Supporting information for

Synthesis of protectin D1: A potent anti-inflammatory and proresolving lipid mediator

Marius Aursnes,^a Jørn E. Tungen,^a Anders Vik,^a Jesmond Dalli^b and Trond V. Hansen^{*,a}

^aSchool of Pharmacy, Department of Pharmaceutical Chemistry, University of Oslo, PO Box 1068 Blindern, N-0316 Oslo, Norway ^bCenter for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, 02115, USA *E-mail: t.v.hansen@farmasi.uio.no

Table of Contents:

General Information	S1
Synthesis of compounds 5, 7, 8, 9a, 9b, 9c, 15, 16b, 16c, 18, 19	S2
Endogenously prepared protectin D1 (2)	S6
NMR Spectra of Compounds 5, 9c, 16a-b, 21-24 and 2 (Figures S1-S18)	S7
UV/Vis Chromatograms of 24 and 2 (Figures S19-S20)	S16
HPLC Chromatograms of 16a-c, 24 and 2 (Figures S21-S25)	S17
IR spectrum of 1 (Figures S26)	S20
HPLC Chromatograms of endogenously produced 2 and saponified product of synthetic 24 (Figure S27)	S21
MS-MS spectra of endogenously produced 2 and saponified product of synthetic 24 (Figure S28)	S22
MS-MS spectra of endogenously produced 2 and synthetic 2 (Figure S29)	S23
References	S24

General Information

Unless stated otherwise, all commercially available reagents and solvents were used as received without any further purification. The stated yields are based on isolated material. Thin layer chromatography was performed on silica gel 60 F₂₅₄ aluminum-backed plates fabricated by Merck. Flash column chromatography was performed on silica gel 60 (40-63 µm) produced by Merck. NMR spectra were recorded on either a Bruker DRX500, Bruker AVII400 or a Bruker DPX300 spectrometer at 500 MHz, 400 MHz or 300 MHz respectively for ¹H NMR and at 126 MHz, 100 MHz or 75 MHz respectively for ¹³C NMR. Coupling constants (J) are reported in hertz and chemical shifts are reported in parts per million (δ) relative to the central residual protium solvent resonance in ¹H NMR (CDCl₃ = δ 7.27, DMSO- $d_6 = \delta$ 2.50 and MeOD- $d_4 = \delta$ 3.31) and the central carbon solvent resonance in ¹³C NMR (CDCl₃ = δ 77.00 ppm, DMSO- $d_6 = \delta$ 39.43 and MeOD- $d_4 = \delta$ 49.00). Mass spectra were recorded at 70 eV on Waters Prospec Q spectrometer using EI, ES or CI as the methods of ionization. High resolution mass spectra were recorded on Waters Prospec Q spectrometer using EI or ES as the methods of ionization. Optical rotations were measured using a 1 mL cell with a 1.0 dm path length on a Perkin Elmer 341 polarimeter. HPLC analyses were performed on an Agilent Technologies 1200 Series instrument with a diode array detector set at 254 nm and equipped with a C₁₈ stationary phase (Eclipse XDB-C18 5 μ m 4.6 × 150 mm), applying the conditions stated. The UV/Vis spectra from 190-900 nm were recorded using a Biochrom Libra S32PC spectrometer using quartz cuvettes. IR spectra ($4000 - 600 \text{ cm}^{-1}$) were obtained on a Perkin-Elmer Spectrum BX series FT-IR spectrophotometer. Diastereomeric ratios or yields reported in this paper have not been validated by calibration, see reference Hudlicky and Wernerova for discussions and guidelines.¹

(*S*,*Z*)-*tert*-Butyldimethyl(oct-5-en-1-yn-3-yloxy)silane (5).

2,6-Lutidine (843 mg, 7.98 mmol, 3.0 equiv.) and TBSOTf (843 mg, 3.19 mmol, 1.2 equiv.) were added to a solution of known² (3*S*)-oct-5*Z*-en-1-yn-3-ol (**25**) (330 mg, 2.66 mmol, 1 equiv.) in CH₂Cl₂ (26 mL) at -78 °C.The reaction was stirred at that temperature for 4 h before it was quenched with saturated aq. NH₄Cl (15 mL). The layers were separated and the aqueous layer was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layers were dried (Na₂SO₄), before concentrated *in vacuo*. The crude product was purified by column chromatography on silica (hexanes/EtOAc 98:2) to afford the title compound **5** as a colourless oil. Yield: 513 mg (81%); TLC (hexanes/EtOAc 95:5, CAM stain): $R_{\rm f} = 0.66$; $[\alpha]_D^{20} = 21.5$ (c = 0.07, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 5.57 – 5.36 (m, 2H), 4.34 (td, J = 6.6, 2.1 Hz, 1H), 2.45 (t, J = 6.9 Hz, 2H), 2.38 (d, J = 2.1 Hz, 1H), 2.07 (p, J = 7.1 Hz, 2H), 0.97 (t, J = 7.5 Hz, 3H), 0.91 (s, 9H), 0.14 (s, 3H), 0.11 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 134.6, 123.8, 85.6, 72.2, 63.0, 36.7, 25.9 (3C), 20.9, 18.4, 14.4, -4.5, -4.9.

(S)-1-(4-Isopropyl-2-thioxothiazolidin-3-yl)ethan-1-one (9a).

Nagao's chiral auxiliary **9a** was prepared from commercially available (*S*)-4-isopropylthiazolidine-2-thione (**26**) by using the procedure of Nagao *et al.*³ All spectroscopic and physical data were in full agreement with those reported in the literature.³ Yield: 7.88 g (87%); $[\alpha]_D^{20} = 434.2$ (c = 0.26, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 5.14 (ddd, *J* = 7.6, 6.2, 1.2 Hz, 1H), 3.50 (dd, *J* = 11.5, 8.0 Hz, 1H), 3.02 (dd, *J* = 11.5, 1.2 Hz, 1H), 2.77 (s, 3H), 2.48 - 2.25 (m, 1H), 1.06 (d, *J* = 6.8 Hz, 3H), 0.97 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 203.3, 170.8, 71.4, 30.9, 30.5, 27.0, 19.2, 17.9.

(S)-1-(4-Phenyl-2-thioxothiazolidin-3-yl)ethan-1-one (9b).

To (*S*)-4-Phenyl-1,3-thiazolidine-2-thione (**27**) (1.00 g, 5.12 mmol, 1.0 equiv.) in THF (25 mL), 60% NaH dispersion in mineral oil (147 mg, 6.15 mmol, 1.0 equiv.) was slowly added at 0 °C. The reaction mixture was stirred for 15 min at 0 °C, and acetyl chloride (482 mg, 6.15 mmol, 1.2 equiv.) was added dropwise. The reaction mixture was stirred for 30 min at 0 °C, upon which it was warmed to room temperature and allowed to stir for 2 h. The reaction was quenched with saturated NH₄Cl (15 mL) and the layers were separated. The aqueous layer was extracted with EtOAc (2 x 20 mL) and the combined organic layers were dried (Na₂SO₄), filtered, and concentrated *in vacuo*. The crude product was purified by column chromatography on silica (hexanes/EtOAc 95:05) to afford the title compound **9b** as a yellow oil. Yield: 1.07 g (83%); TLC (hexanes/EtOAc 80:20, KMnO₄)

stain): $R_{\rm f} = 0.18$; $[\alpha]_D^{20} = 323.5$ (c = 0.18, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.31 (m, 5H), 6.27 (dd, J = 8.1, 1.5 Hz, 1H), 3.96 (dd, J = 11.2, 8.2 Hz, 1H), 3.10 (dd, J = 11.2, 1.5 Hz, 1H), 2.83 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 202.7, 170.6, 139.2, 129.1 (2C), 128.6, 125.5 (2C), 69.5, 36.7, 27.2. HRMS (EI+): Exact mass calculated for C₁₁H₁₁NOS₂ [M]⁺: 237.0282, found 237.0286.

(S)-1-(4-Benzyl-2-thioxothiazolidin-3-yl)ethan-1-one (9c).

Nagao's chiral auxiliary **9c** was prepared from commercially available (*S*)-4-benzylthiazolidine-2-thione (**28**) by using the procedure of Jensen *et al.*⁴ All spectroscopic and physical data were in full agreement with those reported in the literature.⁴ Yield: 979 mg (81%); $[\alpha]_D^{20} = 253$ (c = 0.35, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.39 – 7.23 (m, 5H), 5.45 – 5.31 (m, 1H), 3.39 (ddd, *J* = 11.5, 7.3, 1.1 Hz, 1H), 3.22 (dd, *J* = 13.3, 3.9 Hz, 1H), 3.04 (dd, *J* = 13.2, 10.5 Hz, 1H), 2.89 (dd, *J* = 11.6, 0.8 Hz, 1H), 2.80 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 201.7, 170.8, 136.6, 129.6 (2C), 129.0 (2C), 127.3, 68.3, 36.8, 31.9, 27.2.

Potassium (1E,3E)-5-oxopenta-1,3-dien-1-olate (15).

Glutaconaldehyde potassium salt **15** was prepared from commercially available pyridinium-1-sulfonate (**14**) according to the procedure of Becher.⁵ All spectroscopic and physical data were in full agreement with those reported in the literature.⁵ Yield: 28.5 g (55%); ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.67 (d, *J* = 9.2 Hz, 2H), 7.04 (t, *J* = 12.9 Hz, 1H), 5.10 (dd, *J* = 13.0, 9.1 Hz, 2H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 184.4 (2C), 159.8, 106.2 (2C).

(2*E*,4*E*)-5-Bromopenta-2,4-dienal (8).

Bromopentadienal **8** was prepared by the bromination of glutaconaldehyde potassium salt **15** according to the protocol reported by Duhamel *et al.*⁶ All spectroscopic and physical data were in agreement with those reported in the literature.⁶ Yield: 8.1 g (75%); ¹H NMR (300 MHz, CDCl₃) δ 9.58 (d, *J* = 7.8 Hz, 1H), 7.07 – 6.90 (m, 3H), 6.24 – 6.11 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 193.3, 147.9, 135.7, 132.0, 120.0.

(R,4E,6E)-7-Bromo-3-hydroxy-1-((S)-4-phenyl-2-thioxothiazolidin-3-yl)hepta-4,6-dien-1-one (16b).

To a solution of *N*-acetylthiazolidinethione **9b** (200 mg, 0.73 mmol, 1.0 equiv.) in CH₂Cl₂ (7.3 mL), TiCl₄ (1M in CH₂Cl₂ 139 mg, 0.73 mmol, 1.0 equiv.) was added at -78 °C and stirred for 5 min. Diisopropylethylamine (113 mg, 0.88 mmol, 1.2 equiv.) in CH₂Cl₂ (1.8 mL) was added and the solution was stirred for 30 min at -78 °C, whereupon the freshly prepared aldehyde **8** (106 mg, 0.66 mmol, 0.9 equiv.) in CH₂Cl₂ (1.8 mL) was added dropwise. The mixture was stirred for 1 h at -78 °C, then quenched with half saturated ammonium chloride (10 mL) and warmed to room temperature. The layers were separated and the aq. layer was extracted with CH₂Cl₂ (2 x 20 mL). The combined organic layers were dried (Na₂SO₄) and filtered, before concentrated *in vacuo*. The diastereomeric ratio (4.5:1) on the crude product was determined by HPLC analysis (Eclipse XDB-C18, MeOH/H₂O 7:3, 1.0 mL/min, *t_r*(minor) = 8.23 min and *t_r*(major) = 10.29 min). The crude product was purified by column chromatography on silica (hexanes/EtOAc 7:3) to afford the title compound **16b** as a yellow oil. Yield: 141 mg (54%); TLC (hexanes/EtOAc 1:1, KMnO₄ stain): *R*_f = 0.24; $[\alpha]_D^{20}$ = 189.5 (c = 0.12, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.30 (m, 5H), 6.70 (dd, *J* = 13.6, 10.7 Hz, 1H), 6.34 (d, *J* = 13.5 Hz, 1H), 6.26 – 6.18 (m, 2H), 5.77 (dd, *J* = 15.3, 5.5 Hz, 1H), 3.10 (d, *J* = 10.7 Hz, 1H), 2.92 (bs, *J* = 4.3 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 202.5, 172.4, 139.0, 136.7, 134.7, 129.3 (2C), 128.8, 128.1, 125.5 (2C), 109.7, 69.7, 67.9, 45.8, 36.9; HRMS (TOF ES+): Exact mass calculated for C₁₆H₁₆⁷⁹BrNO₂S₂Na [*M*+Na]⁺: 419.9703, found 419.9711.

(R,4E,6E)-1-((S)-4-Benzyl-2-thioxothiazolidin-3-yl)-7-bromo-3-hydroxyhepta-4,6-dien-1-one (16c).

To a solution of N-acetylthiazolidinethione 9c (200 mg, 0.80 mmol, 1.0 equiv.) in CH₂Cl₂(7.9 mL), TiCl₄ (1M in CH₂Cl₂, 151 mg, 0.80 mmol, 1.0 equiv.) was added at -78 °C and stirred for 5 min. Diisopropylethylamine (189 mg, 1.46 mmol, 1.2 equiv.) in CH₂Cl₂ (2.0 mL) was added and the solution was stirred for 30 min at -78 °C, whereupon the freshly prepared aldehyde 8 (116 mg, 0.72 mmol, 0.9 equiv.) in CH₂Cl₂ (2.0 mL) was added dropwise. The mixture was stirred for 1 h at -78 °C, then quenched with half saturated ammonium chloride (10 mL) and warmed to room temperature. The layers were separated and the aq layer was extracted with CH_2Cl_2 (2 x 20 mL). The combined organic layers were dried (Na_2SO_4) and filtered, before concentrated in vacuo. The diastereomeric ratio (9.8:1) on the crude product was determined by HPLC analysis (Eclipse XDB-C18, MeOH/H₂O 7:3, 1.0 mL/min, t_r (minor) = 16.60 min and t_r (major) = 21.08 min). The crude product was purified by column chromatography on silica (hexanes/EtOAc 8:2) to afford the title compound 16c as a yellow oil. Yield: 232 mg (79%); TLC (hexanes/EtOAc 7:3, KMnO₄ stain): $R_{\rm f} = 0.16$; $[\alpha]_D^{20} = 116.8$ (c = 0.11, CHCl₃); ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta 7.38 - 7.26 \text{ (m, 5H)}, 6.72 \text{ (dd, } J = 13.6, 10.8 \text{ Hz}, 1\text{H}), 6.36 \text{ (d, } J = 13.5 \text{ Hz}, 1\text{H}), 6.27 \text{ (dd, } J = 13.6 \text{ Hz}, 1\text{H}), 6.36 \text{ (d, } J = 13.5 \text{ Hz}, 1\text{H}), 6.27 \text{ (dd, } J = 13.6 \text{ Hz}, 1\text{H}), 6.36 \text{ (d, } J = 13.6 \text{ Hz}, 1\text{H}), 6.27 \text{ (dd, } J = 13.6 \text{ Hz}, 1\text{H}), 6.36 \text{ (d, } J = 13.6 \text{ Hz}, 1\text{H}), 6.27 \text{ (dd, } J = 13.6 \text{ Hz}, 1\text{H}), 6.36 \text{ (d, } J = 13.6 \text{ Hz}, 1\text{H}), 6.27 \text{ (dd, } J = 13.6 \text{ Hz}, 1\text{H}), 6.36 \text{ (d, } J = 13.6 \text{ Hz}, 1\text{H}), 6.27 \text{ (dd, } J = 13.6 \text{ Hz}, 1\text{H}), 6.28 \text{ Hz}, 1\text{Hz}, 1\text{H}), 6.28 \text{ Hz}, 1\text{Hz}, 1\text{Hz},$ = 15.3, 10.8 Hz, 1H), 5.81 (dd, J = 15.3, 5.5 Hz, 1H), 5.40 (ddd, J = 10.8, 7.1, 4.1 Hz, 1H), 4.75 - 4.67 (m, 1H), 3.70 (dd, J = 17.7, 2.9 Hz, 1H), 3.42 (dd, J = 11.6, 7.2 Hz, 1H), 3.29 (dd, J = 17.8, 8.9 Hz, 1H), 3.23 (dd, J = 13.5, 4.2 Hz, 1H), 3.05 (dd, J = 13.2, 10.4 Hz, 1H), 2.92 (d, J = 11.6 Hz, 1H), 2.87 (bs, 1H); ¹³C NMR (101 MHz, 1H); ¹³C NMR (110 MHz, 1H); ¹³C NMR (110 MHz, 1H); ¹³C NMR (CDCl₃) δ 201.5, 172.4, 136.7, 136.4, 134.8, 129.6 (2C), 129.1 (2C), 128.1, 127.5, 109.7, 68.4, 68.0, 45.5, 37.0, 32.3; HRMS (TOF ES+): Exact mass calculated for $C_{17}H_{18}^{79}BrNO_2S_2Na [M+Na]^+$: 433.9860, found 433.9867.

Methyl 7-hydroxyhept-4-ynoate (18).

To 4-pentynoic acid (11) (5.00 g, 51 mmol, 1.0 equiv.) in dry HMPA (100 mL), n-BuLi (44.9 mL, 2.5 M, 2.2 equiv.) was added at 0 °C. The reaction mixture was stirred for 1 h before ethylene oxide (10) in THF (25 mL, 2.5-3.3 M) was added slowly at the above-mentioned temperature. The cooling bath was removed and the reaction mixture was allowed to warm up to ambient temperature and then stirred for 24 h. The reaction mixture was cooled to 0 °C before water (150 mL) was added. Next, concentrated aq. HCl was added dropwise until the mixture was acidic to litmus. The reaction mixture was extracted with Et₂O (3 x 100 mL) and EtOAc (2 x 100 mL), the combined organic phase was dried (MgSO₄), filtered and concentrated in vacuo. The crude, HMPAcontaminated carboxylic acid was dissolved in dry MeOH (250 mL) and a few drops of concentrated sulphuric acid. The reaction mixture was refluxed for 12 h before it was allowed to cool to ambient temperature. Next, solid NaHCO₃ (5.00 g) and saturated aq. NaHCO₃ (15 mL) were added and the reaction mixture was concentrated in *vacuo*. To the mixture was added aq. NaHCO₃ (50 mL), and the aqueous phase was extracted with $E_{12}O$ (4 x 100 mL). The organic phases were combined and dried (Na₂SO₄), filtered and concentrated in vacuo. The crude product was purified by column chromatography on silica (hexanes/EtOAc 7:3) to afford the title compound 18 as a pale yellow oil. Yield: 4.36 g (55% for two steps starting from 11); TLC (hexanes/EtOAc 5:5, KMnO₄ stain): $R_{\rm f} = 0.25$; Spectroscopic and physical data were in full agreement with those reported in the literature.⁷ ¹H NMR (400 MHz, CDCl₃) δ 3.69 (s, 3H), 3.65 (q, J = 6.2 Hz, 2H), 2.54 – 2.45 (m, 4H), 2.42 – 2.37 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 172.7, 80.6, 77.9, 61.4, 51.9, 33.8, 23.3, 14.9.

Methyl (Z)-7-hydroxyhept-4-enoate (19).

Methyl ester **18** (2.00 g, 12.81 mmol) was dissolved in 30% EtOAc in hexanes (100 mL), and the flask was evacuated and filled with argon gas two times. Lindlar's catalyst (400 mg) was added and the reaction flask was again evacuated and filled with hydrogen gas. The reaction mixture was stirred for 12 h, filtrated through a pad of Celite and then concentrated *in vacuo* to give a pale yellow oil. Yield of **19**: 1.96 g (97%); TLC (hexanes/EtOAc 5:5, KMnO₄ stain): $R_f = 0.25$; Spectroscopic and physical data were in full agreement with those reported in the literature.^{7 1}H NMR (400 MHz, DMSO- d_6) δ 5.45 – 5.33 (m, 2H), 4.47 (t, J = 5.3 Hz, 1H), 3.58 (s, 3H), 3.38 (td, J = 6.8, 5.3 Hz, 2H), 2.37 – 2.32 (m, 2H), 2.29 – 2.23 (m, 2H), 2.16 (q, J = 6.7 Hz, 2H). ¹³C NMR (101 MHz, DMSO) δ 172.8, 128.9, 127.7, 60.5, 51.2, 33.4, 30.7, 22.4.

(Z)-(7-Methoxy-7-oxohept-3-en-1-yl)triphenylphosphonium iodide (7).

To a solution of methyl ester **19** (1.50 g, 9.49 mmol) in dry CH_2Cl_2 (100 mL), triphenylphosphine (3.82 g, 14.58 mmol) and imidazole (1.00 g, 14.70 mmol) were added. The reaction flask was placed in a cooling bath (ice, water, salt) for 15 min before iodide (3.74 g, 14.74 mmol) was added in one portion with rapid stirring. The

reaction mixture was stirred for 15 min before the cooling bath was removed and the reaction mixture stirred at ambient temperature for another 35 min. A saturated solution of aq. Na₂SO₃ (10 mL) was added, and the aqueous phase was extracted with CH₂Cl₂ (2 x 100 mL), dried (Na₂SO₄), filtrated and concentrated *in vacuo* to a viscous yellow oil which was run through a short sillica column (8% EtOAc in hexanes) to yield a pale yellow oil, which was dissolved in dry MeCN (100 mL). Triphenylphosphine (4.25 g, 16.22 mmol) was added and the reaction mixture was refluxed for 12 h, cooled, concentrated *in vacuo* and purified by flash chromography (CH₂Cl₂ until all triphenylphosphine was out of the column followed by 5% MeOH in CH₂Cl₂) to yield a viscous clear oil. Yield: 3.97 g (79% over two steps from **19**); TLC (CH₂Cl₂/MeOH 95:5, KMnO₄ stain): $R_f = 0.28$; All spectroscopic and physical data were in full agreement with those reported in the literature.^{7 1}H NMR (400 MHz, DMSO-*d*₆) δ 7.93 – 7.74 (m, 15H), 5.49 – 5.36 (m, 2H), 3.69 – 3.58 (m, 2H), 3.56 (s, 3H), 2.37 – 2.26 (t, *J* = 7.2 Hz, 4H), 2.12 (q, *J* = 7.0 Hz, 2H).

Authentic protectin D1 (2).

Authentic protectin D1 (2) was formed by using endogenous murine self-resolving exudates as previously reported.⁸ HPLC and LC/MS-MS analyses were performed as reported by Serhan and co-workers.^{9,10}

Figure S-10¹³C-NMR spectrum of compound 21.

Figure S-14 ¹³C-NMR spectrum of compound 23.

Figure S-19 UV-Vis chromatogram of methyl ester 24.

Area Percent Report

Sorted By	:	Siqnal			
Multiplier	:	1.0000			
Dilution	:	1.0000			
Sample Amount		1.00000	[ng/ul]	ínot used	in calc.)
Use Multiplier &	Dilution	Factor with	h ISTDs	,	
Gioval 1. Wind 1					
Signai I: YWDI A,	wavelen	gth-204 nm			
Peak RetTime Type # [min]	Width [min]	Area mAU *s	Heiqht [mAU]	Area %	
1 16.601 BB	0.5653	2356.82593	63.10266	9.2898	
2 21.083 VB	0.6936	2.30132e4	503.34839	90.7102	
Totals :		2.53700e4	566.45105		

Figure S-23 HPLC chromatogram of aldol 16c.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2013

Figure S-27 HPLC chromatograms for matching experiments. Authentic protectin D1 (2) from self-resolving peritoneal inflammatory exudates matched synthetic material obtained after saponification of ester 24. Selected ion chromarograms (m/z 359-153) depicting (A) Authentic protectin D1 (2), marked as PD1, obtained from mice injected with *Escherichia coli* (10⁵ CFU) and exudates collected at 12 hr. (B) Synthetic material obtained after saponification of ester 24. (C) Coinjection of authentic protectin D1 (2) from self-resolving inflammatory exudates with synthetic material obtained after saponification of ester 24. Figures (A)-(C) are representative HPLC chromatograms (n = 4).

Figure S-28. Matching MS-MS spectra for authentic protectin D1 (2) and synthetic material 24. (A) authentic protectin D1 (2) obtained from mice injected with *Escherichia coli* and exudates collected at 12 hr. MS-MS spectrum for peak at $T_R = 13.2$ min; representative MS-MS spectra (n=4 mice) (B) MS-MS spectrum of synthetic material ($T_R = 13.2$ min) after saponification of ester 24. Representative MS-MS spectra (d = 4).

Figure S-30. Matching MS-MS spectra for authentic protectin D1 (2) and synthetic 2. (A) authentic protectin D1 (2) obtained from mice injected with *Escherichia coli* and exudates collected at 12 hr. MS-MS spectrum for peak at $T_R = 13.2$ min; representative MS-MS spectra (n=4 mice) (B) MS-MS spectrum of synthetic material protectin D1 (2) ($T_R = 13.2$ min). Representative MS-MS spectra (d = 4).

References

- 1) Wernerova, M.; Hudlicky, T. Synlett 2010, 18, 2701.
- 2) (a) Yadav, J. S.; Deshpande, P. K.; Sharma, G. V. M.; *Tetrahedron* **1992**, *48*, 4465; (b) Nicolaou, K. C.; Webber, S. E.; Ramphal, J.; Abe, Y.; *Angew. Chem.* **1987**, *99*, 1077-1079.
- 3) Nagao, Y.; Dai, W. M.; Ochiai, M.; Tsukagoshi, S.; Fujita, E.; J. Org. Chem. 1989, 54, 5211.
- 4) Skaanderup, P. R.; Jensen, T; Org. Lett. 2008, 10, 2821.
- 5) Becher, J.; Org. Synth. 1979, 59, 79.
- 6) Soullez, D.; Ple, G.; Duhamel, L.; Duhamel, P.; J. Chem. Soc. Perkin Trans. 1, 1997, 11, 1639.
- 7) Delorme, D.; Girard, Y.; J. Rokach, J. Org. Chem. 1989, 54, 3635.
- 8) Chiang, N.; Fredman, G.; Bäckhed, F.; Oh, S. F.; Vickery, T.; Schmidt, B. A.; Serhan, C. N. *Nature* **2012**, *484*, 524.
- Serhan, C. N.; Gotlinger, K.; Hong, S.; Lu, Y.; Siegelman, J.; Baer, T.; Yang, R.; Colgan, S. P.; Petasis, N. A. J. Immunol. 2006, 176, 1848.
- 10) Serhan C. N.; Hong, S.; Gronert, K.; Colgan, S. P.; Devchand, P. R.; Mirick, G.; Moussignac, R. L. J. Exp. Med. 2002, 196, 1025.