m), 2.07-2.16 (1H, m), 2.23 (3H, s), 3.08-3.16 (2H, m), 3.29-3.36 (1H, m), 3.71-3.77 (1H, m), 4.09-4.14 (1H, m), 4.59 (1H, d, J = 14.8 Hz), 4.72 (1H, d, J = 14.4 Hz), 6.67-6.75 (3H, m), 7.01-7.06 (1H, m), 7.25-7.45 (8H, m), 7.51 (2H, d, J = 7.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 20.1, 24.0, 32.2, 54.8, 55.8, 62.3, 116.9, 120.2, 122.4, 127.9, 128.1, 128.3, 128.7, 128.9, 129.0, 129.9, 130.8, 132.3, 137.2, 154.7, 160.0, 168.8; ESIHRMS: Found: m/z 415.2018. Calcd for C₂₆H₂₇N₂O₃: (M+H)⁺ 415.2022.

The minor stereoisomer:

Colorless oil. IR (NaCl) 3063, 3028, 2945, 2882, 1748, 1607, 1582, 1557, 1489, 1427, 1364, 1221, 1152 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.80 (3H, s), 1.86-1.89 (1H, m), 2.02-2.08 (1H, m), 3.39-3.41 (3H, m), 3.80 (1H, s br), 4.07-4.10 (1H, m), 4.32-4.35 (1H, m), 4.47 (1H, s br), 6.73-6.80 (2H, m), 6.93 (1H, s br), 7.04 (1H, t, *J* = 7.6 Hz), 7.23-7.39 (10H, m); ¹³C NMR (100 MHz, CDCl₃) δ 19.3, 24.2, 30.7, 52.1, 52.7, 62.2, 116.6, 120.0, 122.7, 127.4, 127.54 (overlapped), 127.56, 128.3, 128.5, 129.3, 129.5, 130.9, 136.9, 154.5, 166.6, 168.9; ESIHRMS: Found: m/z 437.1837. Calcd for C₂₆H₂₆N₂O₃Na: (M+H)⁺ 437.1841.

To a suspension of LiAlH₄ (0.285 g, 7.50 mmol) in diethyl ether (5 mL) under an

inert atmosphere was added chroman-4-carbonitrile¹³ (0.597 g, 3.75 mmol) as a solution in the same solvent (5 mL). The mixture was stirred for 18 h at room temperature. The reaction was quenched by slow addition of 20% aqueous KOH solution (1 mL) at 0 °C. The solid was filtered, and washed with diethyl ether. The combined filtrates were washed with H₂O, dried over MgSO₄ and concentrated. Purification of the crude materials by flash column chromatography (silica gel; ethyl acetate:triethylamine = 95:5) afforded chroman-4-ylmethanamine **C** (0.406 g, 2.49 mmol) in 66 % yield as a colorless oil.

IR (NaCl) 3374, 3306, 2924, 2870, 1605, 1580, 1489, 1452, 1306, 1269, 1223, 1117 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.43 (2H, s), 1.97-2.11 (2H, m), 2.81-2.86 (1H, m), 2.91 (1H, dd, *J* = 8.8, 12.8 Hz), 3.07 (1H, dd, *J* = 4.8, 12.8 Hz), 4.17-4.20 (2H, m), 6.81-6.89 (2H, m), 7.10-7.16 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ 24.9, 36.8, 47.0, 63.4, 117.0, 120.2, 123.7, 127.6, 129.0, 155.0; ESIHRMS: Found: m/z 164.1077. Calcd for C₁₀H₁₄NO: (M+H)⁺ 164.1075.

Amine **D** was prepared in a similar way to amine **A** from amine **C** and benzaldehyde.

Yield: 80%; Colorless oil; IR (NaCl) 3333, 3026, 2924, 2879, 1607, 1580, 1489, 1454, 1308, 1269, 1225, 1119 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.47 (1H, s br), 2.03-2.08 (2H, m), 2.81 (1H, dd, J = 10.0, 12.8 Hz), 2.93-2.99 (2H, m), 3.79 (1H, d, J = 13.2), 3.86 (1H, d, J = 13.2), 4.14-4.17 (2H, m), 6.79-6.86 (2H, m), 7.07-7.14 (2H, m), 7.23-7.33 (5H, m); ¹³C NMR (100 MHz, CDCl₃) δ 25.5, 33.8, 54.0, 54.4, 63.4, 116.9, 120.1, 124.1, 127.0, 127.5, 128.0, 128.4, 129.1, 140.4, 154.9; ESIHRMS: Found: m/z 254.1549. Calcd for C₁₇H₂₀NO: (M+H)⁺ 254.1545.

N'-Acetoxy-N-benzyl-N-((2,3-dihydro-1 -inden-1-yl)methyl)benzimidamide (10):

90% combined yield (E/Z not determined, ratio 1.2:1) from acetic anhydride and *N*-benzyl-*N*-((2,3-dihydro-1*H*-inden-1-yl)methyl)-*N*'-hydroxybenzimidamide (unstable, used immediately for the next acetylation), which was prepared from *N*-hydroxybenzimidoyl chloride and *N*-benzyl-1-(2,3-dihydro-1*H*-inden-1-yl)methanamine¹⁴ in 78% yield. The E/Z mixture could be

partially separated by column chromatography to give the less polar major stereoisomer in 42% yield, the E/Z mixture (major:minor = 1:5.5) in 46% yield and the polar minor stereoisomer in 2% yield.

The major stereoisomer:

Colorless oil. IR (NaCl) 3028, 2941, 2849, 1748, 1557, 1497, 1427, 1364, 1223 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.72-1.78 (1H, m), 1.81 (3H, s), 2.21-2.30 (1H, m), 2.76-2.79 (2H, m), 3.25 (1H, s br), 3.32-3.35 (1H, m), 3.67 (1H, s br), 4.50 (2H, s br), 7.07-7.37 (14H, m); ¹³C NMR (100 MHz, CDCl₃) δ 19.5, 30.1, 30.9, 42.5, 51.4, 52.0, 124.3, 124.5, 126.1, 126.8, 127.3, 127.65, 127.72, 128.3, 128.6, 129.3, 131.3, 137.3, 144.0, 144.4, 166.9, 169.3; ESIHRMS: Found: m/z 399.2067. Calcd for C₂₆H₂₇N₂O₂: (M+H)⁺ 399.2073.

The minor stereoisomer:

Colorless oil. IR (NaCl) 3065, 3028, 2941, 1765, 1748, 1591, 1574, 1557, 1447, 1402, 1366, 1211 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.74-1.82 (1H, m), 2.20 (3H, s), 2.29-2.37 (1H, m), 2.78-2.86 (2H, m), 3.00-3.06 (1H, m), 3.48-3.54 (2H, m), 4.57 (1H, d, *J* = 14.8 Hz), 4.62 (1H, d, *J* = 14.8 Hz), 7.00 (1H, d, *J* = 7.2 Hz), 7.07-7.19 (3H, m), 7.29-7.43 (8H, m), 7.52 (2H, d, *J* = 7.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 20.1, 30.0, 30.9, 43.6, 54.9, 56.0, 123.7, 124.7, 126.2, 126.9, 127.7, 128.0, 128.5, 128.8, 130.0, 130.5, 132.8, 137.6, 144.0, 144.1, 159.8, 168.8; ESIHRMS: Found: m/z 421.1898. Calcd for C₂₆H₂₆N₂O₂Na: (M+Na)⁺ 421.1892.

N-(Adamantan-2-ylmethyl)-*N*-benzyl-*N*'-(pivaloyloxy)benzimidamide (1p):

97% yield as a white solid (single stereoisomer, E/Z not determined) from pivalic anhydride (1 equiv was used) and *N*-(adamantan-2-ylmethyl)-*N*-benzyl-*N*'-hydroxybenzimidamide (recrystallized from ethyl acetate/hexane, unstable, used immediately for the next acylation), which was prepared from *N*-hydroxybenzimidoyl chloride and *N*-(adamantan-2-ylmethyl) benzylamine **E** (preparation method was shown below) in 48% yield as a white solid.

mp: 66-67 °C. IR (NaCl) 2972, 2905, 2853, 1748, 1589, 1557, 1476, 1454, 1402, 1271, 1121 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.31 (9H, s), 1.43-1.52 (4H, m), 1.68-1.90 (10H, m), 2.07-2.11 (1H, m), 3.16 (2H, d, *J* = 7.6 Hz), 4.44 (2H, s), 7.31-7.43 (8H, m), 7.59-7.61 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ 27.5, 27.7, 28.2, 29.8, 31.6, 38.0, 38.6, 39.0, 42.2, 51.6, 55.0, 127.6, 128.2, 128.4, 128.7, 130.2, 130.7, 133.0, 137.9, 161.1, 175.3; ESIHRMS: Found: m/z 459.3012. Calcd for C₃₀H₃₉N₂O₂: (M+H)⁺ 459.3012.

Preparation of N-(adamantan-2-ylmethyl) benzylamine:

Amine **E** was prepared in a similar way to amine **A** from adamantan-2-ylmethanamine¹⁶ and benzaldehyde.

Yield: 84%; Colorless oil; IR (NaCl) 3308, 3026, 2903, 2849, 1495, 1452, 1346, 1123, 1099 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.50-1.53 (2H, m), 1.72-1.89 (14H, m), 2.72 (2H, d, *J* = 7.2 Hz), 3.81 (2H, s), 7.21-7.36 (5H, m); ¹³C NMR (100 MHz, CDCl₃) δ 28.0, 28.4, 30.6, 31.9, 38.3, 39.1, 44.6, 51.9, 54.2, 126.8, 128.0, 128.3, 140.6; ESIHRMS: Found: m/z 254.2064. Calcd for C₁₈H₂₆N₂: (M+H)⁺ 254.2065.

N'-Acetoxy-N-benzyl-N-phenethylbenzimidamide (1q):

51% yield (two steps) as a white solid (single stereoisomer, E/Z not determined) from *N*-hydroxybenzimidoyl chloride and *N*-benzyl-2-phenylethanamine¹⁵.

mp: 75-77 °C. IR (NaCl) 3026, 2930, 2860, 1761, 1659, 1572, 1557, 1495, 1447, 1418, 1366, 1209, 1136; ¹H NMR (400 MHz, CDCl₃) δ 1.83 (3H, s), 2.88 (2H, s br), 3.36 (2H, s br), 4.32 (2H, s br), 7.02-7.26 (9H, m), 7.28-7.41 (6H, m); ¹³C NMR (100 MHz, CDCl₃) δ 19.6, 33.3, 49.4, 52.1, 126.3, 127.4, 127.6, 127.7, 128.4 (overlapped), 128.6, 128.9, 129.3, 131.4, 137.4, 139.0, 166.5, 169.4; ESIHRMS: Found: m/z 373.1917. Calcd for C₂₄H₂₅N₂O₂: (M+H)⁺ 373.1916.

N'-Acetoxy-N-phenethyl-N-phenylbenzimidamide (1r):

21% yield (two steps) as a yellow oil (single stereoisomer, E/Z not determined) from *N*-hydroxybenzimidoyl chloride and *N*-(2-phenylpropyl)aniline⁹. For this substrate, the intermediate *N*'-hydroxy-*N*-phenyl-*N*-(2-phenylpropyl)benzimidamide (used for the next

acetylation without purification) was prepared at elevated temperature (50 $^{\circ}$ C) and the *N*-hydroxybenzimidoyl chloride was added through a syringe pump over 0.5 h.

IR (NaCl) 3062, 3028, 2936, 1776, 1748, 1601, 1587, 1557, 1495, 1393, 1368, 1204; ¹H NMR (400 MHz, CDCl₃) δ 1.75 (3H, s), 2.93 (2H, t, *J* = 8.0 Hz), 3.85 (2H, t, *J* = 8.0 Hz), 7.00-7.06 (5H, m), 7.21-7.28 (5H, m), 7.34-7.45 (3H, m), 7.54-7.56 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ 19.1, 35.5, 53.2, 120.7, 123.0, 126.6, 128.5, 128.6, 128.8, 129.0, 129.7, 130.7, 132.3, 138.2, 145.5, 158.2, 168.0; ESIHRMS: Found: m/z 359.1762. Calcd for C₂₃H₂₃N₂O₂: (M+H)⁺ 359.1760.

3. Synthesis of N-acetyl amidoxime 1s

To a 150 mL two-neck round-bottomed flask (fitted with a water bath) was added 2phenylethanamine (5.03 mL, 40.0 mmol) and triethylamine (8.36 mL, 60.0 mmol) in DMF (40 mL). *N*-Hydroxybenzimidoyl chloride (6.846 g, 44.0 mmol) in DMF (20 mL) was added dropwise to the stirred mixture. After the addition was complete, the reaction mixture was stirred at room temperature for 1 h. The reaction was quenched with water, and the aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with brine, dried over MgSO₄, and concentrated. The resulting residue was purified by flash column chromatography (silica gel; hexane:ethyl acetate = 85:15 then 80:20) to afford *N*'-hydroxy-*N*phenethylbenzimidamide **F** (7.559 g, 31.5 mmol, single stereoisomer, *E/Z* not determined) in 79% yield as a pale yellow oil.

IR (NaCl) 3385, 3061, 2941, 1627, 1494, 1454, 1392, 1145 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.65 (2H, t, *J* = 7.2 Hz), 3.22 (2H, t, *J* = 6.8 Hz), 5.43 (1H, s br), 7.03-7.05 (2H, m), 7.15-7.40 (8H, m); ¹³C NMR (100 MHz, CDCl₃) δ 37.8, 45.0, 126.3, 128.2, 128.4, 128.5, 128.7, 129.3, 131.4, 138.5, 156.2; ESIHRMS: Found: *m*/*z* 241.1336. Calcd for C₁₅H₁₇N₂O: (M+H)⁺ 241.1341.

To a 50 mL two-neck round-bottomed flask was added **F** (1.813 g, 7.55 mmol), triethylamine (4.21 mL, 30.2 mmol) and *N*,*N*-dimethylpyridin-4-amine (0.092 g, 0.75 mmol) in THF (10 mL). Acetic anhydride (2.14 mL, 22.7 mmol) was added in a dropwise manner. The reaction mixture was stirred at room temperature for 24 h. The reaction was quenched

with water, and the aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with brine, dried over MgSO₄, and concentrated. The resulting residue was purified by flash column chromatography (silica gel; hexane:ethyl acetate = 85:15) to afford **1s** (2.159 g, 6.66 mmol, single stereoisomer, *E/Z* not determined) in 88% yield as a yellow oil.

N-((Acetoxyimino)(phenyl)methyl)-*N*-phenethylacetamide (1s):

IR (NaCl) 3028, 2938, 1782, 1682, 1601, 1568, 1447, 1385, 1371, 1296, 1190, 1142; ¹H NMR (400 MHz, CDCl₃) δ 2.04 (3H, s), 2.20 (3H, s), 2.81 (1H, s br), 2.96 (1H, s br), 3.32 (1H, s br), 4.16 (1H, s br), 7.12-7.26 (5H, m), 7.46 (2H, t, *J* = 7.6 Hz), 7.55 (1H, t, *J* = 7.6 Hz), 7.72-7.74 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ 19.4, 21.9, 34.4, 47.6, 126.5, 128.0, 128.4, 128.6, 129.1, 129.8, 132.2, 137.9, 155.4, 167.1, 169.7; ESIHRMS: Found: m/z 325.1555. Calcd for C₁₉H₂₁N₂O₃: (M+H)⁺ 325.1552.

4. Synthesis of *N*-bezoyl amidoxime 6

Preparation of N-bezoyl amidoxime 6a:

To a 50 mL two-neck round-bottomed flask was added **F** (1.076 g, 4.48 mmol) in pyridine (8 mL). Benzoyl chloride (1.30 mL, 11.2 mmol) was added in a dropwise manner. The reaction mixture was stirred at room temperature for 18 h. The solvent was evaporated and quenched with 1M citric acid, the aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with 2M Na₂CO₃ and water, dried over MgSO₄, and concentrated. The resulting residue was purified by flash column chromatography (silica gel; hexane:ethyl acetate = 91:9 then 85:15) to afford **6a** as the major compound, which could be repurified by flash column chromatography (silica gel; hexane:CH₂Cl₂ = 50:50 then ethyl acetate) to give pure **6a** (1.364 g, 3.04 mmol, single stereoisomer, *E/Z* not determined) in 68% yield as a sticky colorless oil.

N-(((Benzoyloxy)imino)(phenyl)methyl)-*N*-phenethylbenzamide (6a):

IR (NaCl) 3026, 2953, 1748, 1667, 1601, 1493, 1449, 1368, 1331, 1277, 1242, 1134, 1082, 1061; ¹H NMR (400 MHz, CDCl₃) δ 3.30 (2H, t, *J* = 7.6 Hz), 4.30 (2H, t, *J* = 7.6 Hz), 7.15-7.38 (17H, m), 7.52 (1H, t, *J* = 7.2 Hz), 7.80 (2H, d, *J* = 8.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 34.9, 50.8, 126.4, 127.8, 128.1, 128.2, 128.4, 128.46, 128.48, 129.0, 129.2, 129.6, 130.55, 130.63, 131.0, 133.3, 136.6, 138.4, 162.7, 163.2, 172.2; ESIHRMS: Found: m/z 449.1872. Calcd for C₂₉H₂₅N₂O₃: (M+H)⁺ 449.1865.

A typical procedure for synthesis of *N*-bezoyl amidoxime 6b:

To a 150 mL two-neck round-bottomed flask (fitted with a water bath) was added benzylamine (5.50 mL, 50.4 mmol) and triethylamine (10.5 mL, 75.6 mmol) in DMF (40 mL). *N*-Hydroxybenzimidoyl chloride (8.627 g, 55.5 mmol) in DMF (10 mL) was added dropwise to the stirred mixture. After the addition was complete, the reaction mixture was stirred at room temperature for 1 h. The reaction was quenched with water, and the aqueous layer was extracted with ethyl acetate. The combined organic layers were washed three times with water, dried over MgSO₄, and concentrated. The resulting residue was recrystallized from ethyl acetate/hexane to afford *N*-benzyl-*N*'-hydroxybenzimidamide **G** (8.873 g, 39.2 mmol, single stereoisomer, *E/Z* not determined) in 78% yield as a white solid. mp: 117-118 °C; IR (NaCl) 3392, 3053, 2986, 1628, 1576, 1497, 1477, 1146 cm⁻¹; ¹H NMR

mp: 117-118 °C; IR (NaCl) 3392, 3053, 2986, 1628, 1576, 1497, 1477, 1146 cm °; ⁴H NMR (400 MHz, CDCl₃) δ 4.24 (2H, s), 5.70 (1H, s), 7.19-7.48 (10H, m), 8.68 (1H, s br); ¹³C NMR (100 MHz, CDCl₃) δ 47.4, 126.8, 127.2, 128.4, 128.5, 128.6, 129.6, 131.2, 139.5, 156.5; ESIHRMS: Found: *m/z* 227.1183. Calcd for C₁₄H₁₅N₂O: (M+H)⁺ 227.1184.

To a 150 mL two-neck round-bottomed flask was added **G** (8.873 g, 39.2 mmol), triethylamine (8.20 mL, 58.8 mmol) and *N*,*N*-dimethylpyridin-4-amine (0.240 g, 1.96 mmol) in THF (50 mL). Pivalic anhydride (7.378 g, 39.6 mmol) was added in a dropwise manner. The reaction mixture was stirred at room temperature for 12 h. The reaction was quenched

with water, and the aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with water, dried over MgSO₄, and concentrated to give analytically pure *N*-benzyl-*N*'-(pivaloyloxy)benzimidamide **H** (11.289 g, 36.4 mmol, single stereoisomer, E/Z not determined) in 93% yield as a white solid.

mp: 121-122 °C; IR (NaCl) 3424, 3017, 2976, 1746, 1609, 1574, 1477, 1271, 1125, 1028; ¹H NMR (400 MHz, CDCl₃) δ 1.30 (9H, s), 4.28 (2H, d, J = 6.4 Hz), 5.48 (1H, t, J = 6.0 Hz), 7.18 (2H, d, J = 6.8 Hz), 7.26-7.45 (6H, m), 7.51-7.53 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ 27.4, 38.8, 47.8, 126.5, 127.6, 128.4, 128.8, 128.9, 129.6, 130.3, 138.6, 160.3, 174.7; ESIHRMS: Found: m/z 311.1765. Calcd for C₁₉H₂₃N₂O₂: (M+H)⁺ 311.1760.

To a 50 mL two-neck round-bottomed flask was added **H** (3.116 g, 10.0 mmol) in pyridine (10 mL). Benzoyl chloride (1.39 mL, 12.0 mmol) was added in a dropwise manner. The reaction mixture was stirred at 55 °C for 12 h. The solvent was evaporated and quenched with 1M citric acid, the aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with 2M Na₂CO₃ and water, dried over MgSO₄, and concentrated. The resulting residue was purified by flash column chromatography (silica gel; hexane:ethyl acetate = 91:9 then 85:15) to afford **6b** (4.008 g, 9.67 mmol, single stereoisomer, *E/Z* not determined) in 97% yield as a white solid.

N-Benzyl-*N*-(phenyl((pivaloyloxy)imino)methyl)benzamide (6b):

mp: 82-83 °C; IR (NaCl) 3063, 2974, 1765, 1759, 1682, 1667, 1601, 1495, 1447, 1360, 1323, 1238, 1105, 1028; ¹H NMR (400 MHz, CDCl₃) δ 1.06 (9H, s), 5.31 (2H, s), 6.82-6.84 (2H, m), 7.05 (2H, t, *J* = 7.6 Hz), 7.10-7.31 (7H, m), 7.36 (2H, t, *J* = 7.6 Hz), 7.64-7.66 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ 26.8, 38.3, 52.8, 127.7 (overlapped), 127.8, 128.0, 128.4, 128.7, 129.7, 130.1, 130.4, 131.2, 136.8, 136.9, 162.5, 172.0, 174.7; ESIHRMS: Found: m/z 415.2024. Calcd for C₂₆H₂₇N₂O₃: (M+H)⁺ 415.2022.

N-Benzyl-*N*-((3,4-dimethoxyphenyl)((pivaloyloxy)imino)methyl)benzamide (6c):

97% yield as a white solid (single stereoisomer, E/Z not determined) from *N*-benzyl-3,4dimethoxy-*N*'-(pivaloyloxy)benzimidamide and benzoyl chloride.

mp: 52-53 °C; IR (NaCl) 2972, 2836, 2872, 1748, 1674, 1599, 1514, 1454, 1418, 1312, 1265, 1225, 1138, 1105, 1026; ¹H NMR (400 MHz, CDCl₃) δ 1.12 (9H, s), 3.52 (3H, s), 3.78 (3H, s), 5.32 (2H, s), 6.20 (1H, d, *J* = 2.0 Hz), 6.45 (1H, dd, *J* = 2.0, 8.4 Hz), 6.52 (1H, d, *J* = 1.6 Hz), 7.12-7.37 (8H, m), 7.65-7.67 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ 27.0, 38.3, 53.0, 55.5, 55.8, 109.8, 111.7, 122.6, 123.9, 127.6, 127.8, 127.9, 128.5, 129.9, 130.3, 136.9, 137.0, 147.8, 150.3, 162.1, 171.9, 174.8; ESIHRMS: Found: m/z 497.2049. Calcd for C₂₈H₃₀N₂O₅Na: (M+H)⁺ 497.2052.

N-Benzyl-3,4-dimethoxy-N'-(pivaloyloxy)benzimidamide

67% yield (recrystallized from ethyl acetate/diethyl ether) as a white solid (single stereoisomer, E/Z not determined) from *N*-benzyl-*N*'-hydroxy-3,4-dimethoxybenzimidamide and pivalic anhydride.

mp: 130-131 °C; IR (NaCl) 3356, 3015, 2972, 1738, 1732, 1614, 1582, 1520, 1462, 1422, 1261, 1217, 1138, 1028; ¹H NMR (400 MHz, CDCl₃) δ 1.31 (9H, s), 3.77 (3H, s), 3.89 (3H, s), 4.31 (2H, d, *J* = 6.4), 5.48 (1H, t, *J* = 6.0), 6.87 (1H, d, *J* = 8.4 Hz), 6.97 (1H, d, *J* = 1.6 Hz), 7.12 (1H, dd, *J* = 1.6, 8.4 Hz), 7.20 (2H, d, *J* = 7.2 Hz), 7.27-7.36 (3H, m); ¹³C NMR (100 MHz, CDCl₃) δ 27.5, 38.9, 47.9, 55.8, 55.9, 110.8, 111.9, 122.0, 124.9, 126.4, 127.5, 128.8, 139.0, 148.8, 150.7, 160.4, 174.8; ESIHRMS: Found: m/z 371.1972. Calcd for C₂₁H₂₇N₂O₄: (M+H)⁺ 371.1971.

N-benzyl-N'-hydroxy-3,4-dimethoxybenzimidamide

67% yield (recrystallized from ethyl acetate/diethyl ether) as a white solid (single stereoisomer, E/Z not determined) from *N*-hydroxy-3,4-dimethoxybenzimidoyl chloride¹⁷ and benzylamine.

mp: 82-83 °C; IR (NaCl) 3400, 3208, 3022, 2938, 2839, 1643, 1607, 1522, 1425, 1258, 1231, 1140, 1022; ¹H NMR (400 MHz, CDCl₃) δ 3.70 (3H, s), 3.86 (3H, s), 4.25 (2H, s), 5.77 (1H, s br), 6.83 (1H, d, *J* = 8.4 Hz), 6.92 (1H, d, *J* = 2.0 Hz), 7.05 (1H, dd, *J* = 2.0, 8.4 Hz), 7.19-7.31 (5H, m); ¹³C NMR (100 MHz, CDCl₃) δ 47.3, 55.7, 55.8, 110.7, 111.5, 121.2, 123.5, 126.6, 127.0, 128.5, 139.9, 148.6, 150.0, 156.4; ESIHRMS: Found: m/z 287.1395. Calcd for C₁₆H₁₉N₂O₃: (M+H)⁺ 287.1396.

N-Benzyl-*N*-((2-fluorophenyl)((pivaloyloxy)imino)methyl)benzamide (6d):

45% yield as a white solid (single stereoisomer, E/Z not determined) from *N*-benzyl-2-fluoro-*N*-(pivaloyloxy)benzimidamide and benzoyl chloride.

mp: 74-75 °C; IR (NaCl) 3028, 2974, 1759, 1668, 1595, 1493, 1449, 1366, 1323, 1269, 1240, 1103, 1028; ¹H NMR (400 MHz, CDCl₃) δ 1.06 (9H, s), 5.38 (2H, s), 6.58-6.64 (2H, m), 6.89 (1H, t, *J* = 7.6 Hz), 7.11-7.16 (3H, m), 7.21 (1H, d, *J* = 7.6 Hz), 7.25-7.27 (2H, m), 7.31 (1H, d, *J* = 7.2 Hz), 7.37 (2H, t, *J* = 7.2 Hz), 7.68-7.70 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ 26.8, 38.3, 53.0, 115.2 (d, *J* = 21.5 Hz), 120.3 (d, *J* = 14.5 Hz), 123.8 (d, *J* = 3.3 Hz), 127.4, 127.6 (d, *J* = 2.5 Hz), 127.8, 128.0, 128.5, 129.8, 130.6, 132.5 (d, *J* = 8.7 Hz), 136.4, 137.0, 157.6 (d, *J* = 1.7 Hz), 158.7 (d, *J* = 254.3 Hz), 171.9, 174.4; ESIHRMS: Found: m/z 433.1925. Calcd for C₂₆H₂₆FN₂O₃: (M+H)⁺ 433.1927.

N-Benzyl-2-fluoro-N'-(pivaloyloxy)benzimidamide

83% yield (recrystallized from ethyl acetate/diethyl ether) as a white solid (single stereoisomer, E/Z not determined) from *N*-benzyl-2-fluoro-*N*'-hydroxybenzimidamide and pivalic anhydride.

mp: 112-113 °C; IR (NaCl) 3364, 2972, 1736, 1612, 1584, 1501, 1456, 1406, 1269, 1221, 1134; ¹H NMR (400 MHz, CDCl₃) δ 1.30 (9H, s), 4.23 (2H, d, *J* = 6.0 Hz), 5.53 (1H, s br), 7.10-7.48 (9H, m); ¹³C NMR (100 MHz, CDCl₃) δ 27.5, 38.9, 47.5, 115.7 (d, *J* = 20.8 Hz), 117.9 (d, *J* = 15.1 Hz), 124.4 (d, *J* = 3.5 Hz), 126.8, 127.7, 128.8,

131.7 (d, J = 2.6 Hz), 132.3 (d, J = 8.1 Hz), 138.1, 155.6, 160.3 (d, J = 249.4 Hz), 174.5; ESIHRMS: Found: m/z 329.1667. Calcd for C₁₉H₂₂FN₂O₂: (M+H)⁺ 329.1665.

N-Benzyl-2-fluoro-N'-hydroxybenzimidamide

95% yield as a white solid (single stereoisomer, E/Z not determined) from 2-fluoro-*N*-hydroxybenzimidoyl chloride¹⁸ and benzylamine.

mp: 116-117 °C; IR (NaCl) 3404, 3229, 3017, 2870, 1636, 1618, 1497, 1454, 1410, 1348; ¹H NMR (400 MHz, CDCl₃) δ 4.13 (2H, s), 5.77 (1H, s br), 7.04-7.38 (9H, m); ¹³C NMR (100 MHz, CDCl₃) δ 47.1, 115.7 (d, *J* = 21.3 Hz), 119.1 (d, *J* = 15.1 Hz), 124.2 (d, *J* = 3.6 Hz), 127.0, 127.2, 128.4, 131.4 (d, *J* = 2.5 Hz), 131.5 (d, *J* = 8.2 Hz), 139.0, 151.6, 160.2 (d, *J* = 248.9 Hz); ESIHRMS: Found: m/z 245.1088. Calcd for C₁₄H₁₄FN₂O: (M+H)⁺ 245.1090.

N-Benzyl-N-(cyclohexyl((pivaloyloxy)imino)methyl)benzamide (6e):

38% yield as a colorless oil (single stereoisomer, E/Z not determined) from N-benzyl-N'-(pivaloyloxy)cyclohexanecarboximidamide and benzoyl chloride.

IR (NaCl) 2972, 2934, 2855, 1767, 1759, 1608, 1479, 1447, 1360, 1321, 1269, 1115, 1028; ¹H NMR (400 MHz, CDCl₃) δ 0.84-0.99 (3H, m), 1.12-1.33 (13H, m), 1.53-1.56 (3H, m), 2.23 (1H, tt, *J* = 3.2, 12.0 Hz), 5.04 (2H, s), 7.23-7.49 (8H, m), 7.61-7.63 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ 25.6, 26.2, 27.2, 27.4, 38.6, 46.2, 54.0, 127.6, 128.35, 128.44, 128.5, 129.1, 131.0, 136.1, 137.1, 168.2, 171.5, 174.2; ESIHRMS: Found: m/z 421.2492. Calcd for C₂₆H₃₃N₂O₃: (M+H)⁺ 421.2491.

 $N\hbox{-}Benzyl\hbox{-}N'\hbox{-}(pivaloyloxy) cyclohexane carboximidamide$

_یOPiv

63% yield (recrystallized from diethyl ether) as a white solid (single stereoisomer, E/Z not determined) from *N*-benzyl-*N*'-hydroxycyclohexanecarboximidamide and pivalic anhydride.

mp: 112-113 °C; IR (NaCl) 3429, 2931, 2934, 2855, 1742, 1616, 1452, 1273, 1130; ¹H NMR (400 MHz, CDCl₃) δ 1.17-1.30 (12H, m), 1.57-1.92 (7H, m), 2.35 (1H, tt, *J* = 3.2, 12.0 Hz), 4.40 (2H, d, *J* = 6.0 Hz), 5.13 (1H, t, *J* = 5.2 Hz), 7.26-7.39 (5H, m); ¹³C NMR (100 MHz, CDCl₃) δ 26.0, 26.2, 27.4, 30.2, 38.2, 38.8, 46.1, 126.5, 127.7, 128.9, 138.5, 162.8, 174.9; ESIHRMS: Found: m/z 317.2228. Calcd for C₁₉H₂₉N₂O₂: (M+H)⁺ 317.2229.

N-Benzyl-N'-hydroxycyclohexanecarboximidamide

70% yield (recrystallized from ethyl acetate/diethyl ether) as a white solid (single stereoisomer, E/Z not determined) from *N*-hydroxycyclohexanecarbimidoyl chloride and benzylamine.

mp: 120-121 °C; IR (NaCl) 3395, 3246, 3015, 2934, 2855, 1655, 1495, 1452, 1416, 1339; ¹H NMR (400 MHz, CDCl₃) δ 1.15-1.44 (5H, m), 1.64-1.89 (5H, m), 2.26 (1H, tt, *J* = 3.2, 12.0 Hz), 4.34 (2H, d, *J* = 6.0 Hz), 5.51 (1H, t, *J* = 5.6 Hz), 7.25-7.36 (5H, m); ¹³C NMR (100 MHz, CDCl₃) δ 26.0, 26.3, 30.6, 37.4, 45.8, 126.8, 127.3, 128.6, 139.4, 158.1; ESIHRMS: Found: m/z 233.1652. Calcd for C₁₄H₂₁N₂O: (M+H)⁺ 233.1654.

N-N-(4-Methoxybenzyl)-N-(phenyl((pivaloyloxy)imino)methyl)benzamide (6f):

86% yield as a white solid (single stereoisomer, E/Z not determined) from N-(4-methoxybenzyl)-N'-(pivaloyloxy)benzimidamide and benzoyl chloride.

mp: 132-133 °C; IR (NaCl) 3063, 3017, 2974, 1755, 1667, 1603, 1513, 1449, 1366, 1319, 1250, 1107, 1028; ¹H NMR (400 MHz, CDCl₃) δ 1.07 (9H, s), 3.79 (3H, s), 5.26 (2H, s),

6.81-6.90 (4H, m), 7.03-7.26 (8H, m), 7.57-7.61 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ 26.9, 38.3, 52.3, 55.1, 113.8, 127.6, 127.7, 128.0, 128.7, 129.2, 130.0, 130.4, 131.2, 131.4, 137.0, 159.2, 162.5, 172.0, 174.7; ESIHRMS: Found: m/z 445.2130. Calcd for C₂₇H₂₉N₂O₄: (M+H)⁺ 445.2127.

N-(4-Methoxybenzyl)-N'-(pivaloyloxy)benzimidamide

73% yield (recrystallized from CH_2Cl_2 /hexane) as a white solid (single stereoisomer, E/Z not determined) from *N*-hydroxy-*N*-(4-methoxybenzyl)benzimidamide and pivalic anhydride.

mp: 134-135 °C; IR (NaCl) 3401, 2970, 2934, 2872, 1732, 1603, 1574, 1510, 1362, 1246, 1142, 1034; ¹H NMR (400 MHz, CDCl₃) δ 1.28 (9H, s), 3.79 (3H, s), 4.20 (2H, d, *J* = 6.4), 5.38 (1H, t, *J* = 6.0), 6.84-6.86 (2H, m), 7.09 (2H, d, *J* = 8.4 Hz), 7.36-7.53 (5H, m); ¹³C NMR (100 MHz, CDCl₃) δ 27.4, 38.9, 47.4, 55.2, 114.2, 127.9, 128.4, 129.0, 129.8, 130.3, 130.6, 159.0, 160.3, 174.7; ESIHRMS: Found: m/z 341.1864. Calcd for C₂₀H₂₅N₂O₃: (M+H)⁺ 341.1865.

N'-Hydroxy-N-(4-methoxybenzyl)benzimidamide

84% yield as a yellow oil (single stereoisomer, E/Z not determined) from *N*-hydroxybenzimidoyl chloride and 4-methoxylbenzylamine.

IR (NaCl) 3383, 3188, 3061, 2953, 2835, 1628, 1612, 1512, 1408, 1348, 1248, 1175, 1034; ¹H NMR (400 MHz, CDCl₃) δ 3.76 (3H, s), 4.14 (2H, s), 5.66 (1H, s br), 6.79-6.83 (2H, m), 7.08 (2H, d, J = 8.8 Hz), 7.32-7.47 (5H, m); ¹³C NMR (100 MHz, CDCl₃) δ 46.9, 55.2, 113.9, 128.0, 128.3, 128.5, 129.5, 131.2, 131.6, 156.4, 158.7; ESIHRMS: Found: m/z 257.1288. Calcd for C₁₅H₁₇N₂O₂: (M+H)⁺ 257.1290.

N-Butyl-N-(phenyl((pivaloyloxy)imino)methyl)benzamide (6g):

96% yield as a white solid (single stereoisomer, E/Z not determined) from N-butyl-N'-(pivaloyloxy)benzimidamide and benzoyl chloride.

mp: 101-102 °C; IR (NaCl) 3017, 2961, 2934, 1757, 1670, 1591, 1576, 1449, 1369, 1333, 1288, 1231, 1101, 1028; ¹H NMR (400 MHz, CDCl₃) δ 0.98 (3H, t, *J* = 7.2), 1.06 (9H, s), 1.39-1.50 (2H, m), 1.85-1.93 (2H, m), 4.03 (2H, t, *J* = 8.0), 7.14-7.32 (10H, m); ¹³C NMR (100 MHz, CDCl₃) δ 13.7, 20.2, 26.8, 30.8, 38.3, 49.5, 127.7, 127.9, 128.0, 128.9, 130.3, 131.1 (overlapped), 136.9, 163.0, 172.1, 174.6; ESIHRMS: Found: m/z 381.2181. Calcd for C₂₃H₂₉N₂O₃: (M+H)⁺ 381.2178.

N-Butyl-N'-(pivaloyloxy)benzimidamide

73% yield (recrystallized from diethyl ether) as a white solid (single stereoisomer, *E/Z* not determined) from *N*-butyl-*N*'-hydroxybenzimidamide and pivalic anhydride. mp: 109-110 °C; IR (NaCl) 3352, 2963, 2932, 2872, 1738, 1607, 1574, 1479, 1414, 1366, 1273, 1130; ¹H NMR (400 MHz, CDCl₃) δ 0.87 (3H, t, *J* = 7.2), 1.25-1.49 (13H, m), 3.03-3.08 (2H, m), 5.10 (1H, s br), 7.38-7.51 (5H, m); ¹³C NMR (100 MHz, CDCl₃) δ 13.6, 19.5, 27.5, 33.2, 38.9, 43.6, 128.3, 128.9, 130.07, 130.10, 160.5, 174.7 ESIHRMS: Found: m/z 277.1912. Calcd for $C_{16}H_{25}N_2O_2$: (M+H)⁺ 277.1916.

N-Butyl-N'-hydroxybenzimidamide

82% yield as a white solid (single stereoisomer, E/Z not determined) from *N*-hydroxybenzimidoyl chloride and butan-1-amine.

mp: 51-52 °C; IR (NaCl) 3383, 3206, 2957, 2932, 2872, 1628, 1574, 1464, 1408, 1364, 1219, 1153; ¹H NMR (400 MHz, CDCl₃) δ 0.82 (3H, t, *J* = 7.2), 1.22-1.43 (4H,

m), 2.99 (2H, t, J = 6.4), 5.31 (1H, s br), 7.35-7.48 (5H, m); ¹³C NMR (100 MHz, CDCl₃) δ 13.6, 19.5, 33.3, 43.3, 128.2, 128.5, 129.3, 131.6, 156.5; ESIHRMS: Found: m/z 193.1343. Calcd for C₁₁H₁₇N₂O: (M+H)⁺ 193.1341.

N-Cyclopropyl-N-(phenyl((pivaloyloxy)imino)methyl)benzamide (6h):

69% yield as a white solid (single stereoisomer, E/Z not determined) from *N*-cyclopropyl-*N*'- (pivaloyloxy)benzimidamide and benzoyl chloride.

mp: 107-108 °C; IR (NaCl) 3063, 3013, 2974, 1759, 1667, 1601, 1447, 1337, 1217, 1109, 1088, 1082; ¹H NMR (400 MHz, CDCl₃) δ 0.91-0.93 (4H, m), 1.09 (9H, s), 3.08-3.13 (1H, m), 7.21-7.43 (10H, m); ¹³C NMR (100 MHz, CDCl₃) δ 8.5, 26.9, 31.3, 38.3, 127.5, 127.9, 128.2, 128.8, 130.1, 130.8, 130.9, 136.5, 161.3, 172.4, 174.4; ESIHRMS: Found: m/z 365.1862. Calcd for C₂₂H₂₅N₂O₃: (M+H)⁺ 365.1865.

N-Cyclopropyl-N'-(pivaloyloxy)benzimidamide

91% yield as a white solid (single stereoisomer, E/Z not determined) from *N*-cyclopropyl-*N*'-hydroxybenzimidamide and pivalic anhydride.

mp: 134-135 °C; IR (NaCl) 3431, 3011, 2972, 1744, 1609, 1574, 1479, 1404, 1364, 1273, 1119, 1028; ¹H NMR (400 MHz, CDCl₃) δ 0.44-0.57 (4H, m), 1.31 (9H, s), 2.51-2.53 (1H, m), 5.36 (1H, s br), 7.38-7.45 (3H, m), 7.58 (2H, t, *J* = 7.6); ¹³C NMR (100 MHz, CDCl₃) δ 8.9, 25.8, 27.4, 38.8, 128.0, 128.8, 129.8, 130.6, 160.5, 174.6; ESIHRMS: Found: m/z 261.1601. Calcd for C₁₅H₂₁N₂O₂: (M+H)⁺ 261.1603.

N-Cyclopropyl-N'-hydroxybenzimidamide

68% yield (recrystallized from diethyl ether) as a white solid (single stereoisomer, E/Z not determined) from *N*-hydroxybenzimidoyl chloride and cyclopropanamine.

mp: 93-94 °C; IR (NaCl) 3406, 3231, 3013, 1630, 1576, 1466, 1400, 1350; ¹H NMR (400 MHz, CDCl₃) δ 0.39-0.50 (4H, m), 2.42-2.47 (1H, m), 5.55 (1H, s br), 7.35-7.56 (5H, m); ¹³C NMR (100 MHz, CDCl₃) δ 8.6, 25.5, 128.0, 128.5, 129.2, 132.1, 156.5; ESIHRMS: Found: m/z 177.1029. Calcd for C₁₀H₁₃N₂O: (M+H)⁺ 177.1028.

N-Benzyl-4-methoxy-N-(phenyl((pivaloyloxy)imino)methyl)benzamide (6i):

94% yield as a pale yellow oil (single stereoisomer, E/Z not determined) from **H** and 4methoxybenzoyl chloride.

IR (NaCl) 3063, 2972, 2936, 1767, 1748, 1682, 1591, 1504, 1454, 1360, 1306, 1258, 1172, 1119, 1028; ¹H NMR (400 MHz, CDCl₃) δ 1.07 (9H, s), 3.72 (3H, s), 5.30 (2H, s), 6.63 (2H, d, *J* = 8.8 Hz), 6.87 (2H, d, *J* = 7.6 Hz), 7.07 (2H, t, *J* = 7.6 Hz), 7.15 (1H, t, *J* = 7.6 Hz), 7.26-7.30 (3H, m), 7.35 (2H, t, *J* = 7.6 Hz), 7.66 (2H, d, *J* = 7.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 26.8, 38.2, 53.1, 55.2, 113.3, 127.6, 127.7, 128.4, 128.5, 129.2, 129.7, 129.9, 130.0, 131.4, 137.1, 161.5, 162.8, 171.6, 174.7; ESIHRMS: Found: m/z 445.2122. Calcd for C₂₇H₂₉N₂O₄: (M+H)⁺ 445.2127.

N-Benzyl-4-chloro-*N*-(phenyl((pivaloyloxy)imino)methyl)benzamide (6j):

95% yield as a sticky colorless oil (single stereoisomer, E/Z not determined) from **H** and 4chlorobenzoyl chloride.

IR (NaCl) 3030, 2974, 1759, 1667, 1593, 1489, 1449, 1366, 1323, 1240, 1105; ¹H NMR (400 MHz, CDCl₃) δ 1.07 (9H, s), 5.28 (2H, s), 6.85-6.87 (2H, m), 7.10-7.38 (10H, m), 7.61-7.63 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ 26.9, 38.3, 52.9, 127.89, 127.94, 128.3, 128.6, 128.8, 129.1, 129.8, 130.4, 131.1, 135.2, 136.7, 136.8, 162.1, 171.0, 174.7; ESIHRMS: Found: m/z 449.1633. Calcd for C₂₆H₂₆³⁵ClN₂O₃: (M+H)⁺ 449.1632.

N-Benzyl-*N*-(phenyl((pivaloyloxy)imino)methyl)-4-(trifluoromethyl)benzamide (6k):

86% yield as a white solid (single stereoisomer, E/Z not determined) from **H** and 4-(trifluoromethyl)benzoyl chloride.

mp: 96-97 °C; IR (NaCl) 3021, 2976, 1765, 1755, 1682, 1672, 1605, 1574, 1362, 1323, 1238, 1169, 1109; ¹H NMR (400 MHz, CDCl₃) δ 1.05 (9H, s), 5.27 (2H, s), 6.87 (2H, d, *J* = 7.6 Hz), 7.11 (2H, t, *J* = 8.0 Hz), 7.22 (1H, t, *J* = 7.6 Hz), 7.31-7.41 (7H, m), 7.59 (2H, d, *J* = 7.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 26.8, 38.3, 52.5, 123.5 (q, *J* = 270.9 Hz), 125.0 (q, *J* = 3.7 Hz), 127.5, 127.8, 128.0, 128.6, 128.8, 129.7, 130.6, 130.7, 131.9 (q, *J* = 32.5 Hz), 136.5, 140.2, 161.6, 170.7, 174.5; ESIHRMS: Found: m/z 483.1904. Calcd for C₂₇H₂₆F₃N₂O₃: (M+H)⁺ 483.1896.

N-Benzyl-2-methyl-*N*-(phenyl((pivaloyloxy)imino)methyl)benzamide (6l):

41% yield as a colorless oil (single stereoisomer, E/Z not determined) from **H** and 2methylbenzoyl chloride.

IR (NaCl) 3021, 2974, 1759, 1672, 1605, 1591, 1447, 1366, 1321, 1237, 1105, 1028; ¹H NMR (400 MHz, CDCl₃) δ 1.02 (9H, s), 2.00 (3H, s), 5.36 (2H, s), 6.65-6.67 (2H, m), 6.81 (1H, d, *J* = 7.6 Hz), 6.97-7.16 (6H, m), 7.29-7.40 (3H, m), 7.67-7.69 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ 19.2, 26.8, 38.3, 52.2, 125.2, 127.0, 127.5, 127.7, 127.8, 128.5, 129.7, 129.8, 129.9, 130.4, 131.5, 136.26, 136.31, 137.2, 162.3, 171.7, 174.7; ESIHRMS: Found: m/z 451.1996. Calcd for C₂₇H₂₈N₂O₃Na: (M+H)⁺ 451.1998.

N-Benzyl-N-(phenyl((pivaloyloxy)imino)methyl)-2-naphthamide (6m):

84% yield as a sticky colorless oil (single stereoisomer, E/Z not determined) from **H** and 2-naphthoyl chloride.

IR (NaCl) 3015, 2974, 1759, 1667, 1593, 1449, 1368, 1323, 1310, 1229, 1107, 1028; ¹H NMR (400 MHz, CDCl₃) δ 1.02 (9H, s), 5.40 (2H, s), 6.77-7.05 (5H, m), 7.25-7.48 (6H, m), 7.53 (1H, d, *J* = 8.4 Hz), 7.67-7.76 (4H, m), 7.88 (1H, s); ¹³C NMR (100 MHz, CDCl₃) δ 26.8, 38.2, 52.9, 124.2, 126.5, 127.4, 127.46, 127.53, 127.8, 127.9, 128.2, 128.45 (overlapped), 128.48, 129.8, 130.0, 131.2, 132.0, 133.7, 134.0, 137.0, 162.6, 172.0, 174.7; ESIHRMS: Found: m/z 465.2175. Calcd for C₃₀H₂₉N₂O₃: (M+H)⁺ 465.2178.

5. Copper-catalyzed synthesis of dihydroimidazoles 2

Typical Procedure:

To a solution of *N*'-acetoxy-*N*-benzyl-*N*-(2-phenylpropyl)benzimidamide (the major stereoisomer) (**1a**) (136.1 mg, 0.352 mmol) in toluene (3.5 mL) was added CuI (6.7 mg, 0.035 mmol) and K₃PO₄ (74.7 mg, 0.352mmol). The reaction mixture was then stirred for 4 h at 100 °C under an Ar atmosphere. The mixture was quenched with pH 9 ammonium buffer solution. The organic compounds were then extracted three times with ethyl acetate, dried over MgSO₄ and removed in vacuo to afford a crude residue, which was purified by flash column chromatography (silica gel; hexane:ethyl acetate = 50:50 then ethyl acetate) to provide **2a** (87.3 mg, 0.267 mmol) in 76% yield.

The reaction of the minor stereoisomer of **1a** (104.0 mg, 0.269 mmol) with CuI (5.1 mg, 0.027 mmol) and K_3PO_4 (57.1 mg, 0.269 mmol) in toluene (2.7 mL) under Ar atmosphere at 100 °C for 4 h gave **2a** (67.7 mg, 0.207 mmol) in 77% yield.

The reaction of the *E*/*Z* mixture (major/minor = 1.3:1) of **1a** (128.2 mg, 0.332 mmol) with CuI (6.3 mg, 0.033 mmol) and K_3PO_4 (70.4 mg, 0.332 mmol) in toluene (3.3 mL) under Ar atmosphere at 100 °C for 4 h gave **2a** (80.1 mg, 0.245 mmol) in 74% yield.

1-Benzyl-4-methyl-2,4-diphenyl-4,5-dihydro-1*H*-imidazole (2a):¹⁹

h Bn Me

Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 1.65 (3H, s), 3.44 (1H, d, *J* = 9.2 Hz), 3.61 (1H, d, *J* = 9.6 Hz), 4.11 (1H, d, *J* = 15.6 Hz), 4.51 (1H, d, *J* = 15.6 Hz), 7.22-7.49 (13H, m), 7.67-

7.70 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ 30.2, 52.4, 64.2, 69.8, 125.2, 126.2, 126.8, 127.2, 128.1, 128.2, 128.4, 128.5, 129.9, 130.8, 137.5, 148.8, 164.6.

1-Benzyl-4-methyl-4-phenyl-2-(o-tolyl)-4,5-dihydro-1H-imidazole (2b):

Reaction time: 6 h.

Yield: 78%; Yellow oil; IR (NaCl) 3061, 3026, 2963, 2922, 1614, 1595, 1578, 1495, 1445, 1362, 1315, 1260, 1138; ¹H NMR (400 MHz, CDCl₃) δ 1.64 (3H, s), 2.44 (3H, s), 3.39 (1H, d, J = 9.2 Hz), 3.55 (1H, d, J = 8.8 Hz), 3.93 (1H, d, J = 15.2 Hz), 4.21 (1H, d, J = 15.2 Hz), 7.14 (2H, d, J = 6.8 Hz), 7.19-7.34 (9H, m), 7.40 (1H, d, J = 7.6 Hz), 7.49 (2H, d, J = 7.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 19.6, 30.5, 51.5, 62.9, 70.4, 125.4, 125.8, 126.3, 127.3, 127.4, 128.2, 128.6, 128.7, 129.3, 130.4, 131.1, 136.7, 137.5, 149.1, 163.9; ESIHRMS: Found: m/z 341.2021. Calcd for C₂₄H₂₅N₂: (M+H)⁺ 341.2018.

1-Benzyl-4-methyl-2-(naphthalen-1-yl)-4-phenyl-4,5-dihydro-1*H*-imidazole (2c):

Reaction time: 2 h.

Yield: 72%; Yellow oil; IR (NaCl) 3059, 3028, 2963, 2922, 1607, 1574, 1495, 1445, 1416, 1362, 1315, 1250, 1198, 1069; ¹H NMR (400 MHz, CDCl₃) δ 1.73 (3H, s), 3.52 (1H, d, *J* = 9.2 Hz), 3.63 (1H, d, *J* = 9.2 Hz), 3.91 (1H, d, *J* = 14.8 Hz), 4.16 (1H, d, *J* = 15.2 Hz), 7.11 (2H, d, *J* = 6.8 Hz), 7.19-7.28 (4H, m), 7.35 (2H, t, *J* = 7.6 Hz), 7.50-7.56 (5H, m), 7.70 (1H, d, *J* = 6.0 Hz), 7.87 (1H, d, *J* = 7.6 Hz), 7.91 (1H, d, *J* = 8.4 Hz), 8.21 (1H, d, *J* = 8.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 30.8, 51.9, 63.1, 70.7, 125.1, 125.2, 125.4, 126.2, 126.3, 126.8, 127.1, 127.3, 127.5, 128.30, 128.33, 128.5, 129.0, 129.8, 131.3, 133.5, 137.3, 149.1, 163.4; ESIHRMS: Found: m/z 377.2021. Calcd for C₂₇H₂₅N₂: (M+H)⁺ 377.2018.

1-Benzyl-2-(4-methoxyphenyl)-4-methyl-4-phenyl-4,5-dihydro-1*H*-imidazole (2d):

This reaction was carried out using the major stereoisomer of **1d** as starting material. Reaction time: 12 h.

Yield: 74%; Yellow oil; IR (NaCl) 3061, 3026, 2963, 2930, 1620, 1607, 1514, 1454, 1360, 1317, 1254, 1173, 1030; ¹H NMR (400 MHz, CDCl₃) δ 1.64 (3H, s), 3.41 (1H, d, *J* = 9.6 Hz), 3.60 (1H, d, *J* = 9.2 Hz), 3.81 (3H, s), 4.11 (1H, d, *J* = 16.0 Hz), 4.53 (1H, d, *J* = 16.0 Hz), 6.93 (2H, d, *J* = 8.8 Hz), 7.19-7.35 (8H, m), 7.47 (2H, d, *J* = 7.2 Hz), 7.64 (2H, d, *J* = 8.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 30.4, 52.8, 55.3, 64.6, 69.8, 113.9, 123.3, 125.3, 126.2, 126.9, 127.3, 128.2, 128.6, 129.9, 138.0, 149.2, 160.9, 164.4; ESIHRMS: Found: m/z 357.1962. Calcd for C₂₄H₂₅N₂O: (M+H)⁺ 357.1967.

1-Benzyl-4-methyl-4-phenyl-2-(4-(trifluoromethyl)phenyl)-4,5-dihydro-1*H*-imidazole (2e):

Reaction time: 1.5 h.

Yield: 76%; Yellow oil; IR (NaCl) 3061, 3028, 2967, 2924, 1601, 1520, 1495, 1416, 1360, 1315, 1173, 1138, 1067; ¹H NMR (400 MHz, CDCl₃) δ 1.65 (3H, s), 3.46 (1H, d, *J* = 9.6 Hz), 3.63 (1H, d, *J* = 9.2 Hz), 4.10 (1H, d, *J* = 15.6 Hz), 4.46 (1H, d, *J* = 16.0 Hz), 7.21-7.36 (8H, m), 7.46 (2H, d, *J* = 7.6 Hz), 7.68 (2H, d, *J* = 8.0 Hz), 7.81 (2H, d, *J* = 8.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 30.3, 52.5, 64.4, 70.5, 123.8 (q, *J* = 270.7 Hz), 125.2, 125.5 (q, *J* = 3.7 Hz), 126.4, 126.9, 127.5, 128.3, 128.7, 128.8, 131.9 (q, *J* = 32.5 Hz), 134.9, 137.3, 148.7, 163.4; ESIHRMS: Found: m/z 395.1736. Calcd for C₂₄H₂₂F₃N₂: (M+H)+ 395.1735.

1-Benzyl-2-(3,5-difluorophenyl)-4-methyl-4-phenyl-4,5-dihydro-1*H*-imidazole (2f):

Reaction time: 3 h.

Yield: 62%; Yellow oil; IR (NaCl) 3086, 3061, 3028, 2965, 2924, 1587, 1574, 1495, 1435, 1402, 1362, 1337, 1233, 1121, 1028; ¹H NMR (400 MHz, CDCl₃) δ 1.62 (3H, s), 3.44 (1H, d, J = 9.6 Hz), 3.61 (1H, d, J = 9.6 Hz), 4.11 (1H, d, J = 15.6 Hz), 4.47 (1H, d, J = 15.6 Hz), 6.88 (1H, tt, J = 2.4, 8.8 Hz), 7.20-7.36 (10H, m), 7.43 (2H, d, J = 7.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 30.3, 52.5, 64.3, 70.4, 105.5 (t, J = 24.9 Hz), 111.6 (dd, J = 7.7, 18.9 Hz), 125.2, 126.5, 127.0, 127.6, 128.3, 128.8, 134.4 (t, J = 9.5 Hz), 137.1, 148.5, 162.5 (t, J = 2.8 Hz), 162.9 (dd, J = 12.4, 248.5 Hz); ESIHRMS: Found: m/z 363.1676. Calcd for C₂₃H₂₁F₂N₂: (M+H)+ 363.1673.

3-(1-Benzyl-4-methyl-4-phenyl-4,5-dihydro-1*H*-imidazol-2-yl)pyridine (2g):

Reaction time: 3 h.

Yield: 72%; Yellow oil; IR (NaCl) 3028, 2965, 2922, 2859, 1612, 1587, 1487, 1445, 1400, 1362, 1317, 1263, 1132, 1028; ¹H NMR (400 MHz, CDCl₃) δ 1.65 (3H, s), 3.48 (1H, d, *J* = 9.6 Hz), 3.64 (1H, d, *J* = 9.2 Hz), 4.13 (1H, d, *J* = 15.6 Hz), 4.48 (1H, d, *J* = 16.0 Hz), 7.21-7.38 (9H, m), 7.46 (2H, d, *J* = 7.2 Hz), 8.00 (1H, d, *J* = 7.6 Hz), 8.69 (1H, d, *J* = 3.6 Hz), 8.94 (1H, s); ¹³C NMR (100 MHz, CDCl₃) δ 30.4, 52.5, 64.3, 70.5, 123.4, 125.2, 126.5, 126.9, 127.4, 127.5, 128.3, 128.8, 136.0, 137.2, 148.7, 149.2, 151.0, 162.0; ESIHRMS: Found: m/z 328.1809. Calcd for C₂₂H₂₂N₃: (M+H)⁺ 328.1814.

1-Benzyl-2-cyclohexyl-4-methyl-4-phenyl-4,5-dihydro-1*H*-imidazole (2h):

Reaction time: 8 h.

Yield: 40%; Yellow oil; IR (NaCl) 3026, 2930, 2853, 1605, 1578, 1495, 1447, 1418, 1358, 1319, 1279, 1215, 1136, 1028; ¹H NMR (400 MHz, CDCl₃) δ 1.26-1.34 (3H, m), 1.53 (3H, s), 1.65-1.97 (7H, m), 2.32 (1H, tt, *J* = 3.2, 11.6 Hz), 3.20 (1H, d, *J* = 8.8 Hz), 3.28 (1H, d, *J* = 9.2 Hz), 4.19 (1H, d, *J* = 15.6 Hz), 4.43 (1H, d, *J* = 15.6 Hz), 7.15-7.40 (10H, m); ¹³C NMR (100 MHz, CDCl₃) δ 25.9, 26.23, 26.25, 29.6, 30.8, 31.2, 36.2, 50.2, 64.0, 68.4, 125.4, 126.1, 127.0, 127.3, 128.1, 128.7, 137.9, 149.4, 168.1; ESIHRMS: Found: m/z 333.2329. Calcd for C₂₃H₂₉N₂: (M+H)⁺ 333.2331.

1-Butyl-4-isopropyl-2,4-diphenyl-4,5-dihydro-1*H*-imidazole (2i):

This reaction was carried out using the E/Z mixture (major/minor = 10.6:1) of **1i** as starting material. Reaction time: 5 h.

Yield: 72%; Yellow oil; IR (NaCl) 3059, 2961, 2928, 2872, 1614, 1595, 1574, 1499, 1445, 1408, 1317, 1304, 1238; ¹H NMR (400 MHz, CDCl₃) δ 0.82-0.86 (6H, m), 0.95 (3H, d, *J* = 6.8 Hz), 1.18-1.51 (4H, m), 2.12 (1H, sep, *J* = 6.8 Hz), 2.81-2.88 (1H, m), 3.03-3.10 (1H, m), 3.50 (1H, d, *J* = 9.6 Hz), 3.78 (1H, d, *J* = 9.6 Hz), 7.20 (1H, t, *J* = 7.6 Hz), 7.33 (2H, t, *J* = 7.6 Hz), 7.39-7.55 (7H, m); ¹³C NMR (100 MHz, CDCl₃) δ 13.8, 17.1, 17.7, 19.9, 31.1, 39.4, 48.3, 59.9, 76.7, 125.9, 126.3, 127.9, 128.3, 128.4, 129.4, 132.0, 149.0, 164.9; ESIHRMS: Found: m/z 321.2338. Calcd for C₂₂H₂₉N₂: (M+H)⁺ 321.2331.

4-Methyl-1,2,4-triphenyl-4,5-dihydro-1*H*-imidazole (2j):¹⁹

Reaction time: 5 h.

Yield: 92%; Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 1.75 (3H, s), 4.12 (1H, d, *J* = 9.2 Hz), 4.16 (1H, d, *J* = 9.2 Hz), 6.77 (2H, d, *J* = 8.0 Hz), 6.95 (1H, t, *J* = 7.6 Hz), 7.13 (2H, d, *J* = 7.6 Hz), 7.21-7.39 (6H, m), 7.53-7.59 (4H, m); ¹³C NMR (100 MHz, CDCl₃) δ 30.1, 67.2, 69.8, 122.4, 123.3, 125.4, 126.5, 128.1, 128.3, 128.7, 128.9, 129.9, 131.2, 142.8, 148.4, 160.2.

1-Benzyl-2,4,4-triphenyl-4,5-dihydro-1*H*-imidazole (2k):

This reaction was carried out using the major stereoisomer of 1k as starting material. Reaction time: 3 h.

Yield: 77%; Yellow solid; mp: 146-147 °C; IR (NaCl) 3084, 3019, 2940, 1614, 1595, 1572, 1495, 1445, 1402, 1319, 1215, 1132, 1028; ¹H NMR (400 MHz, CDCl₃) δ 4.00 (2H, s), 4.33 (2H, s), 7.18-7.43 (18H, m), 7.68-7.70 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ 52.9, 63.8, 76.4, 126.5, 126.7, 127.1, 127.4, 128.2, 128.46, 128.53, 128.7, 130.0, 131.1, 137.7, 148.0, 164.8; ESIHRMS: Found: m/z 389.2016. Calcd for C₂₈H₂₅N₂: (M+H)⁺ 389.2018.

3-(1-Benzyl-2,4-diphenyl-4,5-dihydro-1*H*-imidazol-4-yl)-1-tosyl-1*H*-indole (2l):

Reaction time: 5 h.

Yield: 69%; Sticky yellow oil; IR (NaCl) 3028, 2930, 1612, 1595, 1568, 1495, 1447, 1371, 1217, 1175, 1126, 1026; ¹H NMR (400 MHz, CDCl₃) δ 2.32 (3H, s), 3.96 (1H, d, *J* = 10.0 Hz), 4.00 (1H, d, *J* = 10.0 Hz), 4.36 (1H, d, *J* = 15.6 Hz), 4.41 (1H, d, *J* = 16.0 Hz), 7.03 (1H, t, *J* = 7.6 Hz), 7.18-7.44 (17H, m), 7.52 (1H, s), 7.67-7.69 (2H, m), 7.74 (2H, d, *J* = 8.4 Hz), 7.95 (1H, d, *J* = 8.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 21.5, 52.7, 62.6, 72.3, 113.7, 121.5, 123.0, 123.7, 124.4, 126.4, 126.8, 126.9, 127.1, 127.5, 128.3, 128.5, 128.6, 128.8, 129.0, 129.1, 129.7, 130.2, 130.8, 135.2, 136.0, 137.4, 144.7, 146.0, 165.0; ESIHRMS: Found: m/z 582.2211. Calcd for C₃₇H₃₂N₃O₂S: (M+H)⁺ 582.2215.

4,4-Dimethyl-1,2-diphenyl-4,5-dihydro-1*H*-imidazole (2m):¹⁹

Me

Reaction time: 5 h.

Yield: 50%; Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 1.41 (6H, s), 3.79 (2H, s), 6.74 (2H, d, J = 7.6 Hz), 6.95 (1H, t, J = 7.2 Hz), 7.14 (2H, t, J = 8.0 Hz), 7.27 (2H, t, J = 7.6 Hz), 7.34 (1H, t, J = 7.2 Hz), 7.48-7.50 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ 29.0, 64.5, 65.9, 121.9, 122.8, 128.0, 128.6, 128.8, 129.8, 131.2, 143.1, 159.3.

1'-Benzyl-2'-phenyl-1',5'-dihydrospiro[chroman-4,4'-imidazole] (2n):

This reaction was carried out using the major stereoisomer of **1n** as starting material. Reaction time: 3 h.

Yield: 69%; Yellow oil; IR (NaCl) 3063, 3030, 2951, 2874, 1574, 1487, 1454, 1360, 1317, 1254, 1223, 1059, 1028; ¹H NMR (400 MHz, CDCl₃) δ 1.97-2.03 (1H, m), 2.27-2.34 (1H, m), 3.46 (1H, d, *J* = 10.0 Hz), 3.59 (1H, d, *J* = 10.0 Hz), 4.10-4.16 (1H, m), 4.33 (1H, d, *J* = 15.6 Hz), 4.41-4.47 (2H, m), 6.78 (1H, d, *J* = 8.4 Hz), 6.89 (1H, t, *J* = 7.6 Hz), 7.08-7.12 (1H, m), 7.21-7.43 (9H, m), 7.69-7.71 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ 36.3, 52.6, 63.4, 64.6, 65.6, 116.5, 120.9, 127.2, 127.5, 127.9, 128.3, 128.4, 128.55, 128.60, 128.7, 130.2, 130.7, 137.4, 153.7, 165.5; ESIHRMS: Found: m/z 355.1808. Calcd for C₂₄H₂₃N₂O: (M+H)⁺ 355.1810.

1-Benzyl-2-phenyl-1,2',3',5-tetrahydrospiro[imidazole-4,1'-indene] (20):

This reaction was carried out using the E/Z mixture (major/minor = 1:5.5) of **10** as starting material. Reaction time: 3 h.

Yield: 73%; Brown oil; IR (NaCl) 3063, 3028, 2936, 2847, 1611, 1591, 1570, 1495, 1447, 1402, 1360, 1325, 1254, 1028; ¹H NMR (400 MHz, CDCl₃) δ 2.02-2.09 (1H, m), 2.36-2.43 (1H, m), 2.74-2.82 (1H, m), 2.98-3.05 (1H, m), 3.44 (1H, d, *J* = 10.0 Hz), 3.48 (1H, d, *J* = 10.0 Hz), 4.25-4.33 (2H, m), 7.10-7.32 (12H, m), 7.58-7.60 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ 30.1, 44.4, 52.8, 62.6, 78.0, 123.1, 124.4, 126.8, 127.2, 127.4, 127.5, 128.46,

128.49, 128.7, 130.0, 130.9, 137.7, 143.0, 148.2, 165.1; ESIHRMS: Found: m/z 339.1859. Calcd for $C_{24}H_{23}N_2$: (M+H)⁺ 339.1861.

1'-Benzyl-2'-phenyl-1',5'-dihydrospiro[adamantane-2,4'-imidazole] (2p):

Reaction time: 9 h.

Yield: 43%; Yellow oil; IR (NaCl) 3028, 2911, 2851, 1620, 1593, 1495, 1360, 1325, 1298, 1279, 1179, 1074, 1026; ¹H NMR (400 MHz, CDCl₃) δ 1.56-1.57 (11H, m), 1.90 (1H, s br), 2.54-2.57 (2H, m), 3.30 (2H, s), 4.29 (2H, s), 7.20 (2H, d, *J* = 7.2 Hz), 7.25-7.41 (6H, m), 7.60-7.63 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ 26.8, 27.4, 33.1, 34.3, 38.0, 38.4, 52.2, 60.0, 73.1, 127.0, 127.3, 128.4, 128.6, 128.7, 129.9, 130.6, 137.6, 163.4; ESIHRMS: Found: m/z 357.2337. Calcd for C₂₅H₂₉N₂: (M+H)⁺ 357.2331.

1-(2,4-Diphenyl-4,5-dihydro-1*H*-imidazol-1-yl)ethanone (2s):

Reaction time: 47 h.

Yield: 24%; Yellow oil; IR (NaCl) 3061, 3009, 1694, 1661, 1622, 1495, 1447, 1379, 1339, 1296, 1261, 1153, 1028; ¹H NMR (400 MHz, CDCl₃) δ 1.88 (3H, s), 3.99 (1H, dd, *J* = 8.0, 11.2 Hz), 4.53 (1H, dd, *J* = 10.0, 10.8 Hz), 5.26 (1H, dd, *J* = 8.0, 10.0 Hz), 7.28-7.49 (8H, m), 7.60-7.62 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ 25.0, 55.8, 67.3, 126.5, 127.7, 128.39, 128.44, 128.8, 130.6, 131.8, 141.6, 159.4, 168.2; ESIHRMS: Found: m/z 265.1341. Calcd for C₁₇H₁₇N₂O: (M+H)⁺ 265.1341.

N-Phenethylacetamide (5):²⁰

Yield: 57%; Brown solid; ¹H NMR (400 MHz, CDCl₃) δ 1.91 (3H, s), 2.80 (2H, t, *J* = 7.2), 3.46-3.51 (2H, m), 5.77 (1H, s br), 7.17-7.24 (3H, m), 7.30 (2H, t, *J* = 7.2); ¹³C NMR (100 MHz, CDCl₃) δ 23.2, 35.5, 40.6, 126.4, 128.5, 128.6, 138.8, 170.1.

6. Copper-catalyzed synthesis of imidazoles 3

Typical Procedure:

To a solution of *N*'-Acetoxy-*N*-benzyl-*N*-phenethylbenzimidamide **1q** (114.0 mg, 0.306 mmol) in toluene (3.1 mL) was added CuI (5.8 mg, 0.031 mmol) and K₃PO₄ (64.9 mg, 0.306 mmol). The reaction mixture was then stirred for 6 h at 100 °C under an Ar atmosphere. The mixture was quenched with pH 9 ammonium buffer solution. The organic compounds were then extracted three times with ethyl acetate, dried over MgSO₄ and removed in vacuo to afford a crude residue, which was purified by flash column chromatography (silica gel; hexane:ethyl acetate = 80:20 then ethyl acetate:triethylamine = 98:2) to provide **3q** (28.8 mg, 0.093 mmol) in 30% yield and **4q** (39.0 mg, 0.124 mmol) in 41% yield.

1-Benzyl-2,4-diphenyl-1*H***-imidazole** (**3q**):²¹

Yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 5.23 (2H, s), 7.15 (2H, d, *J* = 7.2 Hz), 7.23-7.45 (10H, m), 7.62-7.64 (2H, m), 7.86 (2H, d, *J* = 7.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 50.4, 116.8, 124.9, 126.6, 126.8, 127.9, 128.5, 128.6, 128.96 (overlapped), 128.98, 130.4, 134.0, 136.8, 141.5, 148.6.

N-Benzyl-N-phenethylbenzimidamide (4q):

Yellow oil; IR (NaCl) 3316, 3061, 3026, 2924, 1585, 1568, 1495, 1452, 1425, 1368, 1182, 1128, 1009; ¹H NMR (400 MHz, CDCl₃) δ 2.85 (2H, t, *J* = 7.6), 3.47 (2H, t, *J* = 7.6), 4.48 (2H, s), 7.03 (2H, d, *J* = 7.2), 7.15-7.35 (13H, m); ¹³C NMR (100 MHz, CDCl₃) δ 33.8, 49.1,

51.4, 126.2, 126.5, 127.1, 127.3, 128.3, 128.5 (overlapped), 128.7, 128.8, 138.4, 138.9, 139.3, 169.4; ESIHRMS: Found: m/z 315.1865. Calcd for C₂₂H₂₃N₂: (M+H)⁺ 315.1861.

1,2,4-Triphenyl-1*H*-imidazole (3r):²²

Reaction time: 2 h.

Yield: 36%; Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.25-7.28 (6H, m), 7.38-7.47 (8H, m), 7.89-7.91 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ 118.5, 125.0, 125.8, 127.0, 128.14, 128.17, 128.4, 128.6, 128.8, 129.4, 130.3, 133.8, 138.5, 141.7, 147.0.

N-Phenethyl-*N*-phenylbenzimidamide (4r):¹⁹

Reaction time: 2 h.

Yield: 42%; Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 3.07 (2H, t, *J* = 8.0), 4.13-4.17 (2H, m), 6.80-6.83 (2H, m), 6.95-6.99 (1H, m), 7.08-7.31 (12H, m); ¹³C NMR (100 MHz, CDCl₃) δ 33.4, 53.6, 124.9, 126.1, 127.0, 127.6, 128.0, 128.3, 128.66, 128.69, 129.0, 138.9, 139.8, 145.6, 167.7.

7. Copper-catalyzed synthesis of quinazolinones 7

Optimization of the reaction conditions using 6b:

Table S1. Optimization of reaction conditions^a

entry	Cu salts (mol %)	solvent	temp (°C)	time (h)	yield (%) ^b
1	Cul (10)	toluene	110	62	80
2	Cul (10)	DMSO	120	18	48
3	Cul (10)	DMF	120	18	43 ^c
4	Cul (10)	DMA	120	18	30 ^c
5	Cul (10)	<i>m</i> -xylene	120	41	77
6	Cul (10)	<i>m</i> -xylene	130	32	81
7	(CuOTf) ₂ •C ₆ H ₅ (5)	<i>m</i> -xylene	130	32	73 [°]
8	Cu(MeCN) ₄ PF ₆ (10)	<i>m</i> -xylene	130	24	71 [°]

^{*a*} Unless otherwise noted, the reactions were carried out using 0.3 mmol of amidoxime **6b** with Cu salts (10 mol %) and K_3PO_4 (1 equiv) in solvent (0.1 M) under an Ar atmosphere. ^{*b*} Isolated yields. ^{*c* 1}H NMR yields.

Typical Procedure:

To a solution of *N*-benzyl-*N*-(phenyl((pivaloyloxy)imino)methyl)benzamide **6b** (126.4 mg, 0.305 mmol) in *m*-xylene (3.1 mL) was added CuI (5.8 mg, 0.031 mmol) and K₃PO₄ (64.9 mg, 0.305 mmol). The reaction mixture was then stirred for 32 h at 130 °C under an Ar atmosphere. The mixture was quenched with pH 9 ammonium buffer solution. The organic compounds were then extracted three times with ethyl acetate, dried over MgSO₄ and removed in vacuo to afford a crude residue, which was purified by flash column chromatography (silica gel; hexane:ethyl acetate = 85:15 then 80:20) to provide **7b** (77.2 mg, 0.247 mmol) in 81% yield as a pale yellow solid.

3-Benzyl-2-phenylquinazolin-4(3*H***)-one (7b):**²³

¹H NMR (400 MHz, CDCl₃) δ 5.27 (2H, s), 6.91-6.94 (2H, m), 7.18-7.21 (3H, m), 7.34 (2H, d, J = 6.8 Hz), 7.39 (2H, d, J = 7.6 Hz), 7.46 (1H, d, J = 7.2 Hz), 7.50-7.54 (1H, m), 7.76-7.80 (2H, m), 8.38 (1H, d, J = 8.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 48.7, 120.8, 126.9, 127.0, 127.1, 127.4, 127.5, 127.9, 128.4, 128.5, 129.8, 134.5, 135.2, 136.5, 147.2, 156.3, 162.4.

3-Phenethyl-2-phenylquinazolin-4(*3H*)-one (7a):

This reaction was carried in toluene at 100 °C for 40h.

Yield: 60%; White solid; mp: 179-180 °C; IR (NaCl) 3019, 2959, 1676, 1605, 1585, 1566, 1474, 1377, 1333; ¹H NMR (400 MHz, CDCl₃) δ 2.94 (2H, t, *J* = 8.0 Hz), 4.22 (2H, t, *J* = 8.0 Hz), 6.90-6.92 (2H, m), 7.20-7.23 (3H, m), 7.41-7.58 (6H, m), 7.76-7.82 (2H, m), 8.40 (1H, d, *J* = 7.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 34.6, 47.5, 120.9, 126.6, 126.7, 127.0, 127.5, 127.7, 128.5, 128.7 (overlapped), 129.8, 134.3, 135.3, 137.7, 147.1, 156.1, 162.1; ESIHRMS: Found: m/z 327.1500. Calcd for C₂₂H₁₉N₂O: (M+H)⁺ 327.1497.

3-Benzyl-2-(3,4-dimethoxyphenyl)quinazolin-4(3*H***)-one (7c):**

Reaction time: 16 h.

Yield: 81%; White solid; mp: 142-143 °C; IR (NaCl) 3019, 2963, 2837, 1678, 1605, 1589, 1566, 1514, 1474, 1375, 1263, 1173, 1142, 1026; ¹H NMR (400 MHz, CDCl₃) δ 3.53 (3H, s), 3.91 (3H, s), 5.27 (2H, s), 6.71 (1H, d, *J* = 1.2 Hz), 6.90 (1H, d, *J* = 8.4 Hz), 7.00 (2H, d, *J* =

7.2 Hz), 7.04 (1H, d, J = 8.4 Hz), 7.19-7.28 (3H, m), 7.49-7.53 (1H, m), 7.77-7.80 (2H, m), 8.37 (1H, d, J = 8.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 49.2, 55.4, 55.9, 110.9, 111.0, 120.6, 120.7, 126.6, 127.0 (overlapped), 127.2, 127.4, 127.6, 128.5, 134.5, 136.9, 147.2, 148.5, 150.2, 156.2, 162.5; ESIHRMS: Found: m/z 373.1555. Calcd for C₂₃H₂₁N₂O₃: (M+H)⁺ 373.1552.

3-Benzyl-2-(2-fluorophenyl)quinazolin-4(3*H***)-one (7d):**

Reaction time: 45 h.

Yield: 75%; Pale yellow solid; mp: 139-140 °C; IR (NaCl) 3017, 1678, 1620, 1607, 1589, 1568, 1495, 1474, 1454, 1379, 1246; ¹H NMR (400 MHz, CDCl₃) δ 4.83 (1H, d, *J* = 15.2 Hz), 5.67 (1H, d, *J* = 15.6 Hz), 6.86-6.88 (2H, m), 7.12-7.18 (6H, m), 7.43-7.56 (2H, m), 7.74-7.80 (2H, m), 8.39 (1H, d, *J* = 8.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 48.1, 116.0 (d, *J* = 20.5), 121.1, 123.5 (d, *J* = 15.8), 124.5 (d, *J* = 3.3), 127.1, 127.2, 127.4, 127.5, 127.6, 128.3, 130.4 (d, *J* = 2.2), 131.9 (d, *J* = 8.0), 134.5, 136.2, 147.2, 151.6, 159.0 (d, *J* = 247.1), 162.1; ESIHRMS: Found: m/z 331.1246. Calcd for C₂₁H₁₆FN₂O: (M+H)⁺ 331.1247.

3-Benzyl-2-cyclohexylquinazolin-4(3*H***)-one (7e):**²³

Reaction time: 30 h.

Yield: 54%; Pale yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 1.18-1.31 (3H, m), 1.67-1.80 (7H, m), 2.72-2.80 (1H, m), 5.44 (2H, s), 7.18 (2H, d, *J* = 7.2 Hz), 7.23-7.45 (4H, m), 7.65-7.74 (2H, m), 8.30 (1H, dd, *J* = 0.8, 8.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 25.6, 26.0, 31.5, 42.4, 46.0, 120.3, 126.2, 126.3, 126.9, 127.1, 127.5, 128.8, 134.1, 136.8, 147.5, 160.8, 162.7;

3-(4-Methoxybenzyl)-2-phenylquinazolin-4(3*H*)-one (7f):²³

Reaction time: 20 h.

Yield: 66%; White solid; ¹H NMR (400 MHz, CDCl₃) δ 3.73 (3H, s), 5.21 (2H, s), 6.72 (2H, d, J = 8.8 Hz), 6.85 (2H, d, J = 8.4 Hz), 7.35-7.53 (6H, m), 7.73-7.78 (2H, m), 8.37 (1H, d, J = 8.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 48.1, 55.1, 113.7, 120.9, 126.98, 126.99, 127.5, 128.0, 128.50, 128.53, 128.6, 129.8, 134.4, 135.3, 147.2, 156.3, 158.8, 162.4;

3-Butyl-2-phenylquinazolin-4(3*H*)-one (7g):

Reaction time: 30 h.

Yield: 77%; White solid; mp: 115-116 °C; IR (NaCl) 3013, 2961, 2932, 1682, 1672, 1607, 1585, 1557, 1472, 1385, 1337, 1175, 1080; ¹H NMR (400 MHz, CDCl₃) δ 0.76 (3H, t, *J* = 7.2 Hz), 1.13-1.22 (2H, m), 1.56-1.63 (2H, m), 3.98 (2H, t, *J* = 7.6 Hz), 7.48-7.55 (6H, m), 7.72-7.77 (2H, m), 8.33 (1H, d, *J* = 8.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 13.3, 19.8, 30.6, 45.6, 120.8, 126.6, 126.8, 127.3, 127.7, 128.7, 129.7, 134.2, 135.5, 147.1, 156.2, 162.0; ESIHRMS: Found: m/z 279.1494. Calcd for C₁₈H₁₉N₂O: (M+H)⁺ 279.1497.

3-Cyclopropyl-2-phenylquinazolin-4(3H)-one (7h):

Reaction time: 22 h.

Yield: 94%; Pale yellow oil; IR (NaCl) 3063, 3013, 1688, 1605, 1566, 1557, 1472, 1368, 1333, 1273, 1159, 1036; ¹H NMR (400 MHz, CDCl₃) δ 0.47-0.51 (2H, m), 0.90-0.95 (2H, m),

3.11-3.16 (1H, m), 7.45-7.50 (4H, m), 7.69-7.75 (4H, m), 8.30 (1H, d, J = 8.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 11.2, 30.2, 120.8, 126.4, 126.8, 127.3, 128.1, 128.3, 129.7, 134.1, 136.1, 147.0, 156.8, 163.8; ESIHRMS: Found: m/z 263.1182. Calcd for C₁₇H₁₅N₂O: (M+H)⁺ 263.1184.

3-Benzyl-7-methoxy-2-phenylquinazolin-4(3*H***)-one (7i):²³**

Reaction time: 7 h.

Yield: 51%; Yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 3.89 (3H, s), 5.25 (2H, s), 6.91-6.93 (2H, m), 7.09 (1H, dd, J = 2.4, 8.8 Hz), 7.15-7.20 (4H, m), 7.31-7.34 (2H, m), 7.38 (2H, t, J = 8.0 Hz), 7.45 (1H, t, J = 7.6 Hz), 8.26 (1H, d, J = 8.8 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 48.5, 55.6, 108.0, 114.3, 117.3, 126.9, 127.3, 127.8, 128.4, 128.5, 128.6, 129.8, 135.3, 136.7, 149.4, 157.1, 161.9, 164.7;

3-Benzyl-6-methoxy-2-phenylquinazolin-4(3H)-one (7i'): ²³

Reaction time: 7 h.

Yield: 9%; Pale yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 3.95 (3H, s), 5.28 (2H, s), 6.92-6.94 (2H, m), 7.19-7.21 (3H, m), 7.32-7.47 (6H, m), 7.69 (1H, d, *J* = 8.8 Hz), 7.74 (1H, d, *J* = 2.8 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 48.9, 55.8, 106.3, 121.6, 124.9, 127.0, 127.4, 128.2, 128.48, 128.54, 129.2, 129.7, 135.4, 136.7, 142.0, 154.1, 158.7, 162.3.

3-Benzyl-7-chloro-2-phenylquinazolin-4(*3H*)-one (7j):

Reaction time: 22 h.

Yield: 69%; White solid; mp: 98-99 °C; IR (NaCl) 3028, 2976, 1682, 1674, 1601, 1585, 1560, 1462, 1423, 1377, 1333, 1250, 1167, 1074; ¹H NMR (400 MHz, CDCl₃) δ 5.26 (2H, s), 6.90-6.92 (2H, m), 7.19-7.21 (3H, m), 7.32-7.49 (6H, m), 7.74 (1H, d, *J* = 2.0 Hz), 8.28 (1H, d, *J* = 8.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 48.8, 119.3, 126.9, 127.1, 127.5, 127.7, 127.9, 128.51, 128.54, 128.6, 130.0, 134.9, 136.3, 140.7, 148.2, 157.6, 161.8; ESIHRMS: Found: m/z 347.0949. Calcd for C₂₁H₁₆³⁵ClN₂O: (M+H)⁺ 347.0951.

3-Benzyl-6-chloro-2-phenylquinazolin-4(3*H***)-one (7j'):**

Reaction time: 22 h.

Yield: 21%; White solid; mp: 125-126 °C; IR (NaCl) 3063, 2978, 1682, 1605, 1585, 1560, 1470, 1447, 1373, 1329, 1234, 1130, 1072; ¹H NMR (400 MHz, CDCl₃) δ 5.27 (2H, s), 6.90-6.92 (2H, m), 7.20-7.21 (3H, m), 7.32-7.50 (5H, m), 7.68-7.73 (2H, m), 8.33 (1H, s); ¹³C NMR (100 MHz, CDCl₃) δ 48.9, 121.9, 126.4, 127.0, 127.5, 128.0, 128.5, 128.6, 129.3, 130.0, 132.9, 134.9, 135.0, 136.3, 145.7, 156.6, 161.5; ESIHRMS: Found: m/z 347.0947. Calcd for C₂₁H₁₆³⁵ClN₂O: (M+H)⁺ 347.0951.

3-Benzyl-2-phenyl-7-(trifluoromethyl)quinazolin-4(3H)-one (7k):

Reaction time: 22 h.

Yield: 60%; White solid; mp: 107-108 °C; IR (NaCl) 3019, 2982, 1682, 1589, 1557, 1497, 1433, 1352, 1317, 1252, 1233, 1165, 1126, 1061; ¹H NMR (400 MHz, CDCl₃) δ 5.29 (2H, s), 6.91-6.93 (2H, m), 7.20-7.22 (3H, m), 7.35-7.51 (5H, m), 7.71 (1H, dd, J = 1.2, 8.4 Hz), 8.05 (1H, s), 8.47 (1H, d, J = 8.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 49.0, 123.0 (q, J = 3.4 Hz), 123.1, 123.4 (q, J = 271.4 Hz), 125.2 (q, J = 4.1 Hz), 126.9, 127.6, 127.9, 128.3, 128.55,

128.61, 130.2, 134.8, 136.06 (q, J = 32.8 Hz), 136.10, 147.2, 157.7, 161.7; ESIHRMS: Found: m/z 381.1212. Calcd for C₂₂H₁₆F₃N₂O: (M+H)⁺ 381.1215.

3-Benzyl-2-phenyl-6-(trifluoromethyl)quinazolin-4(3H)-one (7k'):

Reaction time: 22 h.

Yield: 28%; White solid; mp: 147-148 °C; IR (NaCl) 3065, 2984, 1694, 1682, 1626, 1587, 1566, 1497, 1377, 1350, 1315, 1294, 1234, 1173, 1130; ¹H NMR (400 MHz, CDCl₃) δ 5.29 (2H, s), 6.91-6.93 (2H, m), 7.21-7.22 (3H, m), 7.35-7.52 (5H, m), 7.85 (1H, d, *J* = 8.8 Hz), 7.97 (1H, dd, *J* = 2.0, 8.8 Hz), 8.67 (1H, s); ¹³C NMR (100 MHz, CDCl₃) δ 49.0, 120.7, 123.7 (q, *J* = 270.5 Hz), 125.1(q, *J* = 4.2 Hz), 127.0, 127.6, 127.9, 128.6 (overlapped), 128.7, 129.0 (q, *J* = 33.1 Hz), 130.2, 130.6 (q, *J* = 3.3 Hz), 134.8, 136.1, 149.3, 158.4, 161.8; ESIHRMS: Found: m/z 381.1216. Calcd for C₂₂H₁₆F₃N₂O: (M+H)⁺ 381.1215.

3-Benzyl-5-methyl-2-phenylquinazolin-4(3*H***)-one (7l):**²³

Reaction time: 7 h.

Yield: 9%; Pale yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 2.93 (3H, s), 5.22 (2H, s), 6.94-6.96 (2H, m), 7.20-7.23 (3H, m), 7.27-7.47 (6H, m), 7.58-7.63 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ 23.2, 48.6, 119.5, 125.8, 126.8, 127.3, 127.9, 128.5, 128.6, 129.7, 129.8, 133.6, 135.4, 136.8, 141.4, 148.8, 156.2, 162.8.

3-Benzyl-8-methyl-2-phenylquinazolin-4(3*H***)-one (7l'): ²³**

Ph Rn

Reaction time: 7 h.

Yield: 66%; Pale yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 2.59 (3H, s), 5.28 (2H, s), 6.92-6.94 (2H, m), 7.18-7.19 (3H, m), 7.37-7.46 (6H, m), 7.61 (1H, d, *J* = 6.8 Hz), 8.22 (1H, d, *J* = 8.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 17.3, 48.8, 120.8, 124.7, 126.6, 126.9, 127.3, 128.3 (overlapped), 128.4, 129.7, 135.0, 135.7, 136.2, 136.7, 145.9, 154.8, 162.9;

3-Benzyl-2-phenylbenzo[*h*]quinazolin-4(3*H*)-one (7m):²³

Reaction time: 20 h.

Yield: 79%; Pale yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 5.38 (2H, s), 6.96-6.98 (2H, m), 7.19-7.22 (3H, m), 7.40-7.52 (5H, m), 7.60-7.70 (2H, m), 7.86 (1H, d, *J* = 8.8 Hz), 7.90 (1H, d, *J* = 8.0 Hz), 8.29 (1H, d, *J* = 8.8 Hz), 9.00 (1H, d, *J* = 8.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 49.0, 117.1, 122.2, 125.3, 126.8, 126.9, 127.3, 127.4, 127.8, 128.38, 128.41, 128.5, 129.2, 129.89, 129.93, 135.6, 136.2, 136.6, 146.0, 156.4, 162.5;

8. References

(1) P. Horrillo-Martinez, K. C. Hultzsch, A. Gil, V. Branchadell, Eur. J. Org. Chem., 2007, 3311.

(2) H. Zheng, R. McDonald, D. G. Hall, Chem. Eur. J., 2010, 16, 5454.

(3) T. Gerfaud, H.-L. Wei, L. Neuville, J.-P. Zhu, Org Lett., 2011, 13, 6172.

(4) L. Brochard, B. Joseph, M.-C. Viaud, P. Rollin, Synth. Commun., 1994, 24, 1403.

(5) T. Pirali, R. Mossetti, G. C. Tron, S. Galli, Org Lett., 2011, 13, 3734.

(6) K.-C. Liu, B. R. Shelton, R. K. Howe, J. Org. Chem., 1980, 45, 3916.

(7) S. B. Bharate, A. K. Padala, R. R. Yadav, R. A. Vishwakarma, B. A. Dar, B. Singh, *Tetrahedron Lett.*, 2013, **54**, 3558.

(8) A. H. Lewin, H. A. Navarro, S. W. Mascarella, Bioorg. Med. Chem., 2008, 16, 7415.

(9) B. Sreedhar, P. S. Reddy, D. K. Devi, J. Org. Chem., 2009, 74, 8806.

(10) T. S. Purchase, A. D. Essenburg, K. L. Hamelehle, M. S. Hes, A. Holmes, B. R. Krause,

R. L. Stanfield, B. K. Trivedi, Bioorg. Med. Chem., 1997, 5, 739.

(11) Y.-L. Wang, H. Chen, X. Zhu, S. Chiba, J. Am. Chem. Soc., 2012, 134, 11980.

(12) L. Xu, D. Zhu, F. Wu, R. L. Wang, B. S. Wan, Tetrahedron, 2005, 61, 6553.

(13) S. Araneo, F. Fontana, F. Minisci, F. Recupero, A. Serri, *Tetrahedron Lett.*, 1995, **36**, 4307.

(14) S. C. Lahiri, J. K. Gupta, A. K. Mondal, J. Pharm. Sci., 1975, 64, 172.

- (15) S. G. Davies, D. A. B. Mortimer, A. W. Mulvaney, A. J. Russell, H. Skarphedinsson, A.
- D. Smith, R. J. Vickers, Org. Biomol. Chem., 2008, 6, 1625.
- (16) B. Bellier, C. Garbay, Eur. J. Med. Chem., 2003, 38, 671.
- (17) Y.-J. Shang, Z.-J. Feng, L.-L. Yuan, S.-W. Wang, Tetrahedron, 2008, 64, 5779.
- (18) Y. Cheng, J. Brown, S. A. Hitchcock, et. al. J. Med. Chem., 2008, 51, 5019.
- (19) H. Chen, S. Sanjaya, Y.-L. Wang, S. Chiba, Org Lett., 2013, 15, 212.
- (20) S. N. Rao, D. C. Mohan, S. Adimurthy, Org Lett., 2013, 15, 1496.
- (21) H.-W. Huang, X.-C. Ji, W.-Q. Wu, H.-F. Jiang, Adv. Synth. Catal., 2013, 355, 170.
- (22) J.-H. Li, L. Neuville, Org Lett., 2013, 15, 1752.
- (23) Y.-F. Wang, F.-L. Zhang, S. Chiba, Org. Lett., 2013, 15, 2842.

¹³C NMR spectrum of **1a** (the major stereoisomer) (100 MHz, CDCl₃)

S51

¹³C NMR spectrum of **1b** (100 MHz, CDCl₃)

¹H NMR spectrum of **1c** (400 MHz, CDCl₃)

¹³C NMR spectrum of **1c** (100 MHz, CDCl₃)

¹H NMR spectrum of **1d** (the major stereoisomer) (400 MHz, CDCl₃)

S57

¹³C NMR spectrum of **1d** (the minor stereoisomer) (100 MHz, CDCl₃)

¹H NMR spectrum of **1e** (400 MHz, CDCl₃)

 13 C NMR spectrum of **1e** (100 MHz, CDCl₃)

S61

 13 C NMR spectrum of **1f** (100 MHz, CDCl₃)

S65

¹H NMR spectrum of **1h** (E/Z mixture, major:minor = 5:1) (400 MHz, CDCl₃)

 13 C NMR spectrum of **1h** (E/Z mixture, major:minor = 5:1) (100 MHz, CDCl₃)

S69

S70

128.400 128.232 126.224 142.841 77.318 77.000 76.682 53.117 52.724 49.708 32.006 31.899 20.977 20.857 20.337 13.867 Мe Me `Me `N H Ρ'n 50 200 150 100 0 ppm (t1)

¹³C NMR spectrum of A (100 MHz, CDCl₃)

¹H NMR spectrum of **1j** (400 MHz, CDCl₃)

¹³C NMR spectrum of **1j** (100 MHz, CDCl₃)

¹H NMR spectrum of **1k** (the minor stereoisomer) (400 MHz, CDCl₃)

¹³C NMR spectrum of **1k** (the minor stereoisomer) (100 MHz, CDCl₃)

¹H NMR spectrum of **1l** (400 MHz, CDCl₃)

¹³C NMR spectrum of **1l** (100 MHz, CDCl₃)

¹³C NMR spectrum of **B** (major stereoisomer) (100 MHz, CDCl₃)

¹H NMR spectrum of **1m** (E/Z mixture, major:minor = 5:1) (400 MHz, CDCl₃)

¹³C NMR spectrum of **1n** (the major stereoisomer) (100 MHz, CDCl₃)

¹H NMR spectrum of C (400 MHz, CDCl₃)

¹³C NMR spectrum of C (100 MHz, CDCl₃)

128.985 127.589 123.743 120.193 116.950 154.989 77.318 77.000 76.682 63.409 47.043 36.769 24.930 NH₂ 200 150 100 50 0 ppm (t1)

¹H NMR spectrum of **D** (400 MHz, $CDCl_3$)

¹³C NMR spectrum of **D** (100 MHz, CDCl₃)

¹H NMR spectrum of **10** (the minor stereoisomer) (400 MHz, CDCl₃)

¹H NMR spectrum of **1p** (400 MHz, CDCl₃)

¹H NMR spectrum of **E** (400 MHz, CDCl₃)

¹³C NMR spectrum of **E** (100 MHz, CDCl₃) 140.648 128.323 128.021 126.790 77.317 77.000 76.683 54.162 51.876 39.064 38.283 31.903 30.623 28.414 27.990 44.577 ___NH Ph 200 150 100 50 0 ppm (t1)

 13 C NMR spectrum of **1q** (100 MHz, CDCl₃)

¹H NMR spectrum of 1r (400 MHz, CDCl₃)

¹H NMR spectrum of **1s** (400 MHz, $CDCl_3$)

¹H NMR spectrum of **F** (400 MHz, $CDCl_3$)

 13 C NMR spectrum of **F** (100 MHz, CDCl₃)

¹H NMR spectrum of **6a** (400 MHz, CDCl₃)

¹³C NMR spectrum of **6a** (100 MHz, CDCl₃)

¹³C NMR spectrum of **G** (100 MHz, CDCl₃)

¹H NMR spectrum of **6c** (400 MHz, $CDCl_3$)

 13 C NMR spectrum of **6c** (100 MHz, CDCl₃)

¹H NMR spectrum of *N*-benzyl-3,4-dimethoxy-*N*-(pivaloyloxy)benzimidamide (400 MHz, CDCl₃)

¹³C NMR spectrum of *N*-benzyl-3,4-dimethoxy-*N*-(pivaloyloxy)benzimidamide (100 MHz, CDCl₃)

¹H NMR spectrum of *N*-benzyl-*N*'-hydroxy-3,4-dimethoxybenzimidamide (400 MHz, CDCl₃)

¹H NMR spectrum of **6d** (400 MHz, CDCl₃)

 13 C NMR spectrum of **6d** (100 MHz, CDCl₃)

¹³C NMR spectrum of N-benzyl-2-fluoro-N'-(pivaloyloxy)benzimidamide (100 MHz, CDCl₃)

¹H NMR spectrum of *N*-benzyl-2-fluoro-*N*'-hydroxybenzimidamide (400 MHz, CDCl₃)

¹³C NMR spectrum of *N*-benzyl-2-fluoro-*N*'-hydroxybenzimidamide (100 MHz, CDCl₃)

¹H NMR spectrum of **6e** (400 MHz, $CDCl_3$)

¹H NMR spectrum of *N*-benzyl-*N*'-(pivaloyloxy)cyclohexanecarboximidamide (400 MHz, CDCl₃)

¹³C NMR spectrum of *N*-benzyl-*N*'-(pivaloyloxy)cyclohexanecarboximidamide (100 MHz, CDCl₃)

¹H NMR spectrum of *N*-benzyl-*N*'-hydroxycyclohexanecarboximidamide (400 MHz, CDCl₃)

¹³C NMR spectrum of *N*-benzyl-*N*'-hydroxycyclohexanecarboximidamide (100 MHz, CDCl₃)

¹³C NMR spectrum of **6f** (100 MHz, CDCl₃)

¹H NMR spectrum of *N*-(4-methoxybenzyl)-*N*'-(pivaloyloxy)benzimidamide (400 MHz, CDCl₃)

¹H NMR spectrum of N'-hydroxy-N-(4-methoxybenzyl)benzimidamide (400 MHz, CDCl₃)

¹³C NMR spectrum of N'-hydroxy-N-(4-methoxybenzyl)benzimidamide (100 MHz, CDCl₃)

¹H NMR spectrum of **6g** (400 MHz, CDCl₃)

¹³C NMR spectrum of **6g** (100 MHz, CDCl₃)

¹H NMR spectrum of *N*-butyl-*N*'-(pivaloyloxy)benzimidamide (400 MHz, CDCl₃)

¹³C NMR spectrum of *N*-butyl-*N*-(pivaloyloxy)benzimidamide (100 MHz, CDCl₃)

¹H NMR spectrum of *N*-butyl-*N*'-hydroxybenzimidamide (400 MHz, CDCl₃)

¹³C NMR spectrum of *N*-butyl-*N*'-hydroxybenzimidamide (100 MHz, CDCl₃)

¹H NMR spectrum of **6h** (400 MHz, CDCl₃)

¹H NMR spectrum of *N*-cyclopropyl-*N*'-(pivaloyloxy)benzimidamide (400 MHz, CDCl₃)

¹H NMR spectrum of *N*-cyclopropyl-*N*'-hydroxybenzimidamide (400 MHz, CDCl₃)

¹H NMR spectrum of **6i** (400 MHz, CDCl₃)

¹³C NMR spectrum of **6j** (100 MHz, CDCl₃)

 13 C NMR spectrum of **6k** (100 MHz, CDCl₃)

¹³C NMR spectrum of **6l** (100 MHz, CDCl₃)

¹³C NMR spectrum of **6m** (100 MHz, CDCl₃)

¹³C NMR spectrum of **2a** (100 MHz, CDCl₃)

¹³C NMR spectrum of **2b** (100 MHz, CDCl₃)

¹³C NMR spectrum of **2c** (100 MHz, CDCl₃)

¹³C NMR spectrum of **2d** (100 MHz, CDCl₃)

¹H NMR spectrum of **2e** (400 MHz, CDCl₃)

¹³C NMR spectrum of **2e** (100 MHz, CDCl₃)

¹H NMR spectrum of **2f** (400 MHz, $CDCl_3$)

 13 C NMR spectrum of **2f** (100 MHz, CDCl₃)

 13 C NMR spectrum of **2g** (100 MHz, CDCl₃)

¹H NMR spectrum of **2h** (400 MHz, CDCl₃)

¹³C NMR spectrum of **2h** (100 MHz, CDCl₃)

164.939 149.017 128.362 128.313 127.877 132.032 129.424 126.285 125.937 77.318 77.000 76.739 76.682 59.943 48.316 39.379 19.854 17.706 17.060 13.779 31.088 Me Ph Me Ph Ме 200 150 100 50 0 ppm (t1)

¹³C NMR spectrum of **2i** (100 MHz, CDCl₃)

13 C NMR spectrum of **2j** (100 MHz, CDCl₃)

164.765 148.021 137.691 131.124 129.994 128.701 128.527 128.461 128.174 127.383 127.069 126.678 126.487 77.318 77.000 76.683 76.437 63.847 52.922 Ph Ph Ph Bn 200 150 100 50 0 ppm (t1)

 13 C NMR spectrum of **2k** (100 MHz, CDCl₃)

¹³C NMR spectrum of **2l** (100 MHz, CDCl₃)

¹H NMR spectrum of 2m (400 MHz, CDCl₃)

¹³C NMR spectrum of **2m** (100 MHz, CDCl₃)

159.335 129.800 128.817 128.598 128.048 143.085 131.223 122.844 121.940 77.317 77.000 76.682 65.860 64.496 28.978 Me Me ⁻N Ph Ph 200 150 100 50 0 ppm (t1)

¹³C NMR spectrum of **2n** (100 MHz, CDCl₃)

¹H NMR spectrum of **2o** (400 MHz, CDCl₃)

¹³C NMR spectrum of **20** (100 MHz, CDCl₃)

¹H NMR spectrum of **2p** (400 MHz, CDCl₃)

¹³C NMR spectrum of 2p (100 MHz, CDCl₃)

¹H NMR spectrum of **2s** (400 MHz, CDCl₃)

¹³C NMR spectrum of **2s** (100 MHz, CDCl₃)

¹H NMR spectrum of $3q(400 \text{ MHz}, \text{CDCl}_3)$

¹H NMR spectrum of **4q** (400 MHz, CDCl₃)

 13 C NMR spectrum of **4q** (100 MHz, CDCl₃)

¹H NMR spectrum of 3r (400 MHz, CDCl₃)

¹H NMR spectrum of 4r (400 MHz, CDCl₃)

¹H NMR spectrum of **7a** (400 MHz, $CDCl_3$)

¹³C NMR spectrum of **7a** (100 MHz, CDCl₃)

¹³C NMR spectrum of **7b** (100 MHz, CDCl₃)

¹H NMR spectrum of **7c** (400 MHz, $CDCl_3$)

¹³C NMR spectrum of **7c** (100 MHz, CDCl₃)

¹³C NMR spectrum of **7d** (100 MHz, CDCl₃)

¹H NMR spectrum of **7e** (400 MHz, $CDCl_3$)

¹³C NMR spectrum of **7e** (100 MHz, CDCl₃)

¹H NMR spectrum of **7f** (400 MHz, $CDCl_3$)

¹³C NMR spectrum of **7f** (100 MHz, CDCl₃)

¹³C NMR spectrum of **7g** (100 MHz, CDCl₃)

162.043 134.158 129.677 128.650 127.707 127.339 126.835 126.835 126.641 120.842 156.155 147.093 135.495 77.317 77.000 76.681 45.605 30.622 19.794 13.310 N N `Me 200 150 100 50 0 ppm (t1)

¹³C NMR spectrum of **7h** (100 MHz, CDCl₃)

¹H NMR spectrum of **7i** (400 MHz, CDCl₃)

¹³C NMR spectrum of **7i** (100 MHz, CDCl₃)

¹H NMR spectrum of **7i**' (400 MHz, CDCl₃)

¹H NMR spectrum of **7j** (400 MHz, CDCl₃)

¹³C NMR spectrum of **7j** (100 MHz, CDCl₃)

¹H NMR spectrum of **7j**' (400 MHz, CDCl₃)

¹H NMR spectrum of **7k** (400 MHz, $CDCl_3$)

¹H NMR spectrum of **7k'** (400 MHz, $CDCl_3$)

¹³C NMR spectrum of **7k'** (100 MHz, $CDCl_3$)

¹³C NMR spectrum of **7l** (100 MHz, CDCl₃)

¹³C NMR spectrum of **7m** (100 MHz, CDCl₃)

