Supporting Information

Synthesis of crambescin B carboxylic acid, a potent inhibitor of voltage-gated sodium channels

Atsuo Nakazaki, Yuki Ishikawa, Yusuke Sawayama, Mari Yotsu-Yamashita, and Toshio Nishikawa*

Graduate School of Bioagricultural Sciences, Nagoya University Chikusa, Nagoya 464-8601, Japan, and Graduate School of Agricultural Science, Tohoku University Aoba, Sendai 981-8555, Japan

Table of Contents:

General Experimental	2
Experimental procedures and characterization data	3-15
¹ H and ¹³ C NMR Spectra	16-47

General Experimental

Infrared spectra (IR) were recorded on a JASCO FT/IR-8300 spectrophotometer and are reported in wave number (cm⁻¹). Proton nuclear magnetic resonance (¹H NMR) spectra were recorded on a Bruker ARX-400 (400 MHz) or a Bruker Avance-400 (400 MHz) spectrometer. Chemical shifts of all compounds are reported in ppm relative to the residual undeuterated solvent (chloroform-*d* as $\delta = 7.26$, methanol-*d*₄ as $\delta = 3.31$). Data were reported as follows: Chemical shift, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broadened), coupling constant, and assignment. Carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on a Bruker ARX-400 (100 MHz) or a Bruker Avance-400 (100 MHz) spectrometer. Chemical shifts of all compounds are reported in ppm relative to the solvent (chloroform-*d* as $\delta = 77.0$, methanol-*d*₄ as $\delta = 49.0$). All NMR were measured at 300 K. High-resolution mass spectra (HRMS) were recorded on an Applied Biosystems Mariner ESI-TOF spectrometer and reported in *m*/*z*.

Reactions were monitored by thin layer chromatography (TLC) on 0.25 mm silica gel coated glass plates 60F₂₅₄ (Merck, #1.05715.0009). Visualization was achieved by using UV light (254 nm) and appropriate reagent (ethanolic phosphomolybdic acid, *p*-anisaldehyde solution in H₂SO₄/AcOH/EtOH, or ninhydrin solution in n-BuOH/H₂O/AcOH), followed by heating. Silica gel 60 (particle size 0.063-0.021 mm, Kanto, #37565-84) was used for open-column chromatography. Silica gel 60N (spherical, neutral, particle size 0.04-0.05 mm, Kanto, #37563-79) was used for flash-column chromatography. Preparative TLC separations were carried out on 0.5 mm silica gel plates 60F₂₅₄ (Merck, #1.05744.0009). Dehydrated THF, Et₂O and CH₂Cl₂ were purchased from Kanto Chemical Co., Inc. MeCN, benzene, toluene, DMF, DMSO, Et₃N, BF₃·OEt₂. HMPA were distilled from CaH₂. Celite[®] (Hyflo Super-Cel Celite[®]) was purchased from Nacalai tesque Co., Inc. Florisil[®] was purchased from Kanto Chemical Co., Inc. InI (indium(I) iodide, anhydrous, powder, 99.999%) was purchased from Sigma-Aldrich. All other commercially available reagents were as received.

Enyne 3: To a mixture of cis-1-iodotridecene (906 mg, 2.94 mmol) prepared according to the literature (D. J. Hart et al. Synlett, 2004, 1339), PdCl₂(PPh₃)₂ (206 mg, 0.294 mmol) and CuI (112 mg, 0.588 mmol) were added a degassed solution of benzene (33 mL), 3-butyn-1-ol (0.70 mL, 8.8 mmol) and Et₃N (1.60 mL, 11.8 mmol) at 0 °C under the argon atmosphere. After being stirred for 3 h at room temperature, the reaction mixture was diluted with Et_2O . The resulting mixture was washed with sat. NH₄Cl solution (x 2), water (x 2) and brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, hexane/ $Et_2O = 4/1$) to afford enyne 3 (396 mg, 54%) as a yellow oil. IR (film): v_{max} (cm⁻¹) 3338, 2917, 2851, 1468, 1055, 721. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 0.88 (3H, t, J = 6.5 Hz, $-CH_2CH_3$), 1.20-1.44 (18H, m, $-CH_2(CH_2)_9CH_3$, 1.76 (1H, br, -OH), 2.28 (2H, qd, J = 7, 1 Hz, $-CH_2CH=CH$ -), 2.63 (2H, td, J = 6, 2 Hz, -CHC \equiv CCH₂-), 3.75 (2H, t, J = 6 Hz, -CH₂OH), 5.43 (1H, m, -CH₂CH=CH-), 5.87 (1H, dt, J = 10.5, 7.5 Hz, -CH₂CH=CH-). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 14.1, 22.7, 23.9, 28.8, 29.2, 29.3, 29.5, 29.57, 29.61, 29.64, 30.1, 31.9, 61.2, 79.3, 90.2, 108.7, 143.7. HRMS (ESI, positive): calcd. For $C_{17}H_{30}ONa [M+Na]^+$, 273.2189; found, 273.2176.

Epoxide 4: To a mixture of enyne **3** (3.95 g, 15.8 mmol) and NaHCO₃ (1.3 g, 16 mmol) in CH₂Cl₂ (100 mL) was added *m*CPBA (10.9 g, 63.1 mmol) in 4 portions over 4 h at room temperature. After being stirred for 1 h at room temperature, the reaction was quenched with sat. Na₂S₂O₃ solution (100 mL). The resulting mixture was partitioned, and the aqueous layer was extracted with EtOAc (100 mL x 2). The combined organic layer was washed with sat. NaHCO₃ solution (300 mL x 2), water (300 mL) and brine (300 mL), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography (hexane/Et₂O

= 3/1 to 2/1) to afford epoxide 4 (2.99 g, 71%) as a colorless oil.

IR (film): ν_{max} (cm⁻¹) 3272, 2919, 2848, 1465, 1046, 879, 855. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 0.88 (3H, t, J = 6.5 Hz, $-\text{CH}_2\text{C}H_3$), 1.20-1.42 (16H, m, $-\text{CH}_2(\text{C}H_2)_8\text{CH}_3$), 1.42-1.56 (2H, m, $-\text{C}H_2(\text{C}H_2)_8\text{CH}_3$), 1.59-1.75 (2H, m, $-\text{C}H_2(\text{C}H_2)_9\text{CH}_3$), 1.86 (1H, br, -OH), 2.50 (2H, td, J = 6, 1.5 Hz, $-\text{CHC} \equiv \text{C}CH_2$ -), 3.00 (1H, td, J = 6, 4 Hz, $-\text{C}H\text{C}H\text{C} \equiv \text{C}$ -), 3.42 (1H, dt, J = 4, 1.5 Hz, $-\text{CH}CHC \equiv \text{C}$ -), 3.73 (2H, t, J = 6 Hz, $-\text{C}H_2\text{OH}$). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 14.0, 22.6, 23.1, 25.9, 29.2, 29.3, 29.4, 29.47, 29.48, 29.55, 29.57, 31.8, 45.3, 58.1, 60.8, 76.9, 82.9. HRMS (ESI, positive): calcd. For C₁₇H₃₀O₂Na [M+Na]⁺, 289.2138; found, 289.2134.

Aziridine 6: To a solution of epoxide 4 (2.99 g, 11.2 mmol) in MeOH (160 mL) was added NaN₃ (2.20 g, 33.7 mmol) at room temperature. After being stirred for 21 h at room temperature, to the reaction mixture was added NaN₃ (729 mg, 11.2 mmol). After being stirred for 5 h at room temperature, to the reaction mixture were added MeOH (40 mL) and NaN₃ (729 mg, 11.2 mmol). After being stirred for 5 h at room temperature, water (200 mL) was added. The resulting mixture was extracted with EtOAc (200 mL x 3). The combined organic layer was washed with brine (600 mL), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure to provide crude aziridine 5. The residue of 5 was dissolved in DMF (160 mL), and then PPh₃ (4.41 g, 16.8 mmol) was added to the solution. After being stirred for 5 h at room temperature, the reaction mixture was warmed to 80 °C. After being stirred for 12 h at 80 °C, the reaction mixture was concentrated under reduced pressure. The residue was dissolved in CH₂Cl₂ (80 mL), and then imidazole (1.68 g, 24.7 mmol) and TBDPSCl (3.21 mL, 12.3 mmol) were added to the solution at 0 °C. After being stirred for 1 h at room temperature, the reaction mixture was poured into sat. NH₄Cl solution (100 mL). The resulting mixture was partitioned, and the aqueous layer was extracted with EtOAc (100 mL x 2). The combined organic layer was washed with water (300 mL) and brine (300 mL), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography (hexane/EtOAc = 30/1 with 1% *i*-Pr₂NH to 20/1 with 1% *i*-Pr₂NH) to afford aziridine **6** (2.15 g, 56% in 3 steps) as a

colorless oil.

¹H NMR (400 MHz, CDCl₃): δ (ppm) 0.88 (3H, t, J = 6.5 Hz, $-CH_2CH_3$), 1.05 (9H, s, -Si-^{*t*}Bu), 1.19-1.36 (16H, m, $-CH_2(CH_2)_8CH_3$), 1.39-1.49 (2H, m, $-CH_2(CH_2)_8CH_3$), 1.49-1.57 (2H, m, $-CH_2(CH_2)_9CH_3$), 1.97-2.05 (1H, m, $-CHCHC \equiv C$ -), 2.40-2.48 (3H, m $-CHC \equiv CCH_2$ -, $-CHCHC \equiv C$ -), 3.75 (2H, t, J = 7 Hz, $-CH_2OTBDPS$), 7.34-7.46 (6H, m, -Si-Ph), 7.63-7.74 (4H, m, -Si-Ph). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 14.1, 19.2, 22.7, 23.0, 24.4, 26.8, 27.4, 29.3, 29.4, 29.57, 29.60, 29.63, 29.7, 30.7, 31.9, 37.0, 62.6, 78.8, 127.7, 129.6, 133.6, 135.5. HRMS (ESI, positive): calcd. For C₃₃H₅₀NOSi [M+H]⁺, 504.3656; found, 504.3671.

Guanidino-aziridine 7: To a solution of aziridine **6** (511 mg, 1.01 mmol), Boc,Cbz-methylisothiourea (362 mg, 1.12 mmol) and Et₃N (1.5 mL, 10 mmol) in DMF (10 mL) was added HgCl₂ (303 mg, 1.12 mmol) at room temperature. After being stirred for 1 h at room temperature, the reaction mixture was diluted with EtOAc (20 mL), and then filtered through a pad of Celite[®] (eluted with EtOAc). The filtrate was washed with water (30 mL x 3), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography (hexane/EtOAc = 20/1 with 1% *i*-Pr₂NH) to afford guanidino-aziridine **7** (722 mg, 91%) as a colorless oil.

IR (film): ν_{max} (cm⁻¹) 2926, 2855, 1766, 1651, 1596, 1111. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 0.89 (3H, t, J = 6.5 Hz, -CH₂CH₃), 1.06 (9H, s, -Si-^{*t*}Bu), 1.18-1.64 (19H, m, -CH_aH_b(CH₂)₉CH₃), 1.48 (9H, s, -O-^{*t*}Bu), 2.06-2.17 (1H, m, -CH_aH_b(CH₂)₉CH₃), 2.49 (2H, td, J = 7, 1.5 Hz, -CHC \equiv CCH₂-), 2.70 (1H, ddd, J = 8.5, 6, 4 Hz, -CHCHC \equiv CCH₂-), 3.24 (1H, dt, J = 6, 1.5 Hz, -CHC \equiv CCH₂-), 3.78 (2H, t, J = 7 Hz, -CH₂OTBDPS), 5.16 (2H, s, -CH₂Ph), 7.28-7.45 (11H, m, -Si-Ph, -CH₂Ph), 7.64-7.70 (4H, m, -Si-Ph), 10.94 (1H, br, -NHBoc). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 14.1, 19.2, 22.7, 23.0, 26.1, 26.8, 28.0, 28.7, 29.31, 29.34, 29.50, 29.53, 29.63, 29.64, 31.9, 34.7, 46.8, 62.5, 67.7, 75.6, 81.4, 82.4, 127.7, 128.2, 128.5, 129.6, 133.6, 135.5, 148.5, 163.6. HRMS (ESI, positive): calcd. For C₄₇H₆₆N₃O₅Si [M+H]⁺, 780.4766; found, 780.4750.

Alcohol 8: To a mixture of guanidino-aziridine 7 (781 mg, 1.00 mmol), Pd(PPh₃)₄ (57.9 mg, 0.0501 mmol) and InI (363 mg, 1.50 mmol) was added a degassed solution of THF/HMPA (10 mL, 4/1) and formalin (165 μ L, 1.80 mmol, 30% solution) at room temperature under the argon atmosphere. After being stirred for 30 min at room temperature, the solution was passed through a short pad of flash silica gel (eluted with EtOAc with 1% *i*-Pr₂NH), and the resulting solvent was washed with water (50 mL x 3) and brine (50 mL), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography (hexane/EtOAc = 10/1 with 1% *i*-Pr₂NH) to afford alcohol **8** (610 mg, 75%, dr = >95 : <5 determined by ¹H NMR analysis of diol **11**) as a colorless oil.

IR (film): ν_{max} (cm⁻¹) 3319, 2927, 2855, 1723, 1646, 1618, 1132, 1057. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 0.88 (3H, t, J = 6.5 Hz, -CH₂CH₃), 1.05 (9H, s, -Si-^{*t*}Bu), 1.19-1.33 (19H, m, CH_aH_b(CH₂)₉CH₃), 1.49 (9H, s, -O-^{*t*}Bu), 2.02 (1H, m, -CH_aCH_b(CH₂)₉CH₃), 2.36 (1H, m, -CHCH₂OH), 2.48 (2H, td, J = 7, 2.5 Hz, -CH₂CH₂OTBDPS), 3.55-3.66 (2H, m, -CH₂OH), 3.76 (2H, t, J = 6.5 Hz, -CH₂OTBDPS), 4.11 (1H, qd, J = 9, 2.5 Hz, -NHCH-), 5.07 (1H, d, J = 12 Hz, -CH_aH_bPh), 5.12 (1H, d, J = 12 Hz, -CH_aH_bPh), 7.27-7.43 (11H, m, -Si-Ph, -CH₂Ph), 7.65-7.69 (4H, m, -Si-Ph), 8.31 (1H, d, J = 9 Hz, -NH(=NCbz)NHBoc), 11.33 (1H, br s, -NHBoc). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 14.1, 19.2, 22.7, 23.0, 25.7, 26.8, 28.0, 28.1, 29.2, 29.3, 29.4, 29.4, 29.5, 29.6, 29.6, 31.9, 33.0, 33.1, 41.0, 51.2, 61.8, 62.7, 67.0, 79.7, 80.8, 83.6, 127.8, 128.4, 128.6, 128.7, 128.8, 129.6, 133.6, 135.5, 135.5, 136.5, 153.0, 157.3, 163.1. HRMS (ESI, positive): calcd. For C₄₈H₇₀N₃O₆Si [M+H]⁺, 812.5028; found, 812.5064.

Diol 9: To a solution of alcohol 8 (610 mg, 0.752 mmol) in THF (7.5 mL) was added TBAF (1.1 mL, 1.1 mmol, 1.0 M solution in THF) at room temperature. After being stirred for 1 h at room temperature, the reaction was quenched with brine (10 mL). The resulting mixture was extracted with EtOAc (10 mL x 3). The combined organic layer was dried over anhydrous Na_2SO_4 , and concentrated under reduced pressure. The residue was purified by flash column chromatography (hexane/EtOAc = 3/1 with 1% *i*-Pr₂NH to 1/1 with 1% *i*-Pr₂NH) to afford diol **9** (361 mg, 84%) as a colorless oil. IR (film): *v*_{max} (cm⁻¹) 3319, 2925, 2854, 1724, 1647, 1617, 1132, 1057. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 0.88 (3H, t, J = 6.5 Hz, $-CH_2CH_3$), 1.19-1.59 (19H, m, $-CH_{a}H_{b}(CH_{2})_{9}CH_{3}$, 1.45 (1H, s, -OH), 1.50 (9H, s, -O-^tBu), 1.94-2.05 (1H, m, $-CH_aCH_b(CH_2)_9CH_3$, 2.38-2.45 (1H, m, $-CHCH_2OH$), 2.46 (2H, td, J = 6, 2.5 Hz, -CH₂CH₂OTBDPS), 3.62 (1H, dd, J = 12.5, 2.5 Hz,-CH_aH_bOH), 3.67 (1H, dd, J = 12.5, 3 Hz,-CH_a H_b OH), 3.70 (2H, t, J = 6 Hz,-C H_2 OH), 4.15 (1H, qd, J = 9, 2.5 Hz,-NHC H_2), 4.74 (1H, br, -OH), 5.08 (1H, d, J = 12 Hz,-CH_aH_bPh), 5.13 (1H, d, J = 12Hz,-CH_a H_b Ph), 7.26-7.40 (5H m, Ph), 8.37 (1H, d, J = 8.5 Hz, -NH(=NCbz)NHBoc), 11.35 (1H, br s, -NHBoc). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 14.1, 22.7, 23.3, 25.7, 28.0, 28.1, 29.3, 29.3, 29.4, 29.5, 29.6, 31.9, 32.8, 40.9, 51.2, 61.1, 61.9, 67.0, 80.8, 81.0, 84.0, 127.7, 127.9, 128.4, 128.6, 128.7, 128.9, 136.5, 153.0, 157.2, 163.0. HRMS (ESI, positive): calcd. For C₃₂H₅₂N₃O₆ [M+H]⁺, 574.3851; found, 574.3871.

Alcohol 10: To a solution of alcohol 8 (322 mg, 0.398 mmol) in CH_2Cl_2 (30 mL) were added Et_3N (1 mL), Ac_2O (1 mL) and DMAP (4.9 mg, 0.040 mmol) at room temperature. After being stirred for 1 h at room temperature, the reaction mixture was concentrated under reduced pressure with toluene/MeOH (2/1) to provide crude acetate.

The residue of the acetate was dissolved in THF (30 mL), and then TBAF (600 μ L, 0.600 mmol, 1.0 M solution in THF) was added at room temperature. After being stirred for 1 h at room temperature, the reaction was quenched with brine (30 mL). The resulting mixture was extracted with EtOAc (30 mL x 3). The combined organic layer was dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography (hexane/EtOAc = 3/1 with 1% *i*-Pr₂NH) to afford alcohol **10** (226 mg, 92% in 2 steps) as a colorless oil.

IR (film): v_{max} (cm⁻¹) 3319, 2925, 2854, 1724, 1640, 1619, 1250, 1056. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 0.87 (3H, t, J = 6.5 Hz, -CH₂CH₃), 1.17-1.40 (18H, m, -CH₂(CH₂)₉CH₃), 1.49 (9H, s, -O-^{*t*}Bu), 1.53-1.62 (2H, m, -CH₂(CH₂)₉CH₃), 2.05 (3H, s, -CO-CH₃), 2.43 (2H, td, J = 5.5, 2.5 Hz, -CH₂CH₂OH), 3.03 (1H, m, -CHCH₂OAc), 3.68 (2H, m, -CH₂OH), 4.03 (1H, dd, J = 11, 6.5 Hz, -CH_aH_bOAc), 4.22 (1H, dd, J = 11, 6.5 Hz, -CH_aH_bOAc), 4.22 (1H, dd, J = 12 Hz, -CH_aH_bPh), 5.14 (1H, d, J = 12 Hz, -CH_aH_bPh), 7.27-7.40 (5H, m, Ph), 8.56 (1H, d, J = 9.5 Hz, -NH(=NCbz)NHBoc), 11.45 (1H, br s, -NHBoc). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 14.1, 20.8, 20.9, 22.6, 23.3, 25.5, 28.0, 28.2, 29.3, 29.5, 29.5, 29.6, 30.5, 31.9, 36.5, 36.5, 50.2, 61.1, 63.8, 67.0, 78.0, 79.4, 82.0, 83.7, 127.8, 127.9, 128.4, 128.6, 128.6, 128.8, 136.9, 153.2, 156.2, 163.7, 170.9. HRMS (ESI, positive): calcd. For C₃₄H₅₄N₃O₇ [M+H]⁺, 616.3956; found, 616.3981.

spiro-Hemiaminals 13a and 13b: A solution of guanidino-alcohol 9 (818 mg, 1.43 mmol) in CH_2Cl_2 (5 mL) and TFA (0.5 mL) was stirred for 2 h at room temperature and then the reaction mixture was concentrated under reduced pressure with toluene/MeOH (2/1). The residue was dissolved in MeOH (10 mL), and then ion exchange resin (Amberlite[®] IRA-410, 800 mg) was added to the solution. After being stirred for 12 h at room temperature, the reaction mixture was filtered through a pad of Celite[®] (eluted with MeOH) to remove the resin, and concentrated under reduced pressure to afford crude 11. The residue of 11 was dissolved in CH_2Cl_2/H_2O (28 mL, 1/1), then K_2CO_3 (3.55 g, 8.55 mmol) was added. To a vigorously stirred mixture was added PyHBr₃

(1.37 g, 4.28 mmol). After being stirred for 30 min at room temperature, the reaction was quenched with sat. Na₂SO₃ solution (30 mL). The resulting mixture was partitioned, and the aqueous layer was extracted with EtOAc (30 mL x 2). The combined organic layer was washed with water (100 mL) and brine (100 mL), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography (hexane/EtOAc = 3/1 with 1% *i*-Pr₂NH) to afford *spiro*-hemiaminal **13a** (247 mg, 27%, dr = >95 : <5 determined by ¹H NMR analysis) as a white amorphous solid and epimer **13b** (235 mg, 26%, dr = >95 : <5 determined by ¹H NMR analysis) as a white amorphous solid. Relative stereochemistry of **13a** and **13b** was determined by NOESY correlations of the corresponding debromo analogues **16a** and **16b**, respectively.

spiro-Hemiaminal 13a: IR (film): ν_{max} (cm⁻¹) 3264, 2925, 2853, 1623, 1263, 1101, 1028. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 0.91 (3H, t, J = 7 Hz, -CH₂CH₃), 1.20-1.50 (18H, m, -CH₂(CH₂)₉CH₃), 1.69-1.86 (2H, m, -CH₂(CH₂)₉CH₃), 2.47 (1H, m, -CHCH₂OH), 3.19 (1H, ddd, J = 14.5, 7, 2 Hz, -CH_aH_bCBr₂-), 3.32 (1H, dt, J = 14.5, 9 Hz, -CH_aH_bCBr₂-), 3.91-4.10 (4H, m, -CH_aH_bOH, -OCH₂CH₂-, -NHCH-), 4.19 (1H, dd, J = 12.5, 2.5 Hz, -CH_aH_bOH), 5.11 (2H, s, -CH₂Ph), 7.27-7.42 (5H, m, Ph). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 14.1, 22.7, 26.1, 29.3, 29.4, 29.4, 29.5, 29.6, 31.4, 31.9, 44.4, 48.8, 50.9, 56.9, 63.0, 63.3, 66.6, 93.3, 127.8, 127.9, 128.0, 128.3, 128.4, 136.7, 157.0, 162.8. HRMS (ESI, positive): calcd. For C₂₇H₄₂N₃O₄Br₂ [M+H]⁺, 630.1537; found, 630.1521.

spiro-Hemiaminal 13b: IR (film): v_{max} (cm⁻¹) 3258, 2925, 2853, 1631, 1225, 1090, 1052. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 0.88 (3H, t, J = 6.5 Hz, -CH₂CH₃), 1.20-1.49 (18H, m, -CH₂(CH₂)₉CH₃), 1.58-1.75 (2H, m, -CH₂(CH₂)₉CH₃), 2.94 (1H, m, -CHCH₂OH), 3.17 (1H, ddd, J = 14, 5.5, 2.5 Hz, -CH_aH_bCBr₂-), 3.22 (1H, dt, J = 14, 9.5 Hz, -CH_aH_bCBr₂-), 3.78 (1H, t, J = 11.5 Hz, -CH_aH_bOH), 3.75 (1H, dd, J = 12.5, 11.5 Hz, -CH_aH_bOH), 4.03-4.12 (3H, m, -OCH₂CH₂-, -NHCH-), 5.07 (1H, d, J = 12 Hz, -CH_aH_bPh), 5.12 (1H, d, J = 12 Hz, -CH_aH_bPh), 7.27-7.39 (5H, m, Ph). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 14.1, 22.7, 25.5, 29.3, 29.3, 29.4, 29.5, 29.6, 31.2, 31.9, 42.1, 46.9, 49.3, 59.3, 65.5, 66.8, 70.2, 96.6, 128.0, 128.1, 128.4, 136.3, 155.4, 161.4. HRMS (ESI, positive): calcd. For C₂₇H₄₂N₃O₄Br₂ [M+H]⁺, 630.1537; found, 630.1518.

spiro-Hemiaminal 14a: A solution of guanidino-alcohol 10 (221 mg, 0.359 mmol) in CH₂Cl₂ (10 mL) and TFA (1 mL) was stirred for 2 h at room temperature and then the reaction mixture was concentrated under reduced pressure with toluene/MeOH (2/1) to afford crude 12. The residue of 12 was dissolved in CH₂Cl₂/H₂O (40 mL, 1/1), then K₂CO₃ (298 mg, 2.15 mmol) was added. To a vigorously stirred mixture was added PyHBr₃ (344 mg, 1.08 mmol). After being stirred for 30 min at room temperature, the reaction was quenched with sat. Na₂SO₃ solution (40 mL). The resulting mixture was partitioned, and the aqueous layer was extracted with EtOAc (40 mL x 2). The combined organic layer was washed with water (100 mL) and brine (100 mL), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography (hexane/EtOAc = 5/1 with 1% *i*-Pr₂NH) to afford *spiro*-hemiaminal 14a (176 mg, 73%, dr = >95 : <5 determined by ¹H NMR analysis) as a colorless oil.

IR (film): v_{max} (cm⁻¹) 2925, 2853, 1744, 1635, 1241, 1030. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 0.88 (3H, t, J = 6.5 Hz, -CH₂CH₃), 1.18-1.46 (18H, m, -CH₂(CH₂)₉CH₃), 1.53-1.72 (2H, m, -CH₂(CH₂)₉CH₃), 2.02 (3H, s, -CO-CH₃), 2.67 (1H, dt, J = 5.5, 3.5 Hz, -CHCH₂OAc), 3.17 (1H, ddd, J = 14.5, 7, 2 Hz, -CH_aH_bCBr₂-), 3.27 (1H, dt, J = 14.5, 9 Hz, -CH_aH_bCBr₂-), 3.92-4.00 (2H, m, -OCH_aH_bCH₂-, -NHCH-), 4.05 (1H, q, J = 8 Hz, -OCH_aH_bCH₂-), 4.32 (1H, dd, J = 12.5, 5.5 Hz, -CH_aH_bOAc), 4.54 (1H, dd, J = 12.5, 3.5 Hz, -CH_aH_bCH₂-), 4.32 (1H, dd, J = 12.5, 5.5 Hz, -CH_aH_bOAc), 4.54 (1H, dd, J = 12.5, 3.5 Hz, -CH_aH_bOAc), 5.10 (2H, s, -CH₂Ph), 7.25-7.39 (5H, m, Ph). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 14.1, 20.8, 22.6, 25.8, 29.3, 29.4, 29.5, 29.5, 31.3, 31.9, 41.2, 48.9, 50.5, 58.5, 62.2, 63.3, 66.4, 93.1, 127.7, 127.8, 128.3, 136.7, 157.2, 163.1, 170.4. HRMS (ESI, positive): calcd. For C₂₉H₄₄N₃O₅Br₂ [M+H]⁺, 672.1642; found, 672.1633.

spiro-Hemiaminal 15: To a solution of *spiro*-hemiaminal 14a (147 mg, 0.218 mmol) and *n*-Bu₃SnH (293 μ L, 1.09 mmol) in toluene (2.2 mL) were added Et₃B (109 μ L, 0.109 mmol, 1.0 M solution in hexane) and air at room temperature. After being stirred for 4.5 h at room temperature, the solution was passed through a short pad of flash silica gel (eluted with hexane/EtOAc = 1/1 with 1% *i*-Pr₂NH) and then concentrated. The residue was purified by flash column chromatography (hexane/EtOAc = 5/1 with 1% *i*-Pr₂NH to 1/1 with 1% *i*-Pr₂NH) to afford *spiro*-hemiaminal 15 (109 mg, 97%) as a colorless oil.

IR (film): v_{max} (cm⁻¹) 2925, 2854, 1744, 1628, 1228. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 0.87 (3H, t, J = 6.5 Hz, -CH₂CH₃), 1.20-1.37 (18H, m, -CH₂(CH₂)₉CH₃), 1.54-1.62 (2H, m, -CH₂(CH₂)₉CH₃), 1.91-2.13 (5H, m, -OCH₂CH₂CH₂-, -CHCH₂OAc), 2.00 (3H, s, -CO-CH₃), 3.80 (1H, m, -OCH_aH_bCH₂-), 3.87-3.94 (2H, m, -OCH_aH_bCH₂-, -NHCH-), 3.99 (1H, dd, J = 12, 4.5 Hz, -CH_aH_bOAc), 4.08 (1H, dd, J = 12, 5.5 Hz, -CH_aH_bOAc), 5.02 (1H, d, J = 12.5 Hz, -CH_aH_bPh), 5.06 (1H, d, J = 12.5 Hz, -CH_aH_bPh), 7.21-7.37 (5H, m, Ph). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 14.0, 20.8, 22.6, 24.6, 25.7, 29.2, 29.4, 29.4, 29.5, 31.4, 31.8, 34.8, 41.8, 49.7, 60.6, 66.1, 66.4, 90.2, 127.5, 127.7, 128.0, 128.2, 137.1, 158.0, 163.7, 170.5. HRMS (ESI, positive): calcd. For C₂₉H₄₆N₃O₅ [M+H]⁺, 516.3432; found, 516.3414.

Alcohol 16a: To a solution of *spiro*-hemiaminal 13a (4.7 mg, 7.4 μ mol) and *n*-Bu₃SnH (10 μ L, 37 μ mol) in toluene (0.5 mL) were added Et₃B (4 μ L, 4 μ mol, 1.0 M solution in hexane) and air at room temperature. After being stirred for 4.5 h at room temperature, the reaction mixture was concentrated under reduced pressure. The residue was purified by preparative TLC (EtOAc) to afford alcohol 16a (1.9 mg, 54%, dr = >95 : <5 determined by ¹H NMR analysis) as a colorless oil. Relative stereochemistry of 16a was determined by NOESY correlations.

IR (film): v_{max} (cm⁻¹) 3263, 2925, 2853, 1618, 1241, 1101, 1049. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 0.88 (3H, t, J = 6.5 Hz, -CH₂CH₃), 1.16-1.48 (18H, m, -CH₂(CH₂)₉CH₃), 1.53-1.70 (2H, m, -CH₂(CH₂)₉CH₃), 1.91 (1H, td, J = 5, 4.5 Hz, -CHCH₂OH), 1.96-2.20 (4H, m, -OCH₂CH₂CH₂-), 3.55 (1H, dd, J = 11.5, 5 Hz, -CH_aH_bOH), 3.73 (1H, dd, J = 11.5, 4.5 Hz, -CH_aH_bOH), 3.83 (1H, m, -OCH_aH_bCH₂-), 3.87-3.98 (2H, m, -OCH_aH_bCH₂-, -NHCH-), 5.05 (1H, d, J = 12 Hz, -CH_aH_bPh), 5.09 (1H, d, J = 12 Hz, -CH_aH_bPh), 7.24-7.36 (5H, m, Ph). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 14.1, 22.7, 24.7, 26.0, 29.3, 29.4, 29.4, 29.5, 29.6, 31.5, 31.9, 35.1, 44.8, 50.0, 58.9, 66.4, 66.4, 90.7, 127.7, 127.9, 128.3, 136.9, 157.3, 162.7. HRMS (ESI, positive): calcd. For C₂₇H₄₄N₃O₄ [M+H]⁺, 474.3326; found, 474.3328.

Alcohol 16b: To a solution of *spiro*-hemiaminal **13b** (16.5 mg, 0.0261 mmol) and *n*-Bu₃SnH (35 μ L, 0.13 mmol) in toluene (1 mL) were added Et₃B (13 μ L, 0.013 mmol, 1.0 M solution in hexane) and air at room temperature. After being stirred for 4.5 h at room temperature, the reaction mixture was concentrated under reduced pressure. The residue was purified by preparative TLC (EtOAc) to afford alcohol **16b** (7.3 mg, 59%, dr = >95 : <5 determined by ¹H NMR analysis) as a colorless oil. Relative stereochemistry of **16b** was determined by NOESY correlations.

IR (film): v_{max} (cm⁻¹) 3265, 2925, 2854, 1637, 1247, 1041, 1028. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 0.88 (3H, t, J = 6.5 Hz, $-CH_2CH_3$), 1.17-1.47 (18H, m, $-CH_2(CH_2)_9CH_3$), 1.53-1.69 (2H, m, $-CH_2(CH_2)_9CH_3$), 1.92-2.24 (5H, m, $-OCH_2CH_2CH_2$ -, $-CHCH_2OH$), 3.53 (1H, ddd, J = 8, 6, 4 Hz, -NHCH-), 3.69 (1H, dd, J = 12, 4 Hz, $-CH_aH_bOH$), 3.87 (1H, dd, J = 12, 8 Hz, $-CH_aH_bOH$), 3.91 (1H, dd, J = 8, 6 Hz, $-OCH_aH_bCH_2$ -), 4.10 (1H, ddd, J = 8, 7, 4 Hz, $-OCH_aH_bCH_2$ -), 5.06 (1H, d, J = 12 Hz, $-CH_aH_bPh$), 5.10 (1H, d, J = 12 Hz, $-CH_aH_bPh$), 7.24-7.41 (5H, m, Ph). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 14.1, 22.7, 24.0, 26.1, 29.3, 29.4, 29.5, 29.6, 31.3, 31.9, 40.5, 44.8, 51.0, 58.8, 66.4, 68.8, 93.6, 127.7, 127.8, 128.3, 137.1, 156.7, 163.4. HRMS (ESI, positive): calcd. For C₂₇H₄₄N₃O₄ [M+H]⁺, 474.3326; found, 474.3315.

NOESY correlations of 16a and 16b

Alcohol 16a: To a solution of acetate 15 (15.5 mg, 0.0301 mmol) in CH₂Cl₂ (1 mL) was added dropwise DIBAL (120 μ L, 0.120 mmol, 1.0 M in toluene) at -78 °C under the nitrogen atmosphere. After stirring for 30 min, the reaction mixture was quenched with acetone. The reaction mixture was allowed to warm to room temperature, and sat. potassium sodium tartrate solution (3 mL) was added to the reaction mixture. After vigorously stirring at room temperature for 1 h, the resulting mixture was extracted with EtOAc (5 mL x 3). The combined organic layer was washed with water (20 mL) and brine (20 mL), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography (CH₂Cl₂/MeOH = 20/1 with 1% *i*-Pr₂NH) to afford alcohol 16a (12.5 mg, 87%) as a colorless oil.

Carboxylic acid 2: Alcohol **16a** (6.3 mg, 0.013 mmol), 10% Pd-C (6.0 mg) and MeOH (1 mL) were placed in a recovered frask (10 mL) connected to an inlet adaptor. The atmosphere of the reaction vessel was replaced by nitrogen, and then filled with hydrogen (1.0 atm). After being stirred for 5 h at room temperature, the catalyst was filtered off through a pad of Celite[®] (eluted with MeOH), and then the filtrate was concentrated under reduced pressure to afford guanidine **17**, which was used in the next reaction without further purification. To a solution of Jones reagent (32 μ L, 0.085 mmol) in acetone (0.3 mL) was added a solution of the crude guanidine **17** (2.9 mg) in acetone (0.5 mL) at 0 °C. After being stirred for 1 h at 0 °C, the reaction was quenched with *i*-PrOH (2 mL). The resulting mixture was extracted with EtOAc (10 mL x 3). The combined organic layer was dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by a reverse phase preparative TLC (MeOH) to afford carboxylic acid **2** (1.5 mg, 32%).

IR (film): v_{max} (cm⁻¹) 3247, 2924, 2853, 1683, 1616, 1568, 1403, 1040. ¹H NMR (400 MHz, CD₃OD): δ (ppm) 0.90 (3H, t, J = 7.0 Hz, $-\text{CH}_2\text{C}H_3$), 1.22-1.40 (18H, m, $-\text{CH}_2(\text{C}H_2)_9\text{C}\text{H}_3$), 1.60 (1H, m, $-\text{C}H_a\text{H}_b(\text{C}\text{H}_2)_9\text{C}\text{H}_3$), 1.72 (1H, m, $-\text{C}\text{H}_aH_b(\text{C}\text{H}_2)_9\text{C}\text{H}_3$), 1.97-2.30 (4H, m, $-\text{OCH}_2\text{C}H_2\text{C}H_2$ -), 2.61 (1H, d, J = 4.5 Hz, $-\text{C}\text{HCO}_2\text{H}$), 3.67 (1H, td, J = 7.0, 4.5 Hz, -NHCH-), 3.89 (1H, dt, J = 8.0, 6.5 Hz, $-\text{OC}H_a\text{H}_b\text{C}\text{H}_2$ -), 3.97 (1H, dt, J = 8.0, 7.0 Hz, $-\text{OCH}_aH_b\text{C}\text{H}_2$ -). ¹³C NMR (100 MHz, CD₃OD): δ (ppm) 14.4, 23.7, 25.7, 26.9, 30.5, 30.6, 30.7, 30.7, 30.8, 33.1, 33.2, 36.2, 50.6, 52.8, 68.4, 90.9, 155.3, 175.3. HRMS (ESI, positive): calcd. For C₁₉H₃₆N₃O₃ [M+H]⁺, 354.2751; found, 354.2741.

HCl salt of 2: IR (film): v_{max} (cm⁻¹) 3367, 2944, 2834, 1674, 1617, 1450, 1417, 1218. ¹H NMR (400 MHz, CD₃OD): δ (ppm) 0.90 (3H, t, J = 7.0 Hz), 1.24-1.42 (16H, m, -CH₂(CH₂)₈CH₃), 1.43-1.52 (2H, m, -CH₂(CH₂)₈CH₃), 1.62-1.67 (2H, m, -CH₂(CH₂)₉CH₃), 2.04-2.21 (4H, m, -OCH₂CH₂CH₂-), 2.91 (1H, d, J = 4.0 Hz, -CHCO₂H), 3.84 (1H, td, J = 7.0, 4.5 Hz, -NHCH-), 3.88-3.97 (1H, m, -OCH_aH_bCH₂-), 3.98-4.05 (1H, m, -OCH_aH_bCH₂-). ¹³C NMR (100 MHz, CD₃OD): δ (ppm) 14.4, 23.7, 25.7, 26.5, 30.4, 30.5, 30.6, 30.7, 32.8, 33.1, 36.2, 49.8, 49.9, 68.8, 90.0, 155.2, 171.4. HRMS (ESI, positive): calcd. For C₁₉H₃₆N₃O₃ [M+H]⁺, 354.2751; found, 354.2767. Comparison of ¹H NMR data of carboxylic acid **2** and the related carboxylic acid reported by Snider *et al.*^{*}

^a 400 MHz in CD₃OD. ^b 300 MHz in CD₃OD.

Comparison of ¹³C NMR data of carboxylic acid **2** and the related carboxylic acid reported by Snider *et al.*^{*}

this report ^a	Snider <i>et al.^b</i>
δ	δ
171.4	171.7
155.2	155.4
90.0	90.2
68.8	69.1
49.9	50.1
49.8	49.9
36.2	36.4
33.1	33.4
32.8	33.1
30.7	31.05
30.6	30.9
30.5	30.8
30.4	30.7
26.5	26.8
25.7	26.0
23.7	24.0
14.4	14.7

^a 100 MHz in CD₃OD. ^b 75 MHz in CD₃OD.

^{*} B. B. Snider and Z. Shi, J. Org. Chem., 1993, **58**, 3828-3839.

Current Data Parameters NAME ishikawa-n400-9 EXPNO 232 PROCNO 2	P2 - Acquisition Parameters Date20130205 Time 16.34 INSTRUM av400 PROBHD 5 mm QNP 1H/13 PULPROG zgpg30 FULPROG zgpg30 FULPROG zgpg30 FULPROG zgpg30 FULPROG zgpg30 FULPROG zgpg30 FULPROG zgpg30 SWH 23980 814 Hz SWH 23980 814 Hz PULPRES 0.365918 Hz AQ 1.3664756 sec RG 16.384 DW 20.850 usec DW 20.850 usec TE 300.00 usec TE 300.00 usec DI 2.03000000 sec d11 0.03000000 sec		CPDPRG2 Waltz16 CPDPRG2 Waltz16 NUC2 1H PCPD2 80.00 usec PL12 14.80 dB PL13 14.80 dB PL13 14.80 dB PL13 14.80 dB PL13 2400.1316005 MHz	F2 - Processing parameters SI 32768 SF 100.6127737 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 5.00	CH ₃ (CH ₂) ₉	Compound 3
20°11 20°22						
61'19						
LI'06 ——				_		
£'801 ———						
9.641		•				

....

+ + + +

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2013

25,....

.

37

39
