Fast-pulsing NMR techniques for the detection of weak interactions: successful natural abundance probe of hydrogen bonds in peptides

A. Altmayer-Henzien,^a V. Declerck,^a D. J. Aitken,^a E. Lescop,^b D. Merlet,^c and J. Farjon*^c

^a Université Paris Sud, ICMMO UMR 8182 ESOM 15 Rue Georges Clemenceau bât 420, Orsay, France.

^b Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France.

^c Université Paris Sud, ICMMO UMR 8182 ERMN 15 Rue Georges Clemenceau bât 410, Orsay, France.

Fax: 0033(0)169158105

Tel: 0033(0)169154767

Email: jonathan.farjon@u-psud.fr

Table 1: ¹H T_1 measurement with and without selective pulses

1/ Cyclosporin A in CDCl₃

	Abu (2)	Ala (7)	Val (5)	D-Ala (8)
T_1 hard (s)	0.86	0.78	0.98	1.18
T_1 selective (s)	0.73	0.69	0.83	1.00

2/ Octamer in pyridine-d₅

	2	4	5,6	8	1	7,3
T_1 hard (s)	1.82	1.36	1.52	1.63	1.75	1.58
T_1 selective (s)	1.24	0.99	0.85	0.83	0.87	0.89

Ernst angle optimization

Figure SI-1 Comparison of different excitation angle (α) (90° to 130° from the left to the right) on the intensity of signals for the cyclosporin A (panel A) and the octamer (panel B) (see Figure 2). For each molecule an optimized excitation angle leading to the best sensitivity has been chosen to 110°.

Theoretical part on the calculation of the best excitation angle

Ernst *et al.* [1] have shown that the optimal flip angle can be predicted from equation $1:^{1,2}$

$$\cos (180 - \alpha) = \exp(-(aq + t_{rec})/T_1)$$
 (eq. 1)

Thus, the optimal excitation angle α^{opt} for the SOFAST HMBC can be expressed as following:

$$\alpha^{\text{opt}} = 180 - \operatorname{Arccos}[\exp(-T_{\text{rep}}/T_1)] \qquad (\text{eq. 2})$$

In Table 2 are compared theoretical and experimental values of the α angles for each compound. The experimentally optimized values from the most intense ¹H signals were collected. The error of about $\pm 10^{\circ}$ for the experimental α angle (α^{exp}) comes mainly from errors on the 90° pulse calibration. Uncertainties of $\pm 5^{\circ}$ on the calculated α angle (α^{th}) from equation 1 are due to errors on T₁ values (± 0.10 s) measured with the selective version of the inversion recovery. α^{exp} and α^{th} are in agreement by considering errors on their measurement and calculation, respectively.

Table 2: Comparison between experimental and theoretical α angle values

For the cyclosporin A

$T_1(H_2^N)(s)$	$T_{rep}(s)$	$\alpha^{\exp}(^{\circ})$	$\alpha^{th}(^{\circ})$
0.73 ± 0.10	0.43	110 ± 10 (see Fig.SI 1 A)	123 ± 5
$T_{1}(H^{N}_{7})(s)$	T _{rep} (s)	$\alpha^{\exp}(^{\circ})$	$\alpha^{\text{th}}(^{\circ})$
0.69 ± 0.10	0.43	110 ± 10 (see Fig. SI 1 A)	122 ± 5
$T_{1}(H^{N}_{5})(s)$	T _{rep} (s)	$\alpha^{\exp}(\circ)$	α^{th} (°)
0.83 ± 0.10	0.43	130 ± 10 (see Fig.SI 1A)	126 ± 5
$T_1(H_8^N)(s)$	T _{rep} (s)	$\alpha^{\exp}(^{\circ})$	α^{th} (°)
1.0 ± 0.10	0.43	120 ± 10 (see Fig. SI 1 A)	130 ± 5

For the β -peptide

$T_1 (H_2^N) (s)$	$T_{rep}(s)$	$\alpha^{\exp}(^{\circ})$	$\alpha^{\text{th}}(\circ)$
1.24 ± 0.10	0.43	$110 - 120 \pm 10$ (see Fig.SI 1 B)	135 ± 5
$T_{1}(H_{4}^{N})(s)$	T _{rep} (s)	$\alpha^{\exp}(^{\circ})$	$\alpha^{\text{th}}(^{\circ})$
0.99 ± 0.10	0.43	$110 - 120 \pm 10$ (see Fig. SI 1 B)	130 ± 5
$T_1(H^{N_5})(s)$	T _{rep} (s)	$\alpha^{\exp}(\circ)$	α^{th} (°)
0.85 ± 0.10	0.43	110 ± 10 (see Fig.SI 1 B)	$12\overline{7}\pm 5$
$T_1(H_{6}^{N})(s)$	T _{rep} (s)	$\alpha^{\exp}(\circ)$	$\alpha^{\text{th}}(\circ)$
0.85 ± 0.10	0.43	110 ± 10 (see Fig. SI 1 B)	127 ± 5
$T_{1}(H^{N}_{8})(s)$	T _{rep} (s)	$\alpha^{\exp}(\circ)$	α^{th} (°)
0.83 ± 0.10	0.43	$110 - 120 \pm 10$ (see Fig.SI 1 B)	126 ± 5
$T_{1}(H^{N}_{7})(s)$	T _{rep} (s)	$\alpha^{\exp}(\circ)$	$\alpha^{\text{th}}(\circ)$
0.87 ± 0.10	0.43	$110 - 120 \pm 10$ (see Fig. SI 1 B)	127 ± 5
$T_1 (H_3^N) (s)$	T _{rep} (s)	$\alpha^{\exp}(\circ)$	$\alpha^{\text{th}}(\circ)$
0.87 ± 0.10	0.43	$110 - 120 \pm 10$ (see Fig. SI 1 B)	$12\overline{7\pm5}$

Effect of the signal truncation on the detection of H^{N} ...OC H-bonds:

Figure SI-2 H^N-CO SOFAST HMBC recorded maps on the octamer (see Figure 2) in pyridine- d_5 with different truncation level corresponding to acquisition time (aq): A. 107 ms, B. 215 ms, C. 322 ms, D. 430 ms. A long range delay Δ of 200 ms was used for ${}^{h2}J_{NH\cdots OC}$ couplings to prevent lost in sensitivity due to the transverse relaxation. For aq=107 ms all correlation peaks due to ${}^{2}J_{HN-CO}$ are visible but not the ones coming from the evolution of ${}^{h2}J_{NH\cdots OC}$. For aq = 215 ms H^N(4)…CO(1), H^N(6)…OC(3), and H^N(3)…OC(Boc) start appearing. For aq = 322 ms, H^N(5)…CO(2), H^N(8)…CO(5) appear and other H^N…CO get a higher sensitivity. Finally the optimum aq = 430 ms allowed detecting all H bonds correlations.

References

- 1. R. Ernst and W. Anderson, Rev. Sci. Instrum. 1966, 37, 93.
- 2. R., Ernst, G. Bodenhausen and A. Wokaun, *Principles of Nuclear Magnetic Resonances in One and Two Dimensions*, Oxford, Science Publications, 1987