Synthesis of tetracyclic chromenones *via* platinum (II) chloride catalysed cascade cyclization of enediyne–enones

Mahalingham Sivaraman and P.T. Perumal*

Organic Chemistry Division, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, Tamilnadu, India. Fax: +91 44 24911589; Tel: +91 44 24913289; E-mail: ptperumal@gmail.com

General methods: Purification of crude compounds was done by column chromatography using silica gel (100-200 mesh, Himedia) Melting points were determined in capillary tubes and are uncorrected. FTIR spectra were recorded on Perkin-Elmer spectrometer Spectrum Two and absorbencies are reported in cm⁻¹. NMR spectra were recorded at 500 MHz on JEOL spectrometer and 400 MHz on Brucker spectrometer. The chemical shifts are reported in ppm downfield to TMS ($\delta = 0$) for ¹H NMR and relative to the central CDCl₃ resonance ($\delta = 77.0$) for ¹³C NMR. The coupling constants *J* are given in Hz. ESI mass spectra were recorded on LCQ Fleet, Thermo Fisher Instruments Limited, US mass spectrometer. All solvents and commercially available chemicals were used as received.

Compound 3p: To synthesis **3p** first we tried to preapare iodo coupling partner **1p**, but iodination of 2-(2-(thiophen-2-yl)ethynyl)benzenamine with P-TsOH.H₂O unfortunately failed so we tried alternative method. To synthesis 3p first we coupled **S1** with 2-iodo thiophene to give **S2**, and followed condensation of **S2** with cyclohexane-1,3-dione in the presence iron(III) tosylate hexahydrate the compound **3p** obtained in moderate yield.

A suspension of 2-iodothiophene (1.0 equiv), $PdCl_2(PPh_3)_2$ (0.03 equiv) and CuI (0.04 equiv) in triethylamine under nitrogen atmosphere. The reaction mixture was stirred at 30°C for 30 minutes. After addition of the **S1**¹ (1.0 equiv) the suspension was stirred for 3 hours at 30°C. The reaction mixture was diluted with water and extracted with EtOAc. The combined organic phases were washed with brine and dried over Na₂SO₄. Removal of the solvent under reduced pressure and purification by column chromatography (PE : EtOAc 8 : 2) furnished the product **S2** as brownish orange viscous fluid. IR (Neat) v_{max} : 492, 544, 580, 625, 659, 703, 758, 803, 832, 853, 952, 974, 1022, 1035, 1094, 1124, 1161, 1212, 1287, 1357, 1420, 1445, 1477, 1520, 1574, 1593, 1632, 1715, 2203, 2857, 2920, 3060, 3106, 3363 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 2.06$ (brs, 1H), 4.57 (s, 2H), 7.01 (dd, *J* = 5.1, 3.6 Hz, 1H), 7.23 – 7.33 (m, 4H), 7.43 – 7.52 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 51.8$, 84.3, 86.8, 91.8, 92.0, 123.2, 125.0, 125.7, 127.4, 127.8, 128.2, 128.4, 131.4, 132.0, 132.3.

To a stirred solution of the cyclohexane-1,3-dione (1.0 equiv) in 1,2-dichloroethane, the alcohol **S2** (1.2 equiv) and Fe(OTs)₃.6H₂O (0.1 equiv) were added, and the resulting mixture was heated at 80°C under nitrogen atmosphere for 24h. The reaction mixture was diluted with water and extracted with

dichloromethane. The combined organic phases were washed with brine and dried over Na₂SO₄. Removal of the solvent under reduced pressure and purification by column chromatography (PE : EtOAc 6 : 4) furnished the desired product **3p** as brownish orange viscous fluid. IR (Neat) v_{max} : 443, 498, 528, 612, 705, 759, 825, 853, 911, 954, 1000, 1034, 1058, 1094, 1135, 1179, 1213, 1241, 1255, 1327, 1357, 1385, 1421, 1446, 1478, 1520, 1606, 1651, 1718, 1959, 2204, 2871, 2948, 3072 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 1.97$ (quint, J = 6.3 Hz, 2H), 2.30 – 2.38 (m, 2H), 2.45 (t, J = 6.3 Hz, 2H), 4.85 (s, 2H), 5.54 (s, 1H), 7.03 (dd, J = 5.1, 3.7 Hz, 1H), 7.25 – 7.36 (m, 4H), 7.46 – 7.52 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 21.2$, 28.9, 36.8, 57.1, 86.0, 86.8, 87.0, 91.6, 103.7, 123.1, 124.2, 125.9, 127.3, 127.9, 128.2, 128.9, 131.6, 132.3, 132.4, 176.8, 199.7; MS (ESI+): m/z = 355 [M+Na⁺]

Compound 5: To a solution of *p*-TsOH·H₂O (3 equiv) in MeCN was added the $S3^2$ (1 equiv). The resulting suspension of amine salt was cooled to 10–15 °C and to this was added, gradually, a solution of NaNO₂ (2 equiv) and KI (2.5 equiv) in H₂O. The reaction mixture was stirred for 10 min then allowed to come to 20 °C and stirred for 2h. To the reaction mixture was then added saturated NaHCO₃ (until pH = 9–10) and saturated Na₂S₂O₃ solution. Then extracted with EtOAc and dried over Na₂SO₄. The crude was purified by column chromatography (Pet.ether – EtOAc, 9:1) to afford S4. The products S4 is spectrally identical to previously reported sample.³

A suspension of iodo compound **S4** (1.0 equiv), $PdCl_2(PPh_3)_2$ (0.03 equiv) and CuI (0.04 equiv) in triethylamine under nitrogen atmosphere. The reaction mixture was stirred at 30°C for 30 minutes. After the addition of **2**(1.5 equiv) the suspension was stirred for 3 hours at 30°C. The reaction mixture was filtered through celite pad and purification by column chromatography (PE : EtOAc 6 : 4) the desired compound was isolated as a brownish orange viscous fluid. IR (Neat) v_{max} : 494, 585, 611, 690, 756, 823, 860, 954, 999, 1135, 1178, 1212, 1240, 1327, 1356, 1384, 1428, 1446, 1494, 1606, 1654, 2216, 2948, 3056 cm⁻¹; ¹H NMR (400 MHz, CDCl_3): $\delta = 1.91$ (quint, J = 6.1 Hz, 2H), 2.27 – 2.35 (m, 4H), 4.60 (s, 2H), 5.38 (s, 1H), 7.28 – 7.34 (m, 7H), 7.50 (d, J = 7.0 Hz, 1H), 7.55 – 7.61 (m, 5H); ¹³C NMR (100 MHz, CDCl_3): $\delta = 21.2$, 28.8, 36.8, 57.1, 86.1, 86.8, 88.4, 91.8, 92.4, 93.7, 103.6, 123.3, 124.4, 125.7, 125.9, 126.2, 128.1, 128.3, 128.4, 128.5, 128.6, 128.8, 131.9, 132.0, 132.2, 132.3, 132.4, 176.7, 199.6.

			d/or	Û		
3a		4a	4a'			
Entry	Catalyst, Additives(equiv)	Solvent	Conditions	Yield ^a of 4a/4a'(%)		
1	$PdCl_2(0.1),$	THF	80°C, 1 h	_b		
	$CuCl_2(2)$					
2	$PdCl_{2}(0,1)$.	THF	80°C. 1 h	_b		
	$CuBr_2(2)$,			
3	$CuBr_2(2)$	THF	80°C 2 h			
4	$PdCl_2(0,1)$	CH ₂ CN	rt 5 h	_b		
	LiBr(2)	enjert	110, 0 11			
5	$Pd(OAc)_{2}(0.1)$	CH ₂ CN	rt 5 h	b		
	$I = \frac{1}{10} \frac{1}{100} \frac$	enjert	1.0, 5 11			
6	Pd(OAc), (0.1)	CH-CN	rt 5 h	_b		
Ū.	$PhI(OAc)_2(0.1),$	CH3CIN	1.t, 5 11	-		
	$\operatorname{FIII}(\operatorname{OAC})(1.5),$					
7	$F_{a}Cl(10)$	CHCN	90°C 6h	с		
8	$FeCI_3(10)$	Talaana	80 C, 0 II	- c		
0	$In(O(1)_3(0.1))$	CUCN	110°C, 2 fi	-		
)	$PtCl_2(0.05)$	CH ₃ CN	80°C, 8 h	52(4a ⁷ / 4a		
10	D.CI. (0.05)		0000 011	= 1:2)		
10	$PtCl_2(0.05)$	CH ₃ CN	80°C, 24 h	43(4a)		
11	$PtCl_2(0.05)$	Toluene	110°C, 3 h	86(4a)		
12	$PtCl_2(0.02)$	Toluene	110°C, 3 h	88(4a)		
15	PtCl ₄ (0.02)	Toluene	110°C, 3 h	72(4a)		
14	$Pt(Ph_3P)_4(0.05)$	Toluene	110°C, 24 h	-		
15	$(Ph_3P)AuCl(0.05)$	1,2-DCE	80°C, 24 h	-		
10	$(Ph_3P)AuCl(0.05)$	Toluene	110°C, 24 h	- ,		
17	AuCl ₃ (0.05)	1,2-DCE	80°C, 24 h	$30(4a')^{d}$		
18	AuCl ₃ (0.05)	Toluene	110°C, 24 h	$30(4a')^d$		
19	(Ph ₃ P)AuCl(0.05),	1,2-DCE	80°C, 4 h	27(4a)		
	AgBF ₄ (0.1)					
20	(Ph ₃ P)AuCl(0.05),	Toluene	110°C, 4 h	32(4a)		
	$AgBF_4(0.1)$					
" Isolated yield. " Complex reaction mixture. " Ether link cleavage						
lead to 3-(2-(2-phenylethynyl)phenyl)prop-2-yn-1-ol. ^d 50% of 3a is						

References

1) D. Aburano, F. Inagaki, S. Tomonaga and C. Mukai, J. Org. Chem., 2009, 74, 5590.

recovered.

2) K. Hirano, Y. Inaba, N. Takahashi, M. Shimano, S. Oishi, N. Fujii and H. Ohno, J. Org. Chem., 2011, 76, 1212

3) A. Orita, N. Yoshioka, P. Struwe, A. Braier, A. Beckmann and J. Otera, *Chem. Eur. J.*, 1999, **5**, 1355.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2013

CIF file of compound 4p (CCDC 948676)

Table 1. Crystal data and structure refinement for new.

```
Identification code
                                  new
Empirical formula
                                  CHNOS
Formula weight
                                  75.09
Temperature
                                  273(2) K
Wavelength
                                  0.71073 A
Crystal system, space group
                                  Orthorhombic, Pbca
Unit cell dimensions
                                  a = 13.4815(4) A alpha = 90 deg.
                                  b = 8.2127(3) A
                                                    beta = 90 \text{ deg.}
                                  c = 28.9529(9) A gamma = 90 deg.
Volume
                                  3205.65(18) A^3
Z, Calculated density
                                  42, 1.634 Mg/m^3
Absorption coefficient
                                  0.781 mm^-1
                                  1596
F(000)
Crystal size
                                  0.35 x 0.25 x 0.20 mm
Theta range for data collection
                                  1.41 to 24.99 deg.
                                  -16<=h<=15, -7<=k<=7, -34<=1<=33
Limiting indices
                                  10575 / 2401 [R(int) = 0.0222]
Reflections collected / unique
Completeness to theta = 24.99
                                  85.3 %
Absorption correction Multi-scan
Max. and min. transmission
                                  0.8594 and 0.7716
Refinement method
                                  Full-matrix least-squares on F^2
Data / restraints / parameters
                                  2401 / 0 / 237
Goodness-of-fit on F^2
                                  1.089
Final R indices [I>2sigma(I)]
                                  R1 = 0.0357, wR2 = 0.0818
                                  R1 = 0.0456, wR2 = 0.0894
R indices (all data)
Largest diff. peak and hole
                                  0.135 and -0.199 e.A^-3
```

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (A² x 10^3) for new. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	х	У	Z	U(eq)
C(1)	6890(1)	5791(2)	1234(1)	54(1)
C(2)	6824(1)	6259(3)	786(1)	59(1)
C(3)	6253(1)	5345(2)	477(1)	51(1)
C(4)	5737(1)	4018(2)	625(1)	43(1)
C(5)	5780(1)	3492(2)	1091(1)	37(1)
C(6)	5300(1)	2064(2)	1263(1)	38(1)
C(7)	4619(1)	1062(2)	980(1)	39(1)
C(8)	3842(1)	1747(3)	684(1)	43(1)
C(9)	3276(1)	599(3)	379(1)	59(1)
C(10)	3785(2)	-1010(3)	299(1)	63(1)
C(11)	4078(1)	-1767(3)	756(1)	59(1)
C(12)	4610(1)	-562(3)	1049(1)	47(1)
C(13)	5161(1)	-208(2)	1810(1)	54(1)
C(14)	5540(1)	1460(2)	1696(1)	40(1)
C(15)	6154(1)	2362(2)	2005(1)	40(1)
C(16)	6538(1)	3812(2)	1853(1)	45(1)
C(17)	6401(1)	4388(2)	1398(1)	41(1)
C(18)	6390(1)	1778(2)	2475(1)	46(1)
S(1)	7529(2)	2172(3)	2708(1)	60(1)
C(19)	5818(10)	988(19)	2779(5)	68(4)
S(1A)	5603(7)	721(12)	2826(3)	61(1)
C(19A)	7272(14)	2240(30)	2696(6)	94(10)
C(20)	6334(2)	675(3)	3231(1)	75(1)
C(21)	7240(2)	1313(3)	3198(1)	75(1)
0(1)	5101(1)	-1240(2)	1406(1)	59(1)
0(2)	3610(1)	3189(2)	700(1)	56(1)

C(1) - C(2)	1.355(3)
C(1) - C(17)	1 410 (3)
C(2) - C(3)	1 308 (3)
C(2) = C(3)	1 262 (2)
C(3) = C(4)	1.363(3)
C(4) - C(5)	1.417(2)
C(5)-C(17)	1.424(2)
C(5)-C(6)	1.429(2)
C(6) - C(14)	1,386(2)
C(6) - C(7)	1 481(2)
C(0) C(1)	1 240(2)
C(7) = C(12)	1.349(3)
C(7) - C(8)	1.464(2)
C(8)-O(2)	1.226(2)
C(8)-C(9)	1.501(3)
C(9)-C(10)	1.507(3)
C(10) - C(11)	1.514(3)
C(11) = C(12)	1 / 89 (3)
C(12) = C(12)	1 247(2)
C(12) = O(1)	1.347(2)
C(13) - O(1)	1.446(2)
C(13)-C(14)	1.498(3)
C(14)-C(15)	1.427(2)
C(15)-C(16)	1.371(2)
C(15) - C(18)	$1 \ 477(2)$
C(16) - C(17)	$1 \ 13 \ (2)$
C(10) - C(17)	1,220(10)
C(18) - C(19)	1.339(10)
C(18)-C(19A)	1.403(18)
C(18)-S(1A)	1.707(8)
C(18)-S(1)	1.708(2)
S(1)-C(21)	1.632(4)
C(19) = C(20)	1 502(16)
C(13) C(20)	1 = 502(10)
S(1A) = C(20)	1.555(10)
C(19A) - C(21)	1.64(2)
C(20)-C(21)	1.331(3)
C(2)-C(1)-C(17)	121.52(17)
C(1) - C(2) - C(3)	119.73(18)
C(4) - C(3) - C(2)	120.60(17)
C(3) - C(4) - C(5)	121 49(16)
C(3) C(4) C(5)	117 20(15)
C(4) = C(5) = C(17)	117.30(15)
C(4) - C(5) - C(6)	124.30(15)
C(17)-C(5)-C(6)	118.17(15)
C(14)-C(6)-C(5)	120.23(14)
C(14)-C(6)-C(7)	116.51(15)
C(5) - C(6) - C(7)	122,92(14)
C(12) = C(7) = C(8)	117 42(16)
C(12) - C(7) - C(6)	110 10(15)
C(12) - C(7) - C(8)	100.00(17)
C(8) - C(7) - C(6)	123.60(17)
O(2)−C(8)−C(7)	122.09(16)
O(2)-C(8)-C(9)	119.97(16)
C(7)-C(8)-C(9)	117.80(18)
C(8) - C(9) - C(10)	114.18(16)
C(9) = C(10) = C(11)	110 14(15)
C(12) = C(11) = C(10)	110 - 52(17)
C(12) = C(11) = C(10)	10.55(17)
U(1) - U(12) - U(7)	121.25(16)
O(1)−C(12)−C(11)	113.52(18)
C(7)-C(12)-C(11)	125.23(17)
O(1) - C(13) - C(14)	112.17(14)
C(6) - C(14) - C(15)	121.08(16)
C(6) = C(14) = C(13)	116 51(14)
C(15) C(14) C(12)	100 0E (1E)
C(15) - C(14) - C(13)	122.33(13)
C(16)-C(15)-C(14)	118.03(15)
C(16)-C(15)-C(18)	119.72(15)

Table 3.	Bond	lengths	[A]	and	angles	[deq]	for	new.
rabic o.	Dona	rengeno	[]	ana	angree	[acg]	TOT	

C(14)-C(15)-C(18)	122.25(17)
C(15)-C(16)-C(17)	122.66(15)
C(1)-C(17)-C(16)	121.72(15)
C(1)-C(17)-C(5)	119.15(15)
C(16)-C(17)-C(5)	119.09(16)
C(19)-C(18)-C(19A)	108.5(11)
C(19)-C(18)-C(15)	129.8(7)
C(19A)-C(18)-C(15)	121.0(9)
C(19)-C(18)-S(1A)	4.7(10)
C(19A)-C(18)-S(1A)	113.1(9)
C(15)-C(18)-S(1A)	125.4(3)
C(19)-C(18)-S(1)	110.4(7)
C(19A)-C(18)-S(1)	6.5(9)
C(15)-C(18)-S(1)	119.71(17)
S(1A)-C(18)-S(1)	114.8(3)
C(21)-S(1)-C(18)	92.69(18)
C(18)-C(19)-C(20)	112.9(10)
C(20)-S(1A)-C(18)	93.9(5)
C(18)-C(19A)-C(21)	104.9(13)
C(21)-C(20)-C(19)	107.2(4)
C(21)-C(20)-S(1A)	121.7(3)
C(19)-C(20)-S(1A)	14.7(6)
C(20)-C(21)-S(1)	116.80(19)
C(20)-C(21)-C(19A)	105.7(7)
S(1)-C(21)-C(19A)	12.3(7)
C(12)-O(1)-C(13)	113.84(14)

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for new. The anisotropic displacement factor exponent takes the form: -2 pi^2 [h^2 a*^2 U11 + \dots + 2 h k a* b* U12]

	U11	U22	U33	U23	U13	U12
C(1)	51(1)	44(1)	67(1)	-5(1)	-6(1)	-12(1)
C(2)	55(1)	50(1)	72(1)	10(1)	2(1)	-15(1)
C(3)	47(1)	52(1)	54(1)	5(1)	5(1)	-2(1)
C(4)	37(1)	43(1)	49(1)	-7(1)	2(1)	0(1)
C(5)	31(1)	33(1)	48(1)	-7(1)	3(1)	3(1)
C(6)	31(1)	33(1)	50(1)	-7(1)	1(1)	2(1)
C(7)	35(1)	35(1)	49(1)	-7(1)	3(1)	-2(1)
C(8)	36(1)	50(2)	43(1)	-3(1)	4(1)	-6(1)
C(9)	59(1)	64(2)	54(1)	-2(1)	-10(1)	-18(1)
C(10)	65(1)	68(2)	56(1)	-20(1)	10(1)	-28(1)
C(11)	55(1)	45(1)	79(1)	-17(1)	2(1)	-9(1)
C(12)	37(1)	42(2)	61(1)	-9(1)	0(1)	-1(1)
C(13)	55(1)	44(1)	62(1)	2(1)	-11(1)	-7(1)
C(14)	33(1)	33(1)	53(1)	-3(1)	1(1)	0(1)
C(15)	35(1)	39(1)	47(1)	-6(1)	2(1)	2(1)
C(16)	41(1)	44(1)	51(1)	-13(1)	-4(1)	-3(1)
C(17)	35(1)	35(1)	54(1)	-6(1)	1(1)	0(1)
C(18)	45(1)	46(1)	48(1)	-7(1)	0(1)	3(1)
S(1)	55(1)	76(1)	50(1)	-16(1)	-13(1)	4(1)
C(19)	67(7)	75(8)	61(5)	2(4)	4(4)	10(5)
S(1A)	69(3)	61(2)	54(1)	5(1)	14(1)	-9(2)
C(19A)	99(18)	118(14)	65(9)	32(8)	26(9)	13(9)
C(20)	98(2)	70(2)	57(1)	2(1)	11(1)	7(1)
C(21)	85(2)	89(2)	51(1)	-13(1)	-15(1)	17(2)
0(1)	61(1)	35(1)	81(1)	-5(1)	-14(1)	0(1)
0(2)	46(1)	56(1)	65(1)	-3(1)	-9(1)	7(1)

	x	У	Z	U(eq)
ц (1)	7266	6410	1 / 2 0	65
H(I)	7200	0410	1430	00
H(Z)	/156	/184	684	/ 1
Н(З)	6227	5645	167	61
H(4)	5346	3445	416	51
H(9A)	3166	1120	83	71
Н(9В)	2632	396	517	71
H(10A)	4372	-846	111	76
H(10B)	3343	-1739	134	76
H(11A)	3488	-2143	916	71
H(11B)	4502	-2701	701	71
H(13A)	5597	-708	2035	64
H(13B)	4508	-115	1948	64
H(16)	6904	4443	2058	54
Н(19)	5170	667	2718	81
H(19A)	7767	2919	2583	113
Н(20)	6071	137	3485	90
H(21)	7686	1271	3442	90

Table 5. Hydrogen coordinates (\times 10^4) and isotropic displacement parameters (A^2 \times 10^3) for new.