Supporting Information

Stereoselective tandem synthesis of thiazolo fused naphthyridines and thienopyridines from o-alkynylaldehydes via Au(III)-catalyzed regioselective 6-endo-dig ring closure

Rajeev R. Jha, Rakesh K. Saunthwal and Akhilesh K. Verma*

Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India.

E-mail: averma@acbr.du.ac.in

S. No.		Page No.
1.	General	S2-S2
2.	Synthesis of 2-alkanylaldehyde 1a-o, 2, 3a-e	S2-S9
3.	Synthesis of Thiazolo-fused-naphthyridine 5a–o , Isoquinoline 6 , Thieno-pyridines 8a–e	S9-S21
4.	NOESY data of 5a	S22-S22
4.	References	S23-S23
5.	Copies of ¹ H, ¹³ C NMR and NOESY	S23-S111

General Method: ¹H NMR (300 MHz, 400 MHz) and ¹³C NMR (75 MHz, 100 MHz) spectra were recorded in CDCl₃. Chemical shifts for carbons are reported in ppm from tetramethylsilane and are referenced to the carbon resonance of the solvent. Data are reported as follows: chemical shift, multiplicity (s=singlet, d=doublet, t=triplet, q=quartet, m=multiplet, dd = doublet of doublet), coupling constants in Hertz, and integration. High-resolution mass spectra were recorded on electrospray mass spectrometer. Crystal structure analysis was accomplished on single crystal X-ray diffractometer. TLC analysis was performed on commercially prepared 60 F₂₅₄ silica gel plates and visualized by either UV irradiation or by staining with I₂. All purchased chemicals were used as received. All melting points are uncorrected. The specific rotations were measured with Rudolph autopol II automatic polarimeter using light of 546 nm wavelength.

General Procedure for the Synthesis of *o*-Alkanylaldehyde 1a–o, 2, 3a–e. The *o*-alkanyl aldehyde 1a–o, 2a–e was readily prepared by coupling reaction of corresponding *o*-halo aldehyde with terminal alkynes using reported procedures.¹ The structure and purity of known starting materials were confirmed by comparison of their physical and spectral data (¹H NMR, ¹³C NMR, and HRMS) with those reported in literature.

obtained as a white solid; ${}^{1}H$ NMR (300 MHz, CDCl₃) δ : 10.8 (s, 1H), 8.75 (s, 1H), 8.81 (d, J = 8.4 Hz, 1H), 797 (d, J = 8.1 Hz, 1H), 7.87 (td, J = 1.5 Hz, 1H), 7.72–7.61 (m, 3H), 7.48–7.42 (m, 3H); ${}^{13}C$ NMR (CDCl₃) δ : 190.81, 150.18, 143.91, 137.17, 133.07, 132.33, 129.88, 129.68, 129.34, 128.84, 128.62, 128.26, 126.44, 121.35, 95.55, 85.55. HRMS Calcd for $C_{18}H_{11}NO$ (M+H⁺): 257.0841, found: 257.0852.

obtained as a white solid; ¹H NMR (300 MHz, CDCl₃) δ : 10.78 (s, 1H), 8.71 (s, 1H), 8.15 (d, J = 8.7 Hz, 1H), 7.91 (d, J = 8.1 Hz, 1H), 7.85–7.79 (d, J = 8.4 Hz, 1H), 7.60–7.53 (m, 3H), 7.19–7.15 (m, 2H), 2.34 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 190.9, 150.2, 144.1, 140.4, 137.1, 133.0, 132.3, 129.7, 129.4, 129.3, 128.8, 128.1, 126.4, 118.3, 96.0, 85.1, 21.7. HRMS Calcd for C₁₉H₁₃NO (M+H⁺): 271.0997, found: 271.0979.

2-((4-Ethylphenyl)ethynyl)quinoline-3-carbaldehyde(1c). This compound was obtained as a light brown solid; H NMR (400 MHz, CDCl₃) δ : 10.78 (s, 1H), 8.71 (s, 1H), 8.14 (d, J = 8.7 Hz, 1H), 7.93 (d, J = 8.0 Hz, 1H), 7.83 (t, J = 7.3 Hz, 1H), 7.61–7.57 (m, 3H), 7.25–7.21 (m, 2H), 2.67 (q, J = 7.3 Hz, 2H), 1.24 (t, J = 7.3 Hz, 3H); 13 C NMR (100 MHz, CDCl₃) δ : 190.9, 150.1, 146.5, 144.1, 137.0, 132.9, 132.3, 129.6, 129.2, 128.7, 128.1, 126.3, 118.4, 96.0, 85.0, 28.9, 15.2. HRMS Calcd for C₂₀H₁₅NO (M+H⁺): 285.1154, found: 285.1154.

The product was obtained as a orange solid; ${}^{1}H$ NMR (300 MHz, CDCl₃) δ : 10.80 (s, 1H), 8.73 (s, 1H), 8.16 (d, J = 8.4Hz, 1H), 7.96–7.83 (m, 2H), 7.66–7.59 (m, 3H), 6.95–6.83 (m, 2H), 3.86 (s, 3H); ${}^{13}C$ NMR (75 MHz, CDCl₃) δ : 190.9, 160.9, 150.2, 144.2, 137.0, 134.0, 132.9, 129.6, 129.2, 128.7, 128.0, 126.3, 114.3, 113.3, 96.1, 84.2, 55.4. HRMS Calcd for $C_{19}H_{13}NO_2$ (M+H⁺): 287.0946, found: 287.0951.

2-(Thiophen-3-ylethynyl)quinoline-3-carbaldehyde(1e). The product was obtained as a white solid; 1 H NMR (300 MHz, CDCl₃) δ : 10.78 (s, 1H), 7.97 (d, J = 8.4 Hz, 1H), 7.88 (t, J = 1.5 Hz, 1H), 7.79–7.78 (m, 1H), 7.63 (t, J = 0.9 Hz, 1H), 7.39–7.33 (m, 2H); 13 C NMR (75 MHz, CDCl₃) δ : 190.8, 150.2, 143.9, 137.2, 133.1, 131.6, 130.0, 129.7, 129.3, 128.8, 128.2, 126.4, 126.0, 120.5, 90.8, 85.4. HRMS Calcd for C₁₆H₉NOS (M+H⁺): 263.0405, found: 263.0450.

2-(*m***-Tolylethynyl)quinoline-3-carbaldehyde(1f).** The product was obtained as a orange solid; 1 H NMR (300 MHz, CDCl₃) δ :10.81 (s, 1H), 8.74 (s, 1H), 8.17 (d, J = 8.7 Hz, 1H), 7.96 (d, J = 8.1 Hz, 1H), 7.87 (t, J = 7.2 Hz, 1H), 7.63 (t, J = 7.2 Hz, 1H), 7.51 (d, J = 7.8 Hz, 2H), 7.33–7.24 (m, 2H); 13 C NMR (75 MHz, CDCl₃) δ : 190.9, 150.2, 144.0, 138.4, 137.1, 133.0, 132.9, 130.8, 129.7, 129.4, 129.3, 128.8, 128.5, 128.2, 126.4, 121.1, 95.9, 85.2, 21.2. HRMS Calcd for C₁₉H₁₃NO (M+H⁺): 271.0997, found: 271.0970.

The product was obtained as a orange solid; ${}^{1}H$ NMR (300 MHz, CDCl₃) δ : 10.8 (s, 1H), 8.76 (s, 1H), 8.18 (d, J = 7.8 Hz, 1H), 7.99–7.86 (m, 2H), 7.64 (t, J = 7.3 Hz, 1H), 6.85 (s, 2H), 6.56 (s, 1H), 3.83 (s, 6H); ${}^{13}C$ NMR (75 MHz, CDCl₃) δ : 190.9, 160.8, 150.3, 143.9, 137.3, 133.2, 129.8, 129.4, 128.9, 128.4, 126.6, 122.6, 110.1, 103.6, 95.6, 85.1, 55.7. HRMS (ESI) Calcd for $C_{20}H_{15}NO_3$ (M+H⁺) 317.1052, found 317.1060.

CHO

2-(Cyclohexylethynyl)quinoline-3-carbaldehyde (1h). ^{1b} The product was obtained as a white solid; ¹H NMR (300 MHz, CDCl₃) δ : 10.70 (s, 1H), 8.69 (s, 1H), 8.12 (d, J = 8.7 Hz, 1H), 7.93 (d, J = 8.1 Hz, 1H), 7.86–7.80 (m, 1H), 7.58 (td, J = 0.9 and 7.9 Hz, 1H), 2.80–2.75 (m, 1H), 2.02–1.97 (m, 2H), 1.82–1.55 (m, 5H), 1.47–1.36 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) δ : 191.4, 150.1, 144.6, 136.8, 132.8, 129.6, 129.2, 128.8, 127.9, 126.2, 102.0, 77.5, 32.1, 29.9, 25.7, 24.9. HRMS (ESI) Calcd for C₁₈H₁₇NO (M+H⁺) 263.1310, found 263.1311.

N

2-(Cyclopropylethynyl)quinoline-3-carbaldehyde (**1i**). The product was obtained as a white solid; ¹H NMR (400 MHz, CDCl₃) δ: 10.65 (s, 1H), 8.67 (s, 1H), 8.10 (s, 1H), 7.92–7.73 (m, 2H), 7.59 (s, 1H), 1.63–1.62 (m, 1H), 1.14–1.02 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ: 191.2, 150.1, 144.4, 136.8, 132.8, 129.6, 129.1, 128.8, 127.8, 126.2, 101.4, 72.8, 9.2, 0.4. HRMS (ESI) Calcd for C₁₅H₁₁NO (M+H⁺) 221.0841, found 221.0842.

O N

ⁿ_{Bu} **2-(Hex-1-yn-1-yl)quinoline-3-carbaldehyde (1j).** ^{1b} The product was obtained as a yellow oil; ¹H NMR (300 MHz, CDCl₃) δ: 10.68 (s, 1H), 8.68 (s, 1H), 8.11 (d, J = 8.4 Hz, 1H), 7.93–7.80 (m, 2H), 7.61–7.56 (m, 2H), 2.59 (t, J = 7.2 Hz, 2H), 1.73–1.66 (m, 2H), 1.57–1.47 (m, 2H), 0.97 (t, J = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ: 191.0, 150.1, 144.5, 136.8, 131.8, 129.6, 129.2, 128.7, 127.9, 126.2, 98.1, 87.8, 30.2, 22.2, 19.4, 13.6. HRMS (ESI) Calcd for C₁₆H₁₅NO (M+H⁺) 237.1154, found 237.1162.

2-((4-Nitrophenyl)ethynyl)quinoline-3-carbaldehyde (1k). The product was obtained as a yellow solid; H NMR (400 MHz, CDCl₃) δ: 10.71 (s, 1H), 8.76 (s, 1H), 8.26 (d, J = 8.8 Hz, 2H), 8.17 (d, J = 8.8 Hz, 1H), 7.98 (d, J = 8.0 Hz, 1H), 7.91–7.87 (m, 1H), 7.83 (d, J = 8.0 Hz, 2H), 7.66 (t, J = 8.0 Hz, 1H); C NMR (100 MHz, CDCl₃) δ: 189.9, 150.0, 147.9, 142.4, 137.9, 133.4, 133.1, 132.6, 129.6, 129.4, 128.9, 128.8, 128.1, 126.6, 123.8, 92.3, 89.8. HRMS (ESI) Calcd for $C_{18}H_{10}N_2O_3$ (M+H⁺) 302.0691, found 302.0692.

The product was obtained as a yellow solid; 1 H NMR (300 MHz, CDCl₃) δ : 10.78 (s, 1H), 8.61 (s, 1H), 8.06 (d, J = 9.3 Hz, 1H), 7.70–7.67 (m, 2H), 7.52–7.41 (m, 4H), 7.17 (d, J = 2.7 Hz, 1H), 3.96 (s, 3H); 13 C NMR (75 MHz, CDCl₃): 191.0, 159.0, 146.6, 141.5, 135.3, 132.2, 130.8, 129.7, 129.1, 128.6, 127.7, 126.3, 121.6, 106.2, 94.7, 85.6, 55.8. HRMS (ESI) Calcd for C₁₉H₁₃NO₂ (M+H⁺) 287.0946, found 287.0947.

This compound was obtained as a yellow solid; ${}^{1}H$ NMR (400 MHz, CDCl₃) δ : 10.78 (s, 1H), 8.61 (s, 1H), 8.07 (d, J = 9.5 Hz, 1H), 7.51–7.47 (m, 3H), 7.30–7.24 (m, 2H), 7.16 (d, J = 2.2 Hz, 1H), 3.95 (s, 3H), 2.37 (s, 3H); ${}^{13}C$ NMR (100 MHz, CDCl₃) δ : 191.0, 159.5, 146.4, 141.5, 138.3, 135.4, 132.8, 130.6, 129.3, 128.4, 127.8, 126.4, 121.1, 106.2, 85.1, 55.8, 21.2. HRMS (ESI) Calcd for $C_{20}H_{15}NO_2$ (M+H⁺) 301.1103, found: 301.1103.

(M+H⁺): 271.0997, found 271.0998.

The product was obtained as a yellow needles (DCM/Ether), mp: 181-182 °C : 1 H NMR (400 MHz, CDCl₃) δ : 10.6 (s, 1H), 8.45 (s, 1H), 7.91 (d, J=9.16 Hz, 1H), 7.39 (d, J=8.24 Hz, 1H), 7.04 (s, 1H), 3.88 (s, 3H), 1.57-1.53 (m, 1H), 0.95-0.93 (m, 4H); 13 C NMR (100 MHz, CDCl₃) δ : 191.3, 158.5, 146.3, 141.8, 134.9, 130.4, 128.8, 127.2, 126.0, 106.0, 100.2, 55.6, 9.0, 0.2. HRMS Calcd for $C_{16}H_{13}NO_{2}$ (M+H $^{+}$): 251.0946, found 251.0947

6-Methyl-2-(phenylethynyl)quinoline-3-carbaldehyde (1o). ^{1d} The product was obtained as a yellow solid; ¹H NMR (400 MHz, CDCl₃)
$$\delta$$
: 10.80 (s, 1H), 8.65 (s, 1H), 8.07 (d, $J = 8.8$ Hz, 1H), 7.71–7.70 (m, 4H), 7.51–7.41 (m, 4H), 7.37–7.24 (m, 3H), 2.57 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 190.9, 148.9, 143.0, 138.6, 136.3, 135.5, 132.3, 129.7, 129.0, 128.9, 128.6, 128.3, 126.5, 121.5, 95.1, 85.6, 21.7. HRMS Calcd for C₁₉H₁₃NO

2-((4-(*tert*-Butyl)phenyl)ethynyl)benzaldehyde (2). ^{1e} This compound was obtained as a off white solid; ¹H NMR (400 MHz, CDCl₃) δ: 10.65 (s, 1H), 7.93 (d, J = 6.84 Hz, 1H), 7.63–7.61 (m, 1H), 7.55 (t, J = 6.88 Hz, 1H), 7.51–7.49 (m, 2H), 7.43–7.38 (m, 3H), 1.33 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ: 191.6, 152.4, 135.7, 133.7, 133.1, 128.3, 127.1, 127.0, 125.5, 119.2, 96.6, 84.2, 34.8, 31.0. HRMS Calcd for $C_{19}H_{18}O$ (M+H⁺): 262.1358, found: 262.1359.

СНС

3-(Phenylethynyl)benzo[*b*]thiophene-2-carbaldehyde(3a). This compound was obtained as a yellow brown solid; ¹H NMR (400 MHz, CDCl₃) δ : 10.40 (s, 1H), 8.10–8.08 (m, 1H), 7.82 (d, J = 7.3 Hz, 1H), 7.59–7.56 (m, 2H), 7.51–7.43 (m, 2H), 7.37–7.33 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 180.9, 139.9, 137.5, 135.8, 128.4, 126.0, 125.3, 125.1, 124.2, 122.1, 121.5, 119.8, 118.3, 95.5, 77.0. HRMS Calcd for C₁₇H₁₀OS (M+H⁺): 262.0452, found: 262.0451

Me

3-(*p*-Tolylethynyl)benzo[*b*]thiophene-2-carbaldehyde (3b). The product was obtained as a yellow needles (DCM/Ether), mp: 177–179 °C : ¹H NMR (400 MHz, CDCl₃) δ : 10.4 (s, 1H), 8.14 (d, J = 7.8 Hz, 1H), 7.87–7.85 (m, 1H), 7.56–7.48 (m, 4H), 7.23 (d, J = 8.24 Hz, 2H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 184.6, 143.0, 140.7, 139.6, 139.2, 131.8, 129.3, 128.8, 125.5, 125.1, 123.2, 118.7, 99.4, 80.0, 21.5. HRMS Calcd for C₁₈H₁₂OS (M+H⁺): 276.0609, found 276.0608.

ОМе

 $\textbf{3-}((\textbf{4-Methoxyphenyl})\textbf{ethynyl})\textbf{benzo}[\textbf{b}]\textbf{thiophene-2-carbaldehyde} \quad \textbf{(3c):} \\ ^{1f}$

The product was obtained as a yellow solid; 1 H NMR (400 MHz, CDCl₃) δ : 10.43 (s, 1H), 8.12 (dd, J = 2.2, 8.1 Hz, 1H), 7.85 (d, J = 7.3 Hz, 1H), 7.57–7.49 (m, 4H), 6.93–6.91 (m, 2H), 3.84 (s, 3H); 13 C NMR (100 MHz, CDCl₃) δ : 184.6, 160.6, 142.7, 141.1, 139.4, 133.5,

 $(M+H^+)$: 268.0017, found 268.0017.

128.8, 128.3, 125.5, 125.1, 123.3, 114.3, 113.8, 99.4, 79.6, 55.4. HRMS Calcd for $C_{18}H_{12}O_2SNa\,(M+Na^+)$: 315.0456, found: 315.0457.

3-(Thiophen-3-ylethynyl)benzo[*b*]**thiophene-2-carbaldehyde** (**3d**). This compound was obtained as yellow solid; ¹H NMR (400 MHz, CDCl₃): δ 10.41 (s, 1H), 8.12–8.10 (m, 1H), 7.86–7.84 (m, 1H), 7.69–7.67 (m, 1H), 7.53–7.48 (m, 2H), 7.37–7.35 (m, 1H), 7.28–7.27 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 183.6, 143.0, 140.5, 138.9, 130.2, 129.3, 128.3, 127.0, 125.6, 125.1, 124.5, 122.8, 120.5, 93.6, 79.7. HRMS Calcd for C₁₅H₈OS₂

3-((4-(Trifluoromethyl)phenyl)ethynyl)benzo[b]thiophene-2-carbaldehyde

(3e). ^{1a} This compound was obtained as a dark brown solid; ¹H NMR (400 MHz, CDCl₃) δ : 10.40 (s, 1H), 8.09–8.07 (m, 1H), 7.84 (d, J = 7.3 Hz, 1H), 7.69 (d, J = 8.0 Hz, 2H), 7.62 (d, J = 8.8 Hz, 2H), 7.53–7.45 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 184.1, 144.2, 141.0, 139.2, 132.2, 129.0, 126.6, 125.8, 125.60, 125.57, 124.9, 123.4, 97.1, 82.6. HRMS Calcd for C₁₈H₉F₃OS (M+H⁺): 330.0326, found 330.0326.

General procedure for the synthesis of Benzo[b] thiazolo[2,3-f][1,6]naphthyridine 5a-o. An oven-dried Schlenk tube with a Teflon screw valve was charged with 1.1 equiv of L(-) Cysteine methyl ester hydrochloride 4, EDC (2.0 mL), 0.5 mmol of the 2-alkanylaldehyde 1a-o, 2, 3a-e, and AuCl₃ (10 mol %). The reaction mixture was heated to 80 °C until 2-alkanylaldehyde 1a-o, 2, 3a-e had been completely consumed (as determined by TLC) and was allowed to cool to room temperature. The reaction mixture was diluted with ethyl acetate

(10 mL) and water (15 mL). Organic layer was concentrated under reduced pressure. The crude material so obtained was purified by column chromatography on silica gel.

(3S,12bR)-methyl 5-phenyl-3,12b-dihydro-2H-benzo[b]thiazolo[2,3-

f][1,6]naphthyridine-3-carboxylate (5a). The product was obtained as a yellow needles (DCM/Ether), mp: 177–179 °C; [α]_D^{27.5} = -357.0 (c 0.1, MeOH): ¹H NMR (400 MHz, CDCl₃) δ: 8.23 (s, 1H), 8.08 (d, J = 8.8 Hz, 1H), 7.77 (d, J = 8.0 Hz, 1H), 7.74–7.71 (m, 2H), 7.67 (t, J = 8.0 Hz, 1H), 7.51 (t, J = 8.0 Hz, 1H), 7.39–7.37 (m, 4H), 6.39 (s, 1H), 4.29–4.27 (m, 1H), 3.82 (s, 3H), 3.36–3.32 (m, 1H), 3.12–3.08 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ: 172.0, 147.1, 142.5, 137.8, 132.2, 131.1, 129.8, 129.3, 128.9, 128.4, 127.7, 127.3, 126.9, 121.9, 96.4, 87.4, 67.4, 64.9, 52.7, 37.7. HRMS Calcd for C₂₂H₁₈N₂O₂S (M+H⁺): 374.1089, found 374.1088.

(3S,12*b*R)-methyl5-(*p*-tolyl)-3,12*b*-dihydro-2H-

benzo[*b*]**thiazolo**[2,3-*f*][1,6]**naphthyridine-3-carboxylate** (**5b**). The product was obtained as a yellow needles (DCM/Ether), mp: 173–175 °C; [α]_D²⁷ = -317.1 (c 0.1, MeOH): ¹H NMR (400 MHz, CDCl₃) δ: 8.69 (s, 1H), 8.13 (d, J = 8.8 Hz, 1H), 7.96 (d, J = 8.0 Hz, 1H), 7.80 (td, J = 6.6 and 1.5 Hz, 1H), 7.57 (t, J = 8.0 Hz, 1H), 6.88–6.83 (m, 4H), 6.51 (s, 1H), 5.84 (s, 1H), 5.55 (td, J = 5.1 and 1.5 Hz, 1H), 3.69 (s, 3H), 3.54–3.49 (m, 1H), 3.32–3.27 (m, 1H), 2.17 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 193.3, 162.8, 161.9, 149.8, 136.5, 135.3, 134.8, 132.4, 131.7, 129.9, 129.8, 129.3, 129.2, 128.9, 127.8, 127.3, 127.2, 70.0, 52.6, 37.3, 21.0. HRMS Calcd for C₂₃H₂₀N₂O₂S (M+H⁺): 388.1245, found 388.1244.

(3S,12bR)-Methyl-5-(4-ethylphenyl)-3,12b-dihydro-2H-

benzo[*b*]thiazolo[2,3-*f*][1,6]naphthyridine-3-carboxylate (5c). The product was obtained as a yellow needles (DCM/Ether), mp: 155–157 °C; $[α]_D^{27} = -289.6$ (c 0.1, MeOH): 1 H NMR (400 MHz, CDCl₃) δ: 8.23 (s, 1H), 8.11–8.09 (m, 1H), 7.81–7.76 (m, 1H), 7.72–7.68 (m, 1H), 7.66–7.63 (m, 2H), 7.58 (d, J = 7.8 Hz, 1H), 7.55–7.48 (m, 1H), 7.21–7.18 (m, 2H), 6.37 (s, 1H), 4.27 (t, J = 6.9 Hz, 1H), 3.81 (s, 3H), 3.33–3.31 (m, 1H), 3.11–3.07 (m, 1H), 2.66 (q, J = 6.9 Hz, 2H), 1.22 (t, J = 7.3 Hz, 3H); 13 C NMR (100 MHz, CDCl₃) δ: 172.0, 146.1, 146.0, 137.8, 134.0, 132.2, 131.2, 130.4, 129.8, 128.8, 128.7, 127.5, 128.0, 127.7, 127.3, 126.9, 119.0, 67.4, 64.9, 52.7, 37.8, 28.9, 15.2. HRMS Calcd for $C_{24}H_{22}N_2O_2S$ (M+H⁺): 402.1402, found 402.1403.

(3S,12bR)-Methyl-5-(4-methoxyphenyl)-3,12b-dihydro-2H-

benzo[*b*]**thiazolo**[2,3-*f*][1,6]**naphthyridine-3-carboxylate** (5**d**). The product was obtained as a yellow needles (DCM/Ether), mp: 171–172 °C; [α]_D²⁷ = -319.4 (c 0.1, MeOH): ¹H NMR (300 MHz, CDCl₃) δ: 8.75 (s, 1H), 8.20 (d, J = 8.4 Hz, 1H), 8.02 (d, J = 8.1 Hz, 1H), 7.87 (t, J = 7.2 Hz, 1H), 7.64 (t, J = 7.5 Hz, 1H), 6.93 (d, J = 8.4 Hz, 2H), 6.68–6.60 (m, 3H), 5.93 (s, 1H), 5.60 (t, J = 5.4 Hz, 1H), 3.77 (s, 3H), 3.72 (s, 3H), 3.58–3.52 (m, 1H), 3.40–3.33 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ: 193.3, 162.8, 161.9, 158.5, 149.8, 135.4, 134.7, 131.7, 130.5, 130.0, 129.8, 129.2, 127.9, 127.4, 127.1, 113.6, 70.0, 55.1, 52.6, 36.8. HRMS Calcd for $C_{23}H_{20}N_2O_3S$ (M+H⁺): 404.1195, found 404.1195.

benzo[b]thiazolo[2,3-*f*][1,6]naphthyridine-3-carboxylate (5e). The product was obtained as a yellow needles (DCM/Ether), mp: 159–161 °C; $[\alpha]_D^{30} = -276.7$ (c 0.1, MeOH): ¹H NMR (400 MHz, CDCl₃) δ: 8.22 (d, J = 3.2 Hz, 1H), 8.05 (d, J = 8.2 Hz, 1H), 7.77–7.74 (m, 2H), 7.66–7.63 (m, 1H), 7.51–7.48 (m, 1H), 7.36–7.34 (m, 1H), 7.31–7.28 (m, 1H), 6.36–6.33 (m, 1H), 4.27–4.25 (m, 1H), 3.79 (s, 3H), 3.34–3.30 (m, 1H), 3.24–3.22 (m, 1H), 3.11–3.05 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ: 172.0, 147.1, 142.6, 137.6, 131.2, 131.0, 129.9, 129.8, 128.8, 127.6, 127.3, 126.9, 125.5, 121.1, 91.8, 87.1, 67.4, 64.8, 52.7, 37.7. HRMS Calcd for $C_{20}H_{16}N_2O_2S_2$ (M+H⁺): 380.0653, found 380.0654.

benzo[*b*]thiazolo[2,3-*f*][1,6]naphthyridine-3-carboxylate (5f). The product was obtained as a yellow needles (DCM/Ether), mp: 172–174 °C; $[\alpha]_D^{27} = -319.1$ (c 0.1, MeOH): ¹H NMR (400 MHz, CDCl₃) δ: 8.24 (s, 1H), 8.10 (d, J = 7.68 Hz, 1H), 7.83–7.78 (m, 1H), 7.73–7.67 (m, 1H), 7.56–7.49 (m, 4H), 7.30–7.26 (m, 1H), 7.22–7.20 (m, 1H), 6.41 (s, 1H), 4.30 (t, J = 6.2 Hz, 1H), 3.84 (s, 3H), 3.38–3.34 (m, 1H), 3.14–3.09 (m, 1H), 2.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 172.2, 147.1, 142.6, 138.1, 137.8, 134.0, 132.6, 131.1, 130.3, 129.7, 129.3, 128.8, 128.2, 127.6, 127.3, 126.9, 121.7, 96.7, 87.1, 67.4, 64.9, 52.7, 37.8, 21.0. HRMS Calcd for $C_{23}H_{20}N_2O_2S$ (M+H⁺): 388.1245, found 388.1247.

(3S,12bR)-Methyl-5-(3,5-dimethoxyphenyl)-3,12b-dihydro-2H-

benzo[*b*]thiazolo[2,3-*f*][1,6]naphthyridine-3-carboxylate (5g). The product was obtained as a yellow needles (DCM/Ether), mp: 179–182 °C; $[\alpha]_D^{27}$ = -325.1 (c 0.1, MeOH): ¹H NMR (400 MHz, CDCl₃) δ: 8.16 (s, 1H), 7.99–7.97 (m, 1H), 7.68–7.66 (m, 1H), 7.59–7.55 (m, 1H), 7.44–7.40 (m, 2H), 6.80 (t, J = 2.28Hz, 1H), 6.74 (t, J = 2.28Hz, 1H), 6.40 (d, J = 2.28Hz, 1H),6.28 (s, 1H), 4.19 (t, J = 5.96 Hz, 1H), 3.68 (s, 9H), 3.27–3.23 (m, 1H), 3.09–2.99 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ: 168.0, 156.49, 156.46, 143.1, 133.7, 127.3, 125.8, 124.7, 123.6, 123.4, 123.0, 119.1, 105.9, 98.2, 92.3, 82.9, 63.4, 60.8, 51.4, 48.6, 33.7, 25.6. HRMS Calcd for C₂₄H₂₂N₂O₄S (M+H⁺): 434.1300, found 434.1302

benzo[*b*]thiazolo[2,3-*f*][1,6]naphthyridine-3-carboxylate(67:33)(Mixture) (dr=68:32) (5h). The product was obtained as a yellow needles, mp: 161-163 °C; $[α]_D^{27} = -301.3$ (c 0.1, MeOH): 1 H NMR (400 MHz, CDCl₃) δ: 8.37 (s, 0.5H)(minor), 8.13 (s, 1H)(major), 8.05–8.00 (m, 1.7H)(major + minor), 7.77–7.72 (m, 1.7H) (major + minor), 7.67–7.60 (m, 1.7H) (major + minor), 7.50–7.44 (m, 1.8H) (major + minor), 6.26 (s, 1H) (major), 6.08 (s, 0.5H) (minor), 4.27–4.23 (m, 1H) (major), 4.04–4.02 (m, 0.5H) (minor), 3.81 (s, 3H) (major), 3.79 (s, 1.5H) (minor), 3.48–3.43 (m, 0.5H)(minor), 3.31–3.27 (m, 1H) (major), 3.15–3.10 (m, 0.6H) (minor), 3.08–3.05 (m, 1H) (major), 2.74–2.69 (m, 1.6H) (major + minor), 1.98–1.92 (m, 3H) (major + minor), 1.79–1.76 (m, 3H) (major + minor), 1.67–1.62 (m, 3H) (major + minor); 13 C NMR (100 MHz, CDCl₃) δ: 172.1, 171.5, 147.5, 146.9, 143.2, 143.1, 137.6, 133.8, 133.2, 133.2, 130.8, 130.1, 129.5, 128.8, 128.7, 127.6, 127.1, 126.9, 126.7, 102.7,

100.7, 79.1, 78.7, 68.6, 67.5, 65.7, 64.8, 52.7, 52.6, 38.7, 37.5, 32.0, 30.0, 29.9, 25.7, 25.0, 24.9. HRMS Calcd for C₂₂H₂₄N₂O₂S (M+H⁺): 380.1558, found 380.1559.

thiazolo[2,3-f][1,6]naphthyridine-3-carboxylate (5i). The product was obtained as a yellow needles (DCM/Ether), mp: 162-165 °C; $[\alpha]_D^{27.5} = -275.0$ (c 0.1, MeOH): 1 H NMR (400 MHz, CDCl₃) δ : 8.17 (s, 1H), 8.02 (d, J = 8.76 Hz, 1H), 7.75 (d, J = 8.04 Hz, 1H), 7.67–7.63 (m, 1H), 7.51–7.47 (m, 1H), 6.25 (s, 1H), 4.27 (t, J = 6.62 Hz, 1H), 3.84 (s, 3H), 3.33–3.30 (m, 1H), 3.10–3.06 (m, 1H), 1.60–1.58 (m, 1H), 1.04–0.96 (m, 4H); 13 C NMR (100 MHz, CDCl₃) δ : 172.0, 171.4, 147.5, 146.8, 142.9, 137.4, 134.0, 133.0, 132.9, 130.9, 130.2, 129.5, 128.6, 128.57, 127.6, 127.55, 127.1, 126.9, 126.6, 102.1, 100.2, 74.4, 74.0, 68.7, 67.4, 65.7, 64.8, 52.6, 52.57, 38.8, 37.6, 9.15, 9.1, 9.0, 8.8, 8.7, 0.4. HRMS Calcd for $C_{19}H_{18}N_2O_2S$ (M+H⁺): 338.1089, found 388.1089

benzo[*b*]thiazolo[2,3-*f*][1,6]naphthyridine-3-carboxylate (dr=67:33) (5j). The product was obtained as a yellow needles, mp: 161–163 °C; $[α]_D^{27}$ = -301.3 (c 0.1, MeOH): ¹H NMR (400 MHz, CDCl₃) δ: 8.29 (s, 0.5H)(minor), 8.08 (s, 1H)(major), 7.98–7.93 (m, 1.5H)(major + minor), 7.83–7.79 (d, J = 12.84, 0.3H) (minor), 7.69–7.63 (m, 1.9H) (major + minor), 7.59–7.53 (m, 1.9H) (major + minor), 7.51–7.45 (m, 0.5H) (minor), 7.41–7.35 (m, 1.5H) (major + minor), 7.26–7.21 (m, 0.5H) (minor) 6.18 (s, 1H) (major), 5.97 (s, 0.4H) (minor), 4.19–4.16 (m, 1H) (major), 3.98–3.95 (m, 0.6H) (minor), 3.72–3.70 (m, 4.6H) (major + minor), 3.41–3.31 (m, 1H) (major), 3.24–3.19 (m, 1H) (major), 3.08–2.96 (m, 2H) (major + minor), 2.47–2.42 (q, *J* = 14.2 Hz, 7.32 Hz 2.8H) (major + minor) 1.61–1.53(m, 2.42H) (major + minor),

1.45–1.34 (m, 2.5H) (major + minor), 0.87–0.84 (m, 4H) (major + minor); 13 C NMR (100 MHz, CDCl₃) δ : 171.9, 171.3, 147.3, 146.7, 142.8, 137.4, 134.0, 132.8, 132.4, 130.9, 130.1, 129.4, 128.4, 127.4, 127.0, 126.8, 126.5, 124.8, 102.6, 98.8, 97.0, 78.9, 68.6, 67.2, 65.6, 64.6, 52.8, 52.5, 52.4, 38.7, 37.4, 30.0, 21.8, 19.3, 13.7, 13.4, 0.8. HRMS Calcd for $C_{20}H_{22}N_2O_2S$ (M+H⁺): 354.1402, found 354.1401.

(3S,12bR)-Methyl-5-(4-nitrophenyl)-3,12b-dihydro-2H

benzo[*b*]thiazolo[2,3-*f*][1,6]naphthyridine-3-carboxylate (5k). The product was obtained as a yellow needles (DCM/Ether), mp: 178–180 °C; $[\alpha]_D^{27.5} = -345.0$ (c 0.1, MeOH): ¹H NMR (400 MHz, CDCl₃) δ: 8.16–8.11 (m, 4H), 7.84 (d, J = 8.04 Hz, 1H), 7.75–7.69 (m, 3H), 7.55 (t, J = 7.32 Hz, 1H), 6.91 (s, 1H), 6.38 (s, 1H), 4.83 (d, J = 5.88 Hz, 1H), 3.86 (s, 3H), 3.29–3.26 (m, 1H), 2.98–2.94 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ: 170.2, 154.0, 149.1, 147.0, 145.2, 143.3, 132.1, 130.6, 130.5, 130.3, 129.5, 128.8, 128.2, 127.2, 99.9, 70.3, 68.1, 53.1, 37.2, 35.9. HRMS Calcd for C₂₂H₁₇N₃O₄S (M+H⁺): 419.0940, found 419.0943.

(3S,12bR)-Methyl-10-methoxy-5-phenyl-3,12b-dihydro-2H-

benzo[*b*]thiazolo[2,3-*f*][1,6]naphthyridine-3-carboxylate (dr=67:33) (5l). The product was obtained as a yellow needles (DCM/Ether), mp: 179–181 °C; $[\alpha]_D^{27.5} = -355.0$ (c 0.1, MeOH): ¹H NMR (400 MHz, CDCl₃) δ : 8.25 (s, 0.5H)) (minor), 8.07 (s, 1H)) (major),, 7.92 (t, J = 9.16 Hz, 1.64H)) (major + minor), 7.66–7.64 (m, 2H))(major + minor), 7.60–7.58 (m, 1.2H) (major + minor), 7.33–7.29 (m, 5H) (major + minor),, 7.28–7.24 (m, 1H))(major + minor),, 6.99–6.96 (m, 1.5H))(major + minor),, 6.30 (s, 1H))(major),6.07(s, 0.4H) (minor), 4.22 (t, J = 7.08 Hz, 1H)) (major), 4.06–4.02 (m, 0.5H)) (minor), 3.84 (s, 1.5H)) (minor), 3.82 (m,

3H) (major), 3.75(s, 3H) (major), 3.72(s, 1.4H) (minor), 3.45–3.41 (m, 1H))(major + minor), 3.45–3.41 (m, 1H))(major + minor), 3.31–3.26 (m, 1H))(major + minor), 3.11–3.00 (m, 2H) (major + minor); ¹³C NMR (100 MHz, CDCl₃) δ: 169.2, 168.8, 155.73, 155.70, 141.2, 140.3, 137.0, 135.4, 131.0, 130.0, 129.4, 127.6, 127.4, 126.5, 125.5, 120.6, 120.0, 119.3, 102.4, 102.2, 93.0, 84.7, 65.8, 64.7, 63.0, 62.2, 58.9, 52.8, 49.9, 36.1, 35.1. HRMS Calcd for C₂₃H₂₀N₂O₃S (M+H⁺): 404.1195, found 404.1195.

(3S,12bR)-Methyl-10-methoxy-5-(m-tolyl)-3,12b-dihydro-

2*H***-benzo[***b***]thiazolo[2,3-***f***][1,6]naphthyridine-3-carboxylate (dr=62:38) (5m). The product was obtained as a yellow needles (DCM/Ether), mp: 173–175 °C; [\alpha]_D^{27.5} = -319.0 (c 0.1, MeOH): ¹H NMR (400 MHz, CDCl₃) \delta: 8.31 (s, 0.6H)(minor), 8.12 (s, 1H)(major), 7.97 (t,** *J***=9.16Hz 2H)(major + minor), 7.52–7.44 (m, 3.8H) (major + minor), 7.32–7.21 (m, 4.1H) (major + minor), 7.18–7.16 (m, 1.8H) (major + minor), 7.03–7.02 (m, 2H) (major + minor), 6.35 (s, 0.9H) (major), 6.13 (s, 0.6H) (minor), 4.27 (t,** *J***=6.62Hz 1H) (major), 4.09 (t,** *J***=5.8Hz 0.8H) (minor), 3.96–3.88 (m, 5.3H) (major + minor), 3.81–3.78 (m, 3.1H) (major + minor), 3.51–3.46 (m, 0.7H) (major), 3.36–3.32 (m, 1H) (major), 3.17–3.06 (m, 2.2H) (major + minor) 2.35–2.34(m, 5.4H) (major + minor); ¹³C NMR (100 MHz, CDCl₃) \delta:171.9, 171.5, 158.5, 158.3, 143.8, 43.1, 139.84, 139.82, 138.0, 137.97, 137.95, 133.7, 132.7, 132.5, 130.3, 130.2, 130.0, 129.9, 129.1, 128.2, 128.17, 128.1, 123.3, 122.5, 121.9, 121,8, 105.1, 104.9, 95.9, 94.1, 87.1, 86.6, 68.5, 67.4, 65.6, 64.9, 55.5, 55.4, 52.6, 52.5, 38.7, 37.8, 21.1. HRMS Calcd for C_{24}H_{22}N_2O_3S (M+H+): 418.1351, found 418.1350.**

(3S,12bR)-Methyl-5-cyclopropyl-10-methoxy-3,12b-

dihydro-2*H*-benzo[*b*]thiazolo[2,3-*f*][1,6]naphthyridine-3-carboxylate (dr=68:32) (5n). The product was obtained as a yellow needles, mp: 161-163 °C; $[\alpha]_D^{27} = -275.3$ (c 0.1, MeOH): 1 H NMR (400 MHz, CDCl₃) δ: 8.15 (s, 0.5H)(minor), 7.97 (s, 1H)(major), 7.82 (t, *J*=9.52Hz 1.8H)(major + minor), 7.24–7.18 (m, 1.8H) (major + minor), 6.90 (s, 2H) (major + minor), 6.13 (s, 1H) (major) 5.91 (s, 0.5H) (minor), 4.17 (t, *J*=6.6Hz 1H) (major), 3.99 (t, *J*=6.2Hz 0.4H) (minor), 3.78–3.73 (m, 9H) (major + minor), 3.22–3.21(m, 1H), 3.07–2.95 (m, 2H) (major + minor), 1.16–1.08 (m, 1.5H) (major + minor), 0.94–0.78 (m, 6.2H) (major + minor); 13 C NMR (100 MHz, CDCl₃) δ: 171.8, 171.4, 158.1, 157.9, 143.6, 142.8, 140.1, 140.0, 137.6, 133.2, 132.6, 130.0, 129.9, 129.6, 127.6, 122.9, 122.1, 105.0, 104.7, 100.9, 99.1, 74.2, 73.8, 68.6, 67.3, 65.6, 64.7, 55.3, 55.28, 53.3, 52.5, 52.4, 38.7, 37.5, 15.0, 8.8, 8.7, 8.6, 8.4, 0.3. HRMS Calcd for C₂₀H₂₀N₂O₃S (M+H⁺): 368.1195, found 368.1196.

benzo[*b*]thiazolo[2,3-*f*][1,6]naphthyridine-3-carboxylate (5o). The product was obtained as a yellow needles (DCM/Ether), mp: 177–179 °C; $[\alpha]_D^{29} = -357.0$ (c 0.1, MeOH): ¹H NMR (400 MHz, CDCl₃) δ: 8.74 (s, 1H), 8.17 (d, J = 8.72 Hz, 1H), 7.84 (s, 1H), 7.77 (dd, J = 6.8 and 1.84 Hz, 1H), 7.24–7.22 (m, 3H), 7.14–7.12 (m, 2H),6.61 (s, 1H), 5.96 (s, 1H), 5.72–5.70 (m, 1H), 3.83 (s, 3H), 3.75–3.70 (m, 1H), 3.47–3.41 (m, 1H), 2.66 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 193.6, 162.8, 161.0, 137.3, 135.7, 135.4, 134.2, 134.0, 129.4, 128.7, 128.4, 128.2, 127.9, 127.0, 126.8, 69.8, 52.6, 37.8, 29.6, 21.5. HRMS Calcd for C₂₃H₂₀N₂O₂S (M+H⁺): 388.1245, found 388.1244.

(3S,10bR)-Methyl-5-(4-(tert-butyl)phenyl)-3,10b-dihydro-2H-

thiazolo[2,3-*a*]isoquinoline-3-carboxylate (dr=55:45) (6). The product was obtained as a yellow needles, mp: 161–163 °C; $[\alpha]_D^{27} = -299.3$ (c 0.1, MeOH): ¹H NMR (400 MHz, CDCl₃) δ: 7.54–7.39 (m, 1.1H)(major + minor), 7.31–7.27 (m, 0.7H) (major + minor), 7.24–7.13 (m, 0.5H) (major + minor), 6.18 (s, 0.12H) (major), 5.96–5.92 (m, 0.2H) (major + minor), 4.20–4.17 (m, 0.18H) (major), 3.94–3.85 (m, 0.16H) (minor), 3.72–3.69 (m, 1H) (major), 3.42–3.35 (m, 0.4H) (major + minor), 3.28–3.24 (m, 0.24H)(minor), 3.07–2.99 (m, 0.52H) (major + minor), 1.24 (s, 2.1H) (major + minor), 1.17–1.09 (m, 0.7H) (major + minor); ¹³C NMR (100 MHz, CDCl₃) δ: 171.1, 171.0, 170.6, 170.5, 150.8, 150.7, 143,4, 140.4, 140.6, 138.6, 136.6, 132.1, 132.0 131.4, 130.3, 130.2, 129.0, 127.9, 127.6, 127.4, 127.3, 127.2, 127.0, 126.5, 126.2, 125.9, 124.4, 124.3, 123.7, 123.0, 122.2, 121.7, 120.8, 119.1, 119.0, 96.1, 94.5, 85.6, 85.1, 69.1, 69.2, 68.5, 67.7, 64.9, 64.8, 64.5, 64.4, 64.1, 64.0,39.2, 38.2, 37.9, 36.9, 36.4, 33.8, 30.9, 30.2, 28.7, 27.3, 14.2 . HRMS Calcd for C₂₃H₂₅NO₂S (M+H⁺): 379.1606, found 379.1606.

^tBu **3-(4-(***tert***-Butyl)phenyl)isoquinoline** (**7**).² This compound was obtained as a off white solid; ¹H NMR (300 MHz, CDCl₃) δ: 9.25 (s, 1H), 8.00–7.97 (m, 3H), 7.90 (d, J = 8.10 Hz, 1H), 7.79 (d, J = 8.4 Hz, 1H), 7.60 (t, J = 7.2 Hz, 1H), 7.52–7.45 (m, 3H), 1.31 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ: 151.3, 150.6, 150.3, 135.8, 135.7, 129.4, 126.6, 126.5, 125.8 (2C), 125.6, 124.7, 115.0, 33.6, 30.3. HRMS Calcd for C₁₉H₁₉N (M+H⁺): 261.1517, found: 261.1519.

(3S,11bR)-Methyl-5-phenyl-3,11b-dihydro-2H-benzo[4,5]thieno

[2,3-c]thiazolo[3,2-a]pyridine-3-carboxylate (66:34) (8a). The product was obtained as a yellow needles, mp: 161-163 °C; $[\alpha]_D^{31} = -301.3$ (c 0.1, MeOH): ¹H NMR (400 MHz, CDCl₃) δ : 7.89–7.84 (m, 1.8H)(major + minor), 7.71–7.66 (m, 1.8H) (major + minor), 7.56–7.53 (m, 4.0H) (major + minor), 7.36–7.24 (m, 9.2H) (major + minor), 6.32 (s, 1H) (major), 6.12 (s, 0.6H) (minor), 4.29 (t, J=6.64Hz, 1H) (major), 3.97 (t, J=3.64Hz, 0.5H) (minor), 3.71–3.70 (m 5.04H) (major + minor), 3.43–3.39 (m, 1.1H) (major + minor), 3.16–3.06 (m, 2.03H) (major + minor); ¹³C NMR (100 MHz, CDCl₃) δ : 171.7, 170.8, 152.7, 146.0, 139.9, 139.4, 137.5, 137.2, 131.5, 131.4, 128.5, 128.4, 128.2, 125.5, 124.9, 124.6, 123.1, 122.9, 122.7, 122.4, 122.3, 117.1, 114.6, 97.2, 96.8, 81.8, 81.2, 66.0, 65.6, 64.5, 64.3, 52.54, 52.50, 39.0, 37.5 . HRMS Calcd for C₂₁H₁₇NO₂S₂ (M+H⁺): 379.0701, found 379.0703.

thieno[2,3-c]thiazolo[3,2-a]pyridine-3-carboxylate (dr=59:41) (8b). The product was obtained as a yellow needles, mp: 162-164 °C; $[\alpha]_D^{31} = -312.3$ (c 0.1, MeOH): 1 H NMR (400 MHz, CDCl₃) δ : 8.03–7.98 (m, 1.9H)(major + minor), 7.84–7.79 (m, 1.9H) (major + minor), 7.60–7.57 (m, 3.9H) (major + minor), 7.49–7.38 (m, 3.8H) (major + minor), 7.23 (d, J = 7.32 Hz, 4H) (major + minor), 6.46 (s, 1H) (major), 6.26 (s, 0.7H) (minor), 4.42 (t, J = 6.6Hz, 1H) (major), 4.09 (t, J = 8.04Hz 0.7H) (minor), 3.82 (s, 5.8H) (major + minor), 3.54–3.52 (m, 1.44H) (major + minor), 3.27–3.19 (m, 1.8H) (major + minor), 2.41 (s, 5.4H) (major + minor); 13C NMR (100 MHz, CDCl₃) δ : 171.6, 170.8, 152.2, 145.6, 139.8, 138.5, 138.4,

137.4, 137.1, 131.3, 131.2, 128.9, 125.4, 124.7, 122.9, 122.5, 122.3, 122.1, 119.7, 119.5, 117.1, 114.7, 97.3, 97.0, 81.1, 80.5, 65.9, 65.5, 64.4, 64.2, 52.3, 38.8, 37.4, 21.2, 20.7.. HRMS Calcd for C22H19NO2S2 (M+H+): 393.0857, found 393.0855.

benzo[4,5]thieno[2,3-c]thiazolo[3,2-a]pyridine-3-carboxylate (dr=60:40) (8c). The product was obtained as a yellow needles, mp: 167–169 °C; [α]_D²⁷ = -311.3 (c 0.1, MeOH): ¹H NMR (400 MHz, CDCl₃) δ: 7.96–7.90 (m, 1H)(major + minor), 7.81–7.74 (m, 1.1H) (major + minor), 7.57–7.53 (m, 1.9H) (major + minor), 7.46–7.26 (m, 2.2H) (major + minor), 6.93–6.90 (m, 2H) (major + minor), 6.40 (s, 0.5H) (major), 6.19 (s, 0.34H) (minor), 4.41–4.37 (m, 0.5H) (major + minor), 4.08–4.03 (m, 0.56H) (major + minor) 3.84–3.81 (m, 5.95H) (major + minor), 3.53–3.44 (m, 1.2H) (major + minor), 3.24–3.14 (m, 1.1H) (major + minor); ¹³C NMR (100 MHz, CDCl₃) δ: 171.9, 171.0, 159.9, 159.8, 151.9, 145.3, 140.0, 139.6, 137.7, 137.4, 133.2, 133.1, 125.6, 125.0, 124.95, 124.7, 123.3, 122.9, 122.6, 122.4, 117.7, 115.2, 115.0, 114.1, 97.4, 97.0, 85.6, 80.1, 66.3, 65.9, 64.7, 64.6, 55.3, 52.7, 52.6, 39.2, 37.7 . HRMS Calcd for C₂₂H₁₉NO₃S₂ (M+H⁺): 409.0806, found 409.0806.

thieno[2,3-c]thiazolo[3,2-a]pyridine-3-carboxylate (dr=75:25) (8d). The product was obtained as a yellow needles, mp: 161-163 °C; $[\alpha]_D^{27} = -290.3$ (c 0.1, MeOH): ¹H NMR (400 MHz, CDCl₃) δ : 7.95–7.89 (m, 1.9H)(major + minor), 7.78–7.74 (m, 2H) (major + minor),

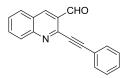
7.43–7.40 (m, 4H) (major + minor), 7.34–7.31 (m, 1H) (major + minor), 7.27–7.24 (m, 1H) (major + minor), 7.16 (d, J=5.84Hz, 1H) (major + minor), 6.38 (s, 1H) (major), 6.17 (s, 0.35H) (minor), 4.38–4.36 (m, 1H) (major + minor), 4.06–4.02 (m, 0.4H) (major + minor), 3.80–3.79 (m, 4.2H) (major + minor), 3.50–3.47 (m, 1.4H) (major + minor), 3.23–3.14 (m, 1.4H) (major + minor); ¹³C NMR (100 MHz, CDCl₃) δ: 171.9, 171.1, 152.5, 145.9, 140.0, 139.6, 139.2, 138.1, 137.7, 137.4, 132.5, 132.2, 132.1, 130.5, 129.5, 129.4, 129.0, 128.8, 128.7, 128.5, 128.3, 125.6, 125.5, 125.0, 124.8, 123.3, 122.9, 122.8, 122.6, 122.4, 117.3, 114.8, 114.0, 97.5, 97.1, 81.5, 81.0, 66.2, 65.8, 64.6, 64.5, 52.7, 52.6, 39.2, 37.7 . HRMS Calcd for C₁₉H₁₅NO₂S₃ (M+H⁺): 385.0265, found 385.0266.

(3S,11bR)-Methyl-5-(4-(trifluoromethyl)phenyl)-3,11b-dihydro-

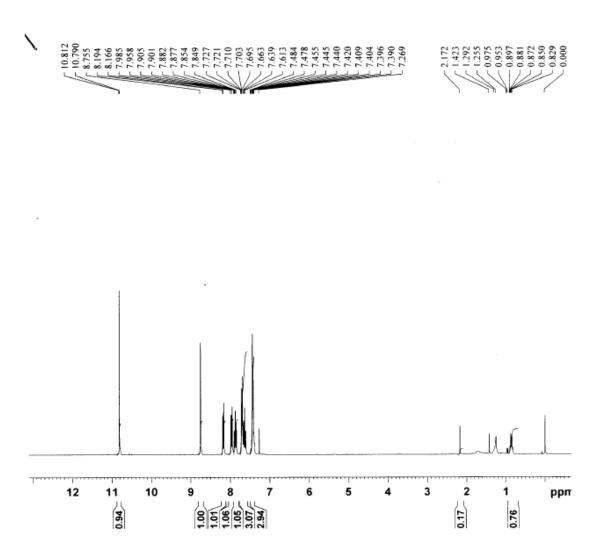
2*H*-benzo[4,5]thieno[2,3-*c*]thiazolo[3,2-*a*]pyridine-3-carboxylate (dr=50:50) (8e). The product was obtained as a yellow needles, mp: 161–163 °C; [α]_D²⁷ = -301.3 (c 0.1, MeOH): ¹H NMR (400 MHz, CDCl₃) δ: 7.86–7.81 (m, 1.9H)(major + minor), 7.71–7.66 (m, 1.9H) (major + minor), 7.63–7.61 (m, 3H) (major + minor), 7.55–7.53 (m, 3H) (major + minor), 7.38–7.24 (m, 4H) (major + minor), 6.31 (s, 1H) (major), 6.11(s, 0.5H) (minor), 4.29 (t, J=5.92Hz, 1H) (major + minor), 3.99 (t, J=7.8Hz, 0.5H) (minor), 3.72 (m, 4.5H) (major + minor), 3.42–3.41 (m, 1.2H) (major + minor), 3.17–3.07 (m, 1.9H) (major + minor); 13 C NMR (100 MHz, CDCl₃) δ: 171.8, 170.9, 154.2, 147.4, 139.7, 139.2, 137.5, 137.2, 131.7, 131.6, 126.8, 126.4, 125.6, 125.2, 125.1, 125.0, 124.8, 122.9, 122.52, 122.50, 122.3, 116.3, 113.9, 95.8, 95.3, 84.3, 83.7, 66.0, 65.7, 64.5, 64.2, 52.5, 39.0, 37.5. HRMS Calcd for $C_{22}H_{16}F_3NO_2S_2$ (M+H⁺): 447.0575, found 447.0574

NOESY Experiment

NOESY Experiment of 5a:

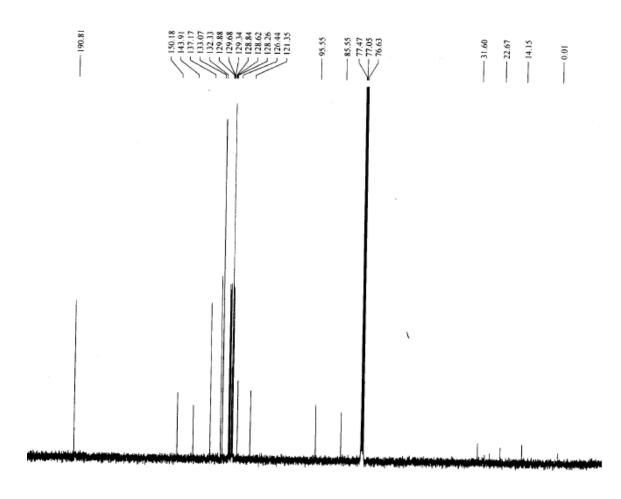

Results: The relative configuration of the new stereogenic center at H^b in product **5a** was determined by NOESY experiments. H NMR spectra of **5a** show that H^b appears at 6.39 as a singlet and H^a at 4.29–4.27 as multiplet. No distinct NOE effect was observed between H^b and H^a in compound **5a**. This suggested that H^b and H^a are located in *trans*-orientation.

References:

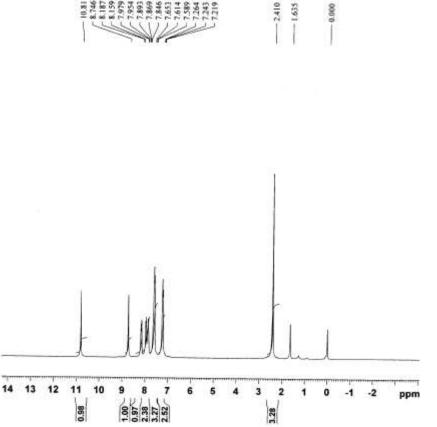

- 1. (a) A. K. Verma; S. K. R. Kotla; D. Choudhary; M. Patel; R. K. Tiwari, *J. Org. Chem.* 2013, **78**, 4386; (b) A. K. Verma; V. Rustagi; T. Aggarwal; A. P. Singh, *J. Org. Chem.* 2010, **75**, 7691; (c) M. Zahid; V. O. Iaroshenko; A. S. Saghyan; C. Fischer; P. Langer *Tetrahedron* 2013, **69**, 3451; (d) A. Chandra; B. Singh; S. Upadhyay; R. M. Singh, *Tetrahedron* 2008, **64**, 11680; (e) V. Rustagi; T. Aggarwal; A. K. Verma, *Green Chem.* 2011, **13**, 1640; (f) V. Rustagi; R. K. Tiwari; A. K. Verma, *Eur. J. Org. Chem.* 2012, **24**, 4590.
- 2. D. Yang, S. Burugupalli, D. Daniel, Y. Chen J. Org. Chem. 2012, 77, 4466

Copies of ¹H NMR, ¹³C NMR

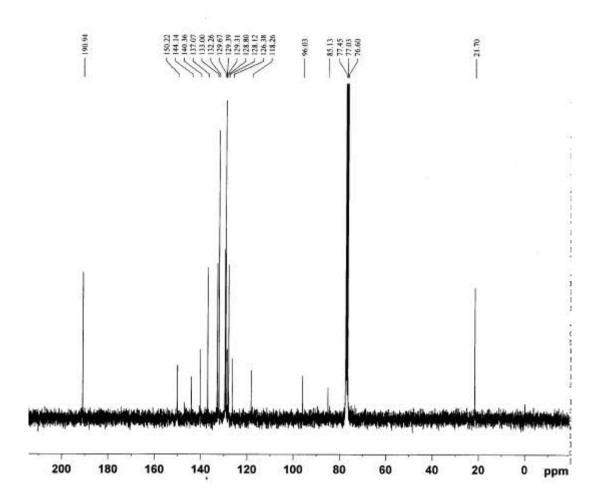
¹H NMR



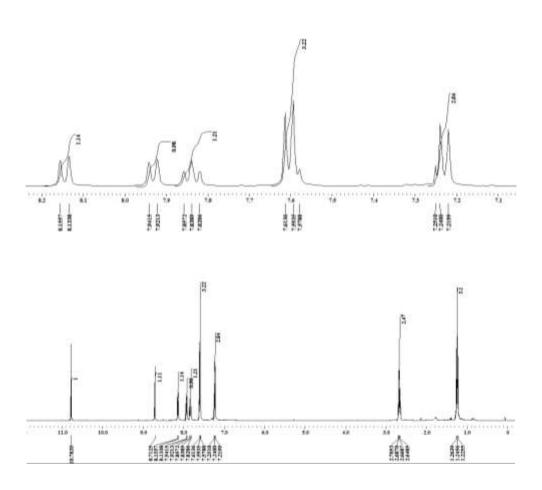
1a


¹³C NMR

1a

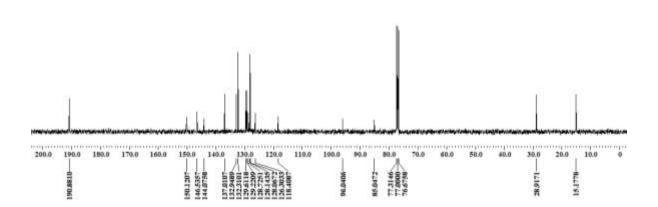

¹H NMR

1b

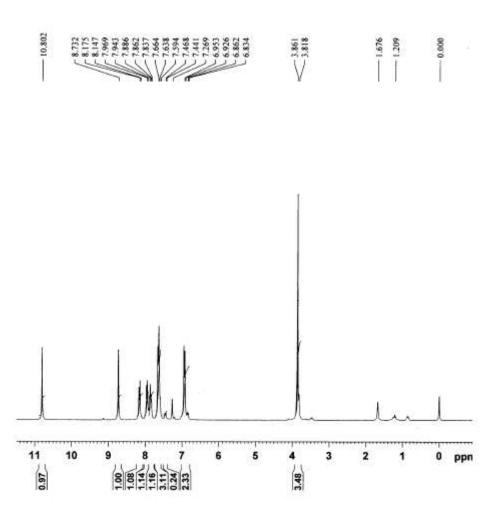


¹³C NMR

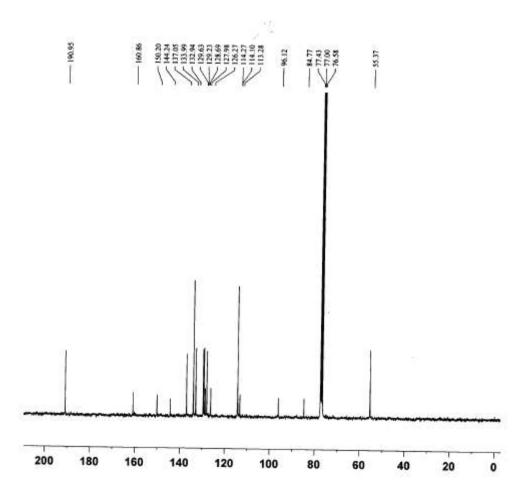
1b



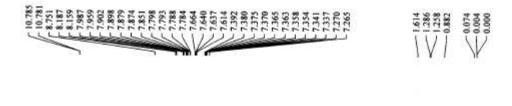
¹H NMR

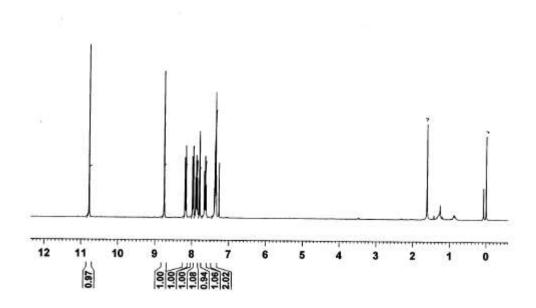

¹³C NMR

1c


¹H NMR

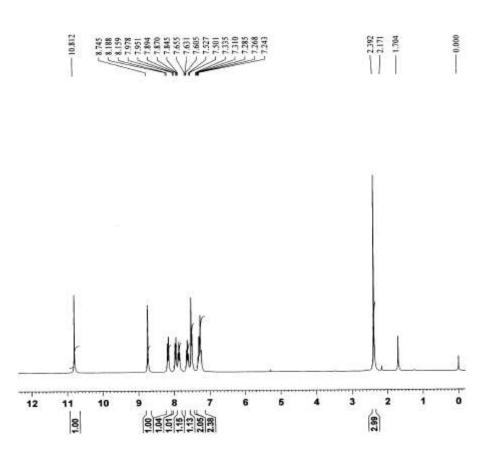
1d


¹³C NMR

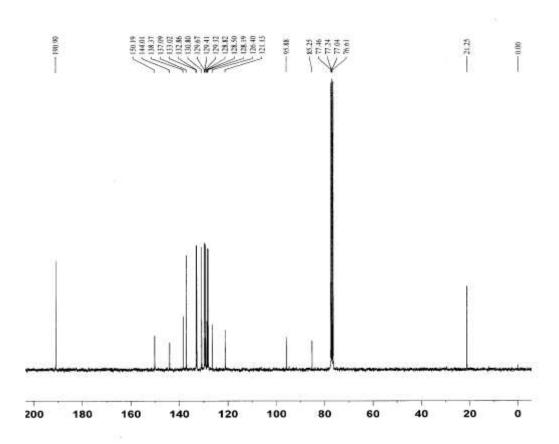

1d

¹H NMR

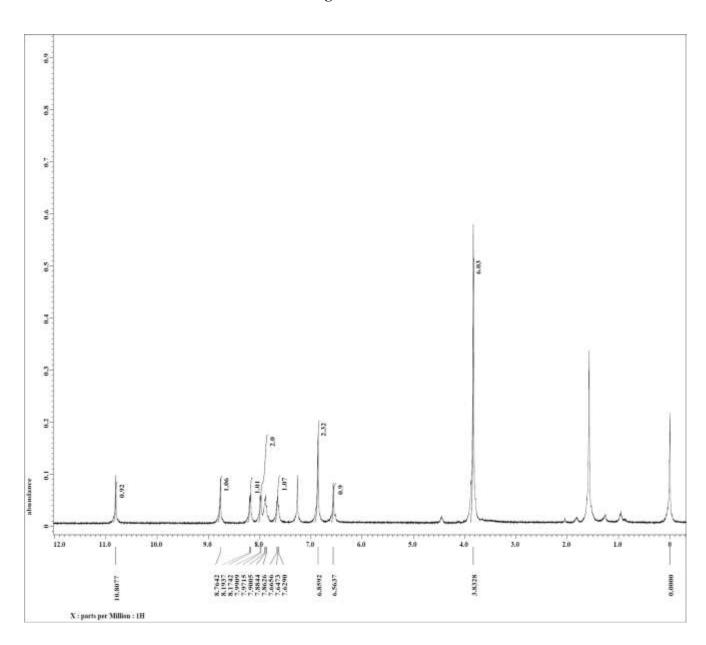

1e


¹³C NMR

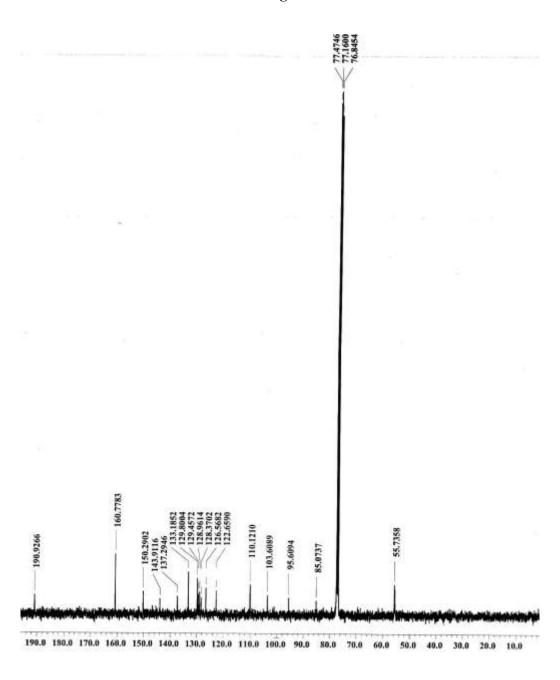
1e


¹H NMR

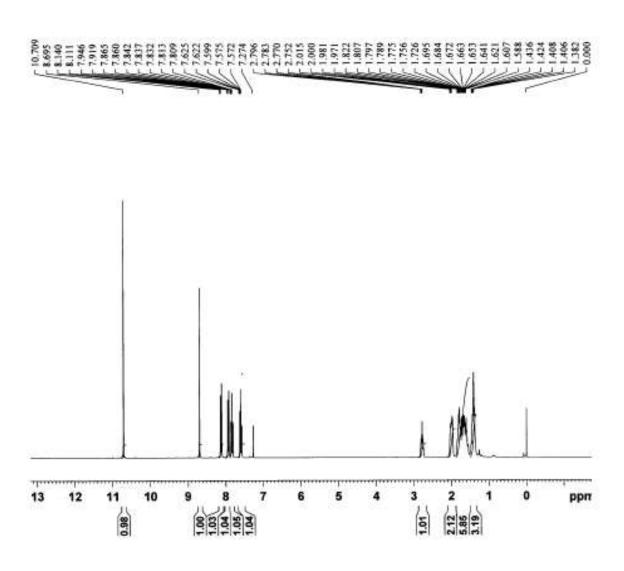
1f


¹³C NMR

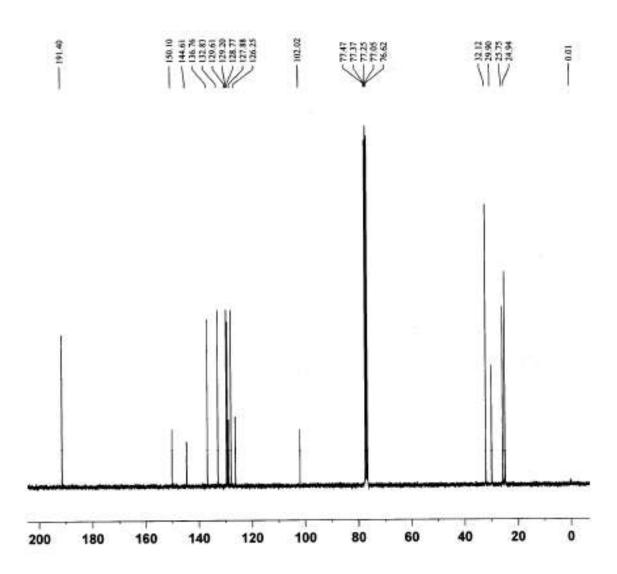
1f

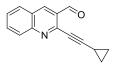


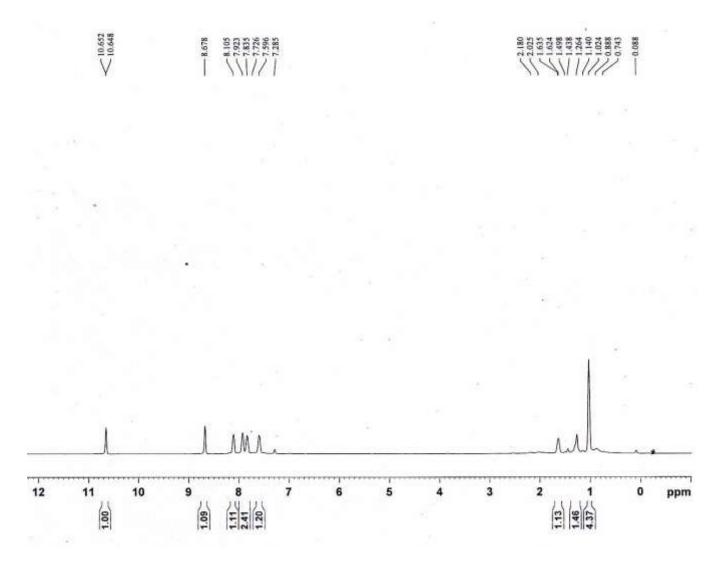
¹H NMR


1g

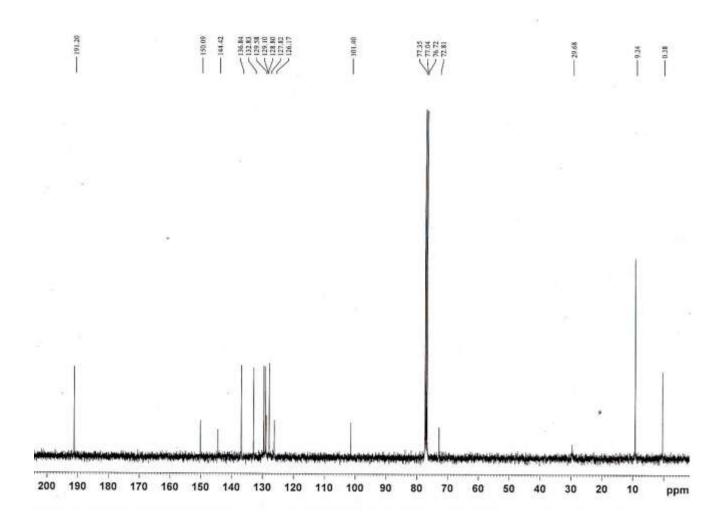
1g

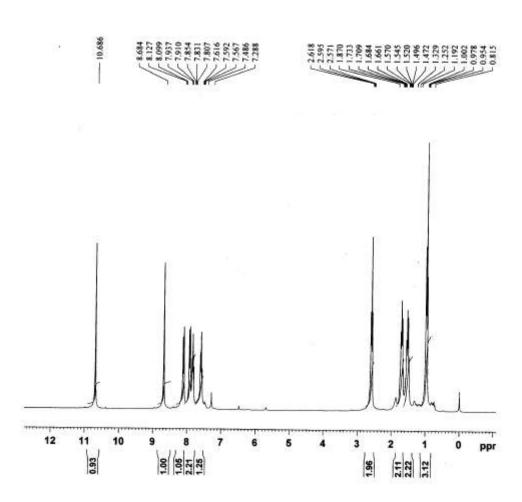


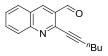

1h


¹³C NMR

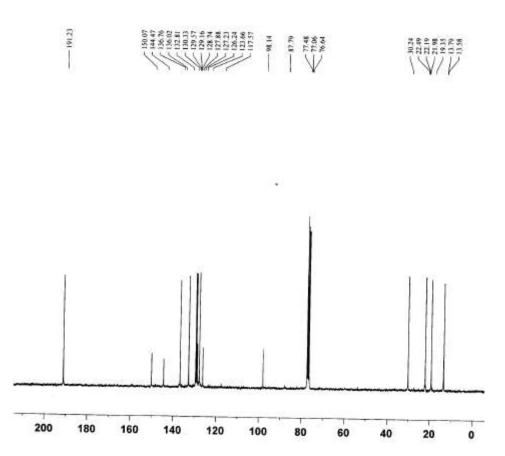
1h



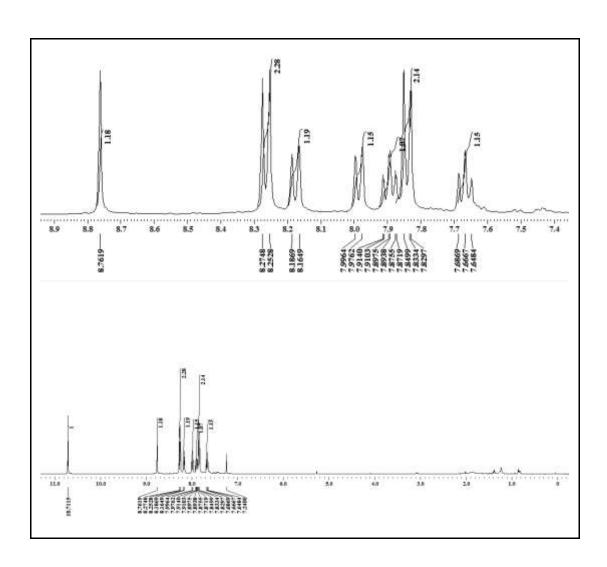

1i

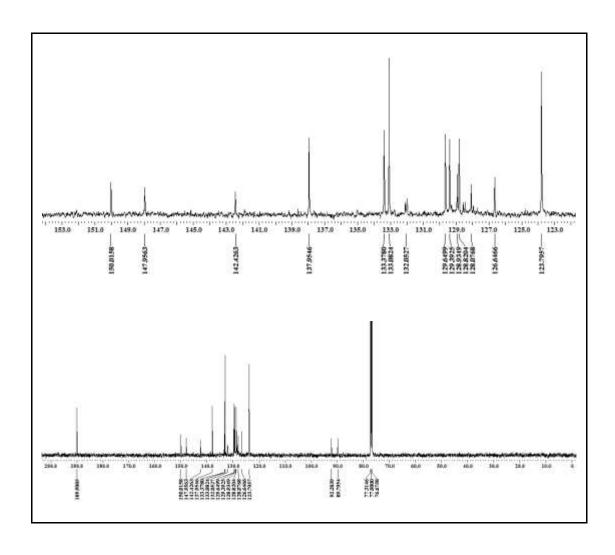


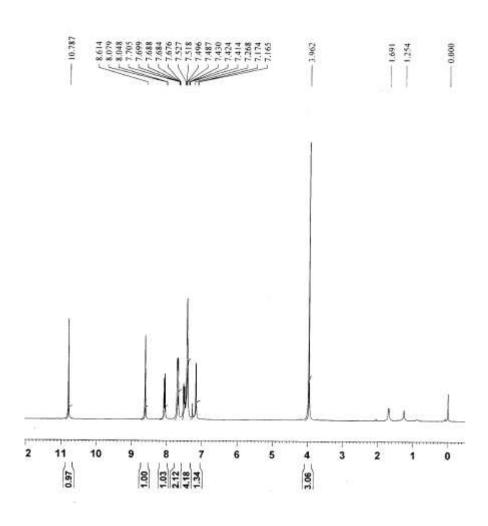
1i

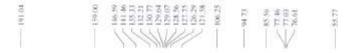


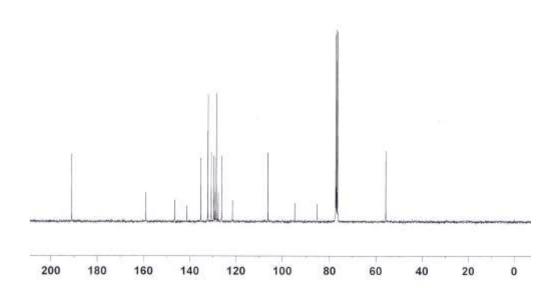
1j



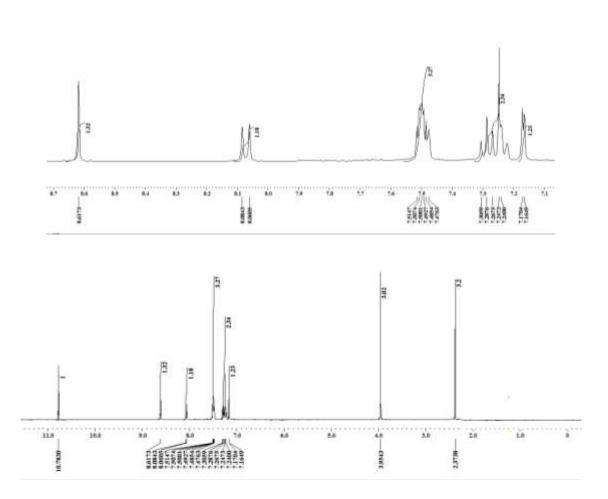

1j

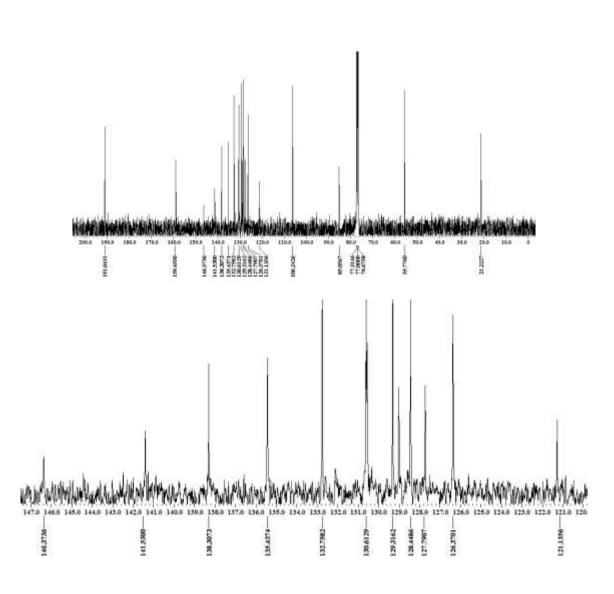


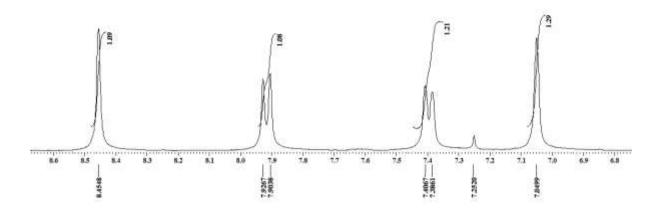

1k

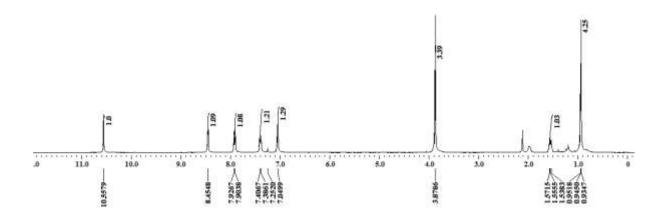


1k

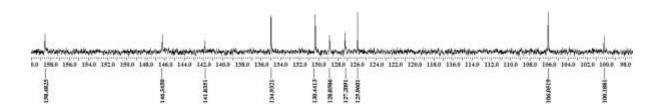


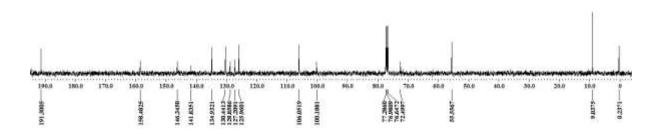


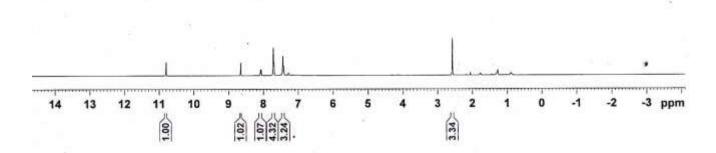

1m

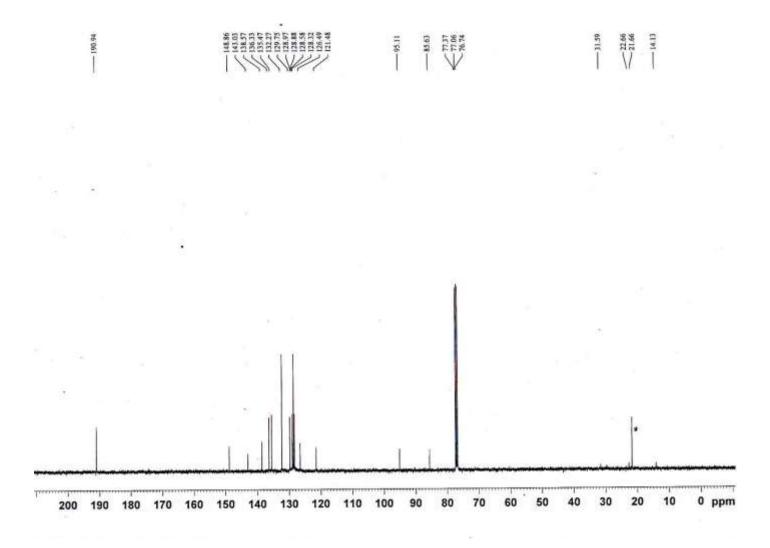


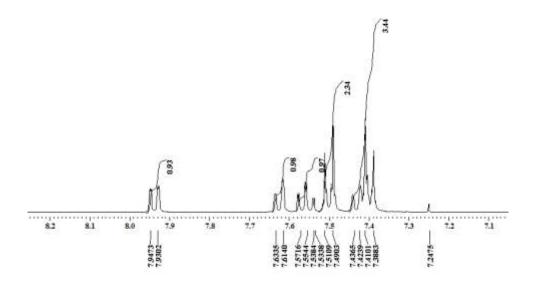
1m

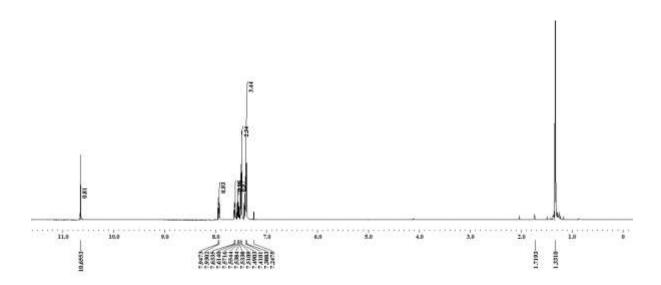


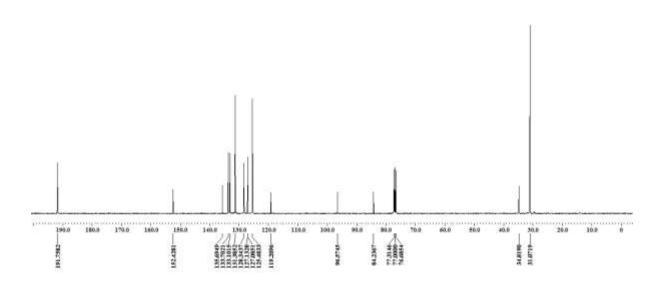

1n

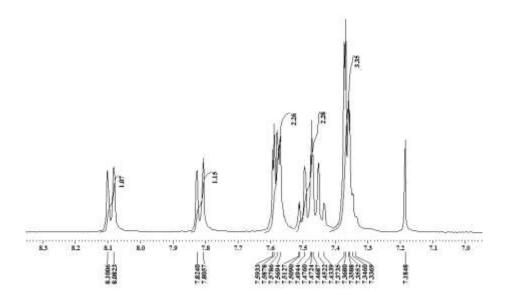


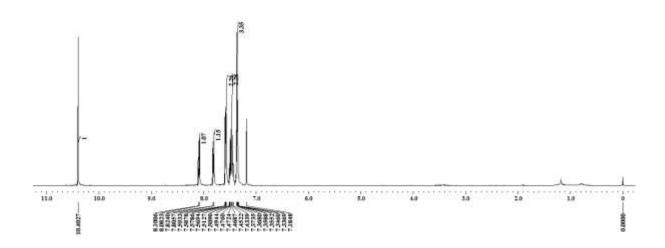

1n

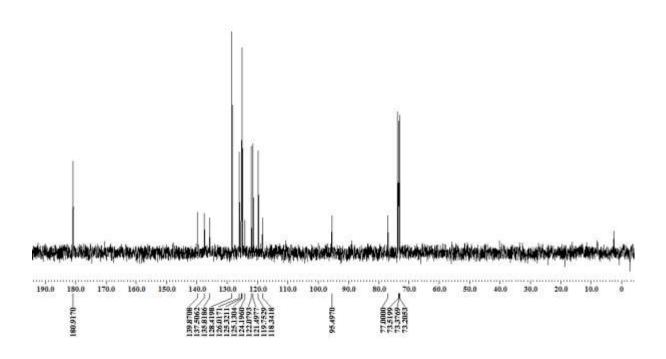


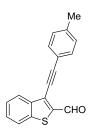


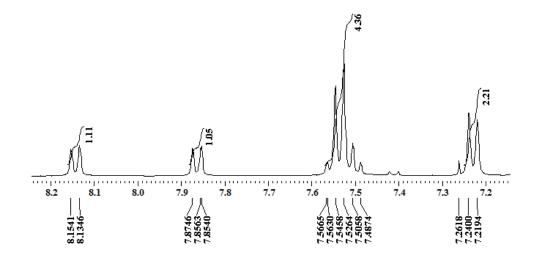


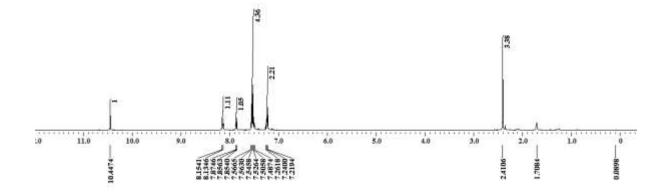


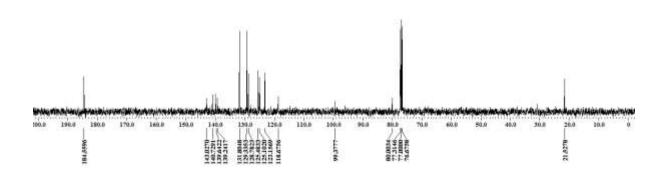


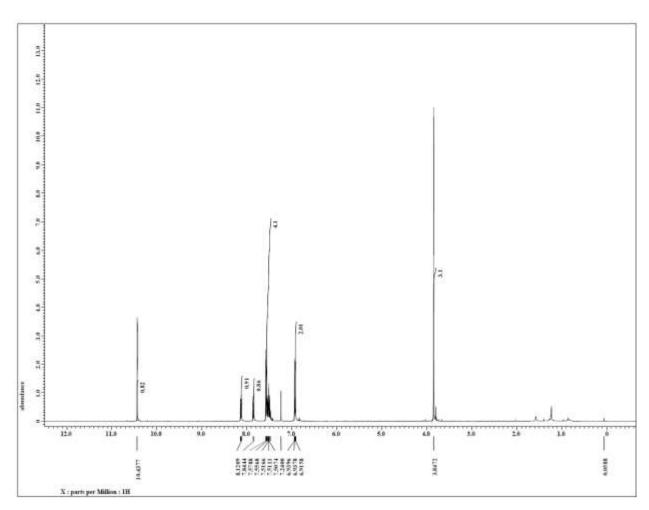



3a

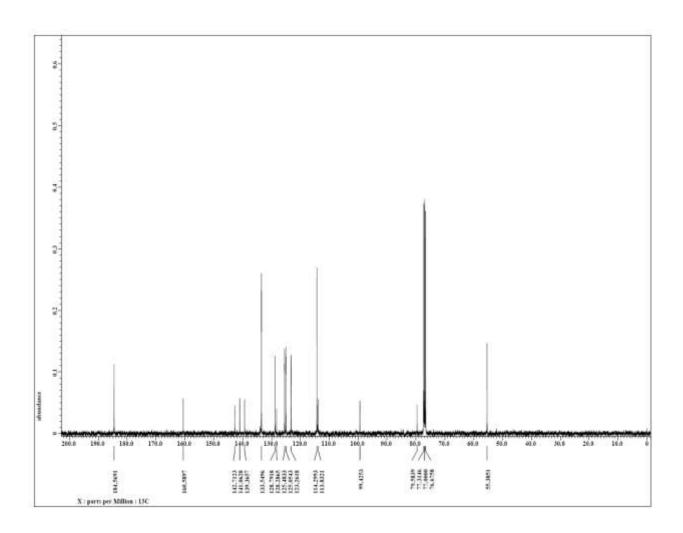


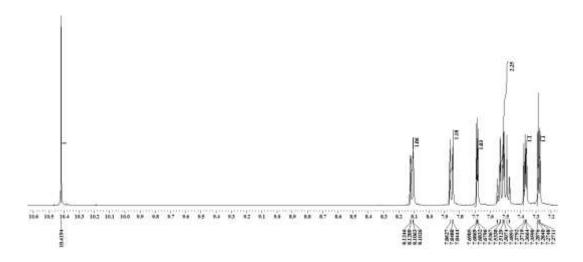

3a

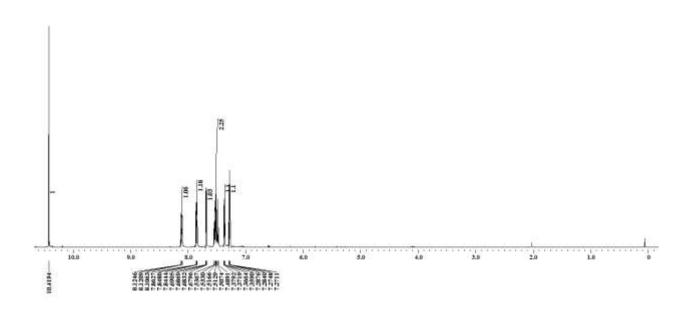

3b



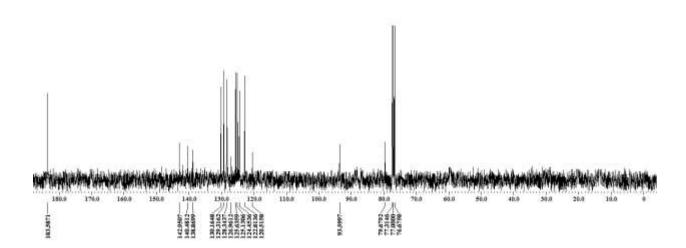
3b



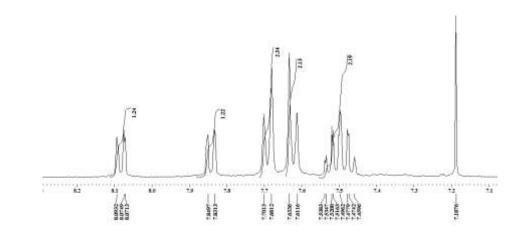

3c

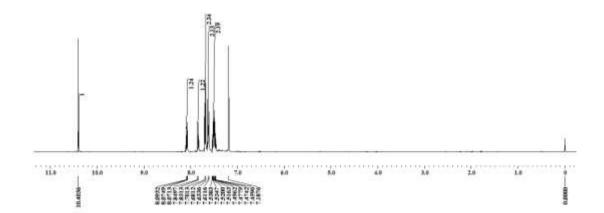


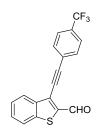
3c

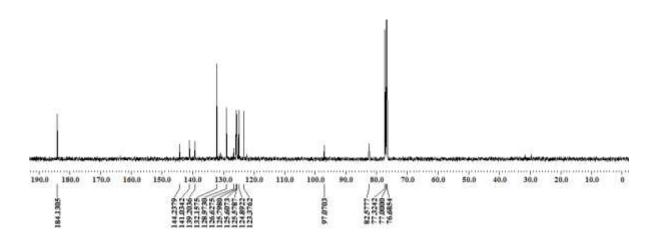


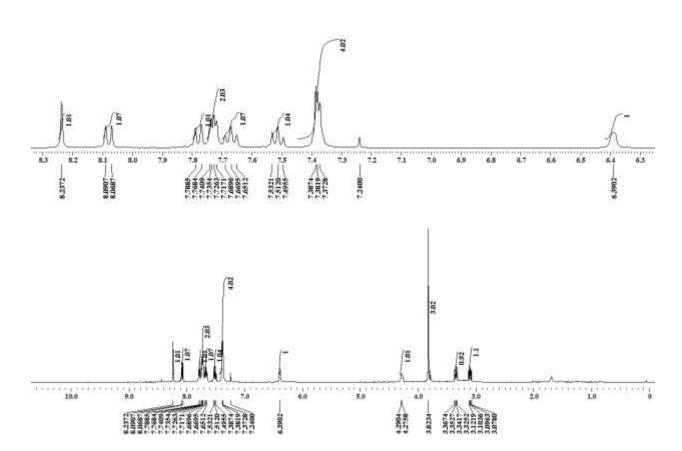
3d



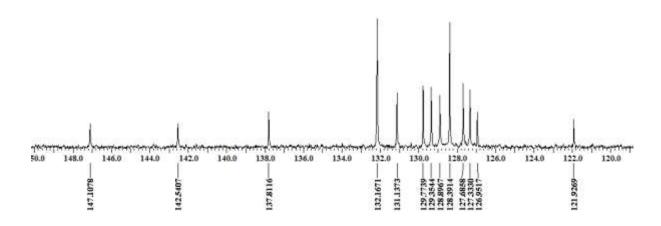


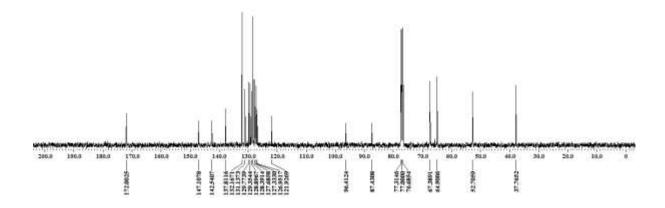

3d

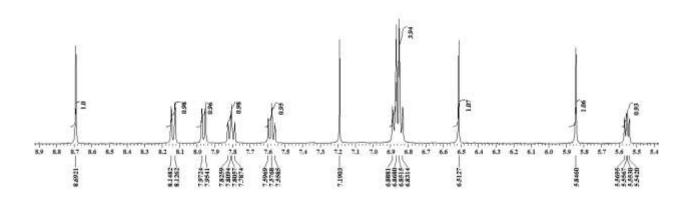

3e

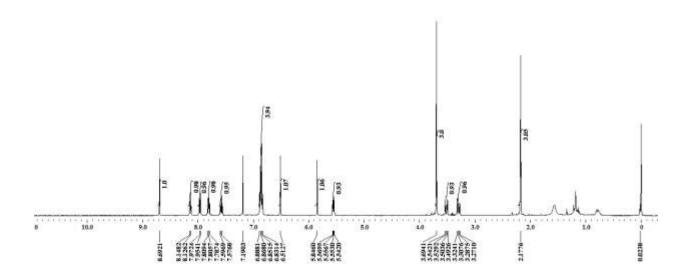


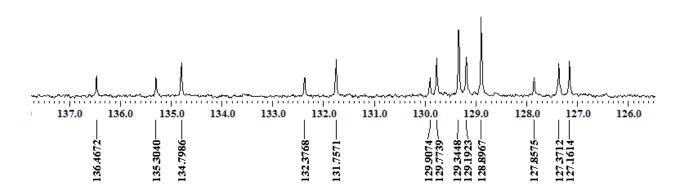
3e

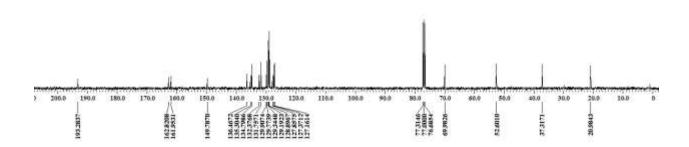


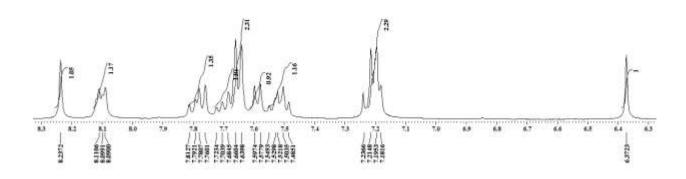

5a

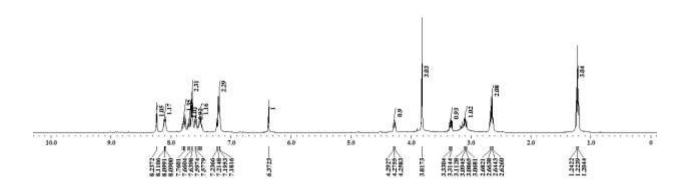

¹³C NMR

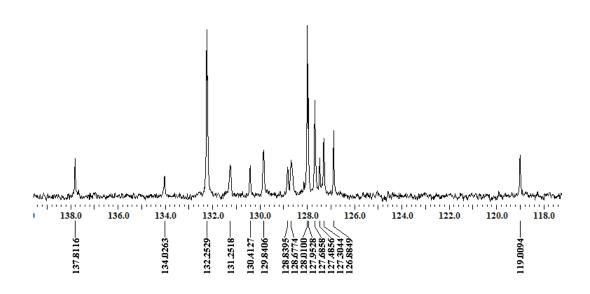

5a

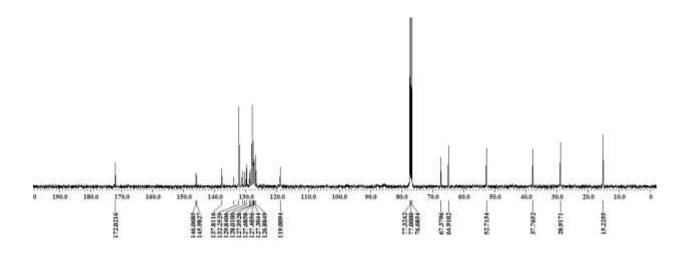


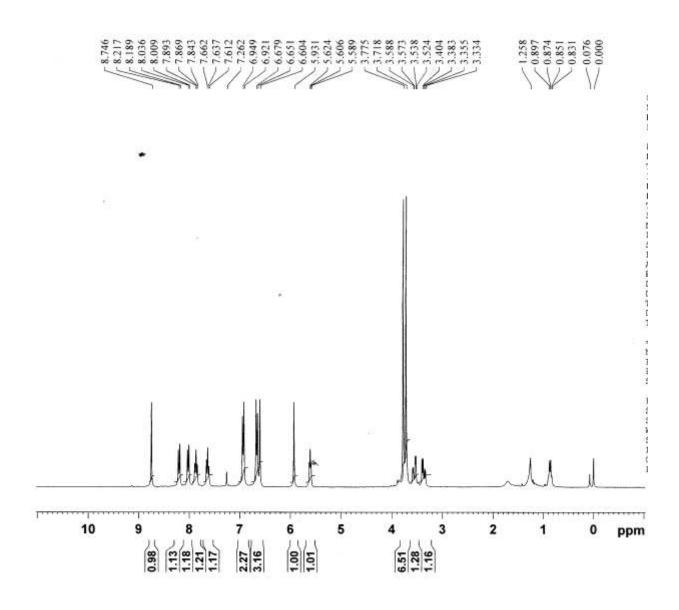

5b



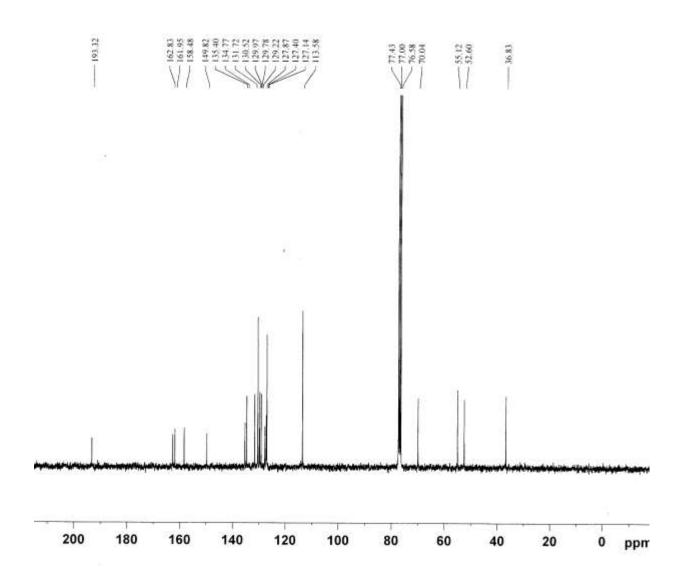

5b



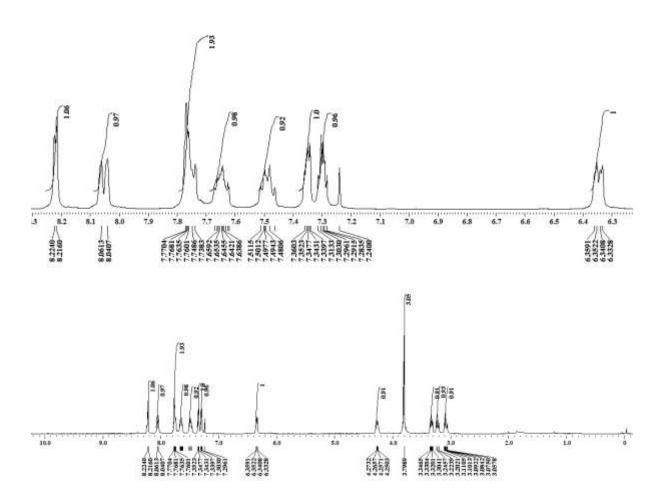

5c



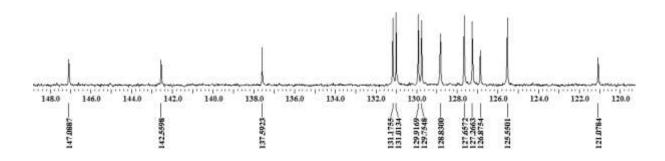
5c

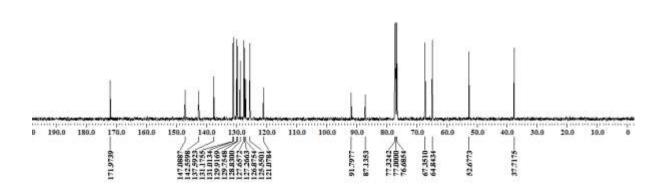


5d

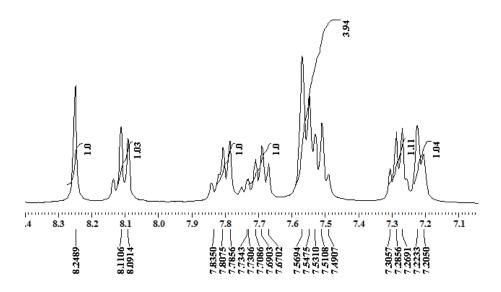


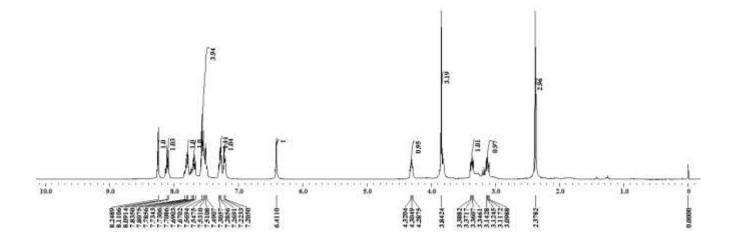
¹³C NMR

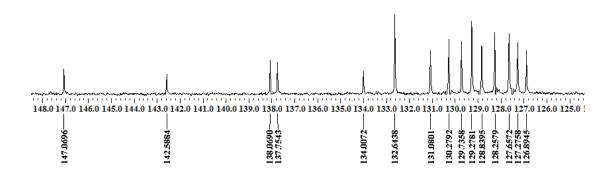

5d

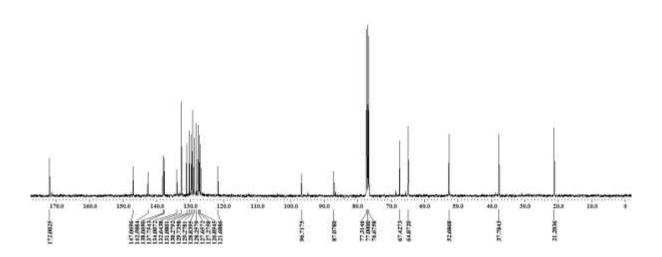


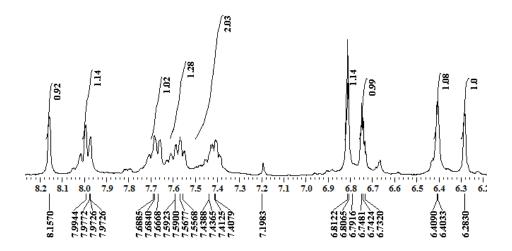
5e

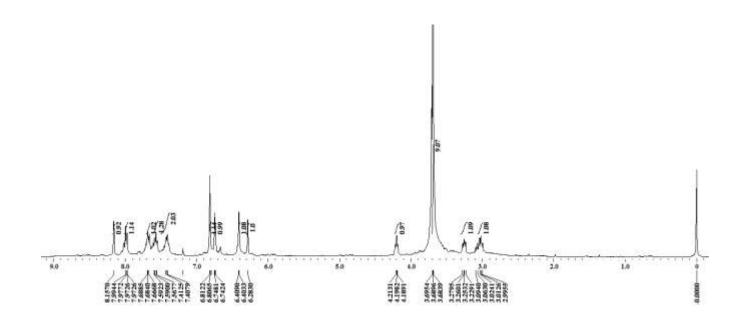


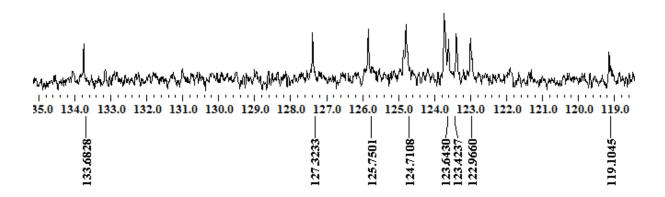

5e

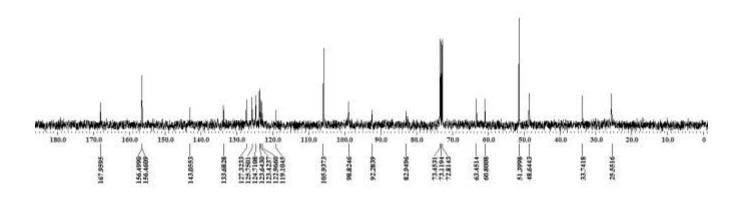


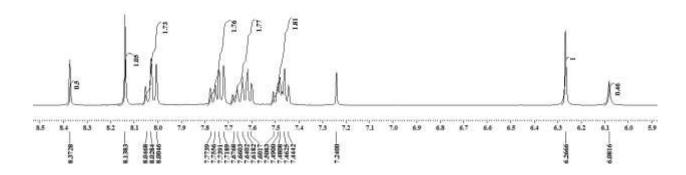

5f

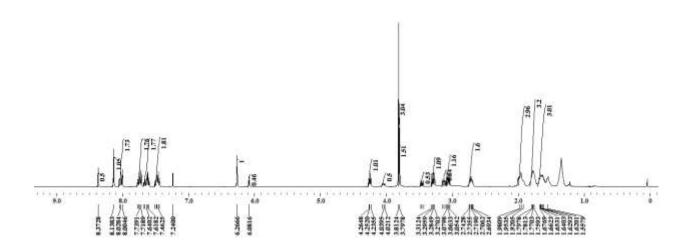


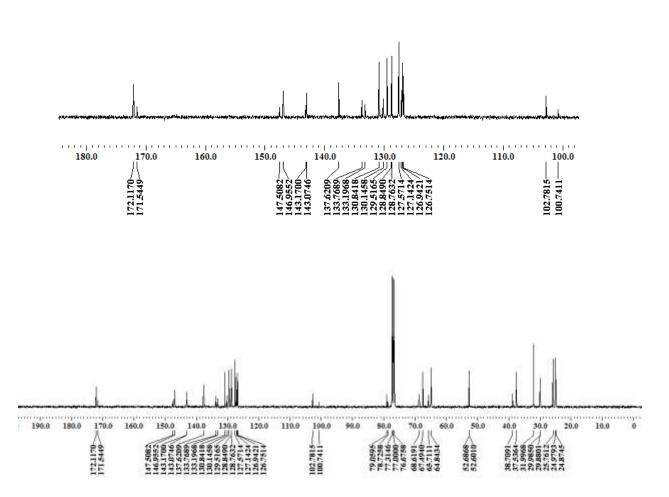

5f

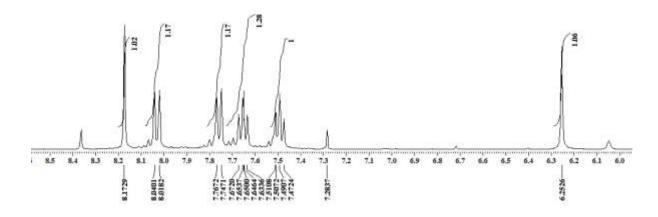


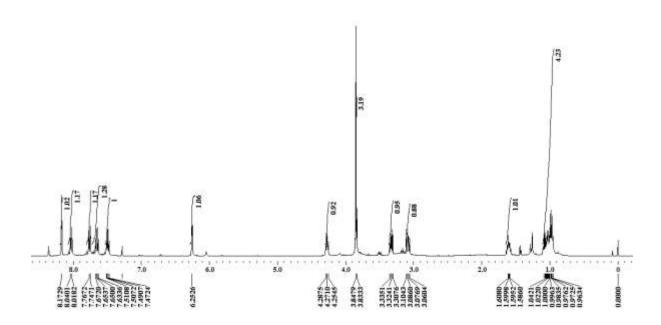

5g



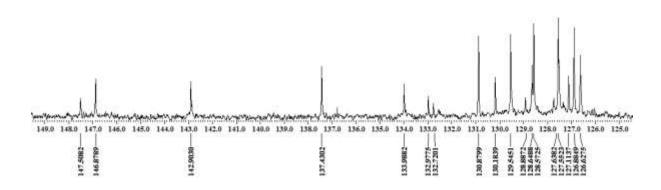

5g

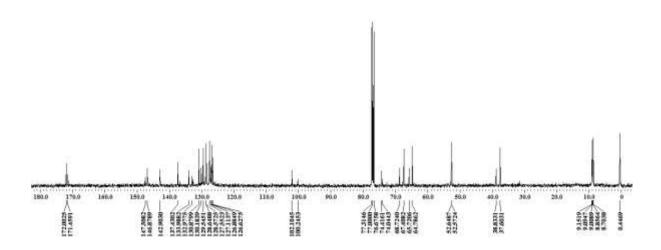

5h

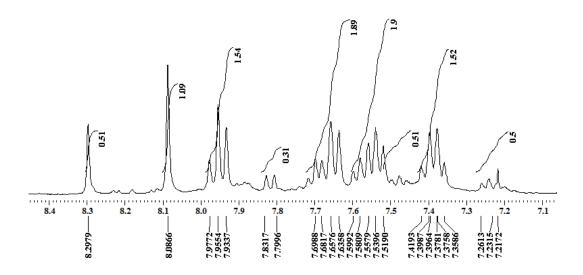


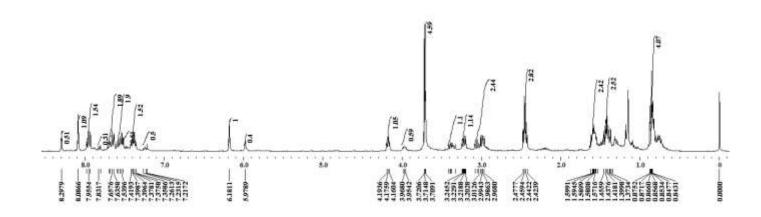

¹³C NMR

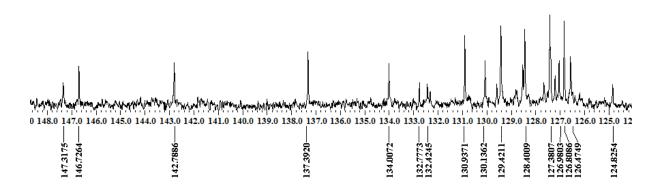
5h

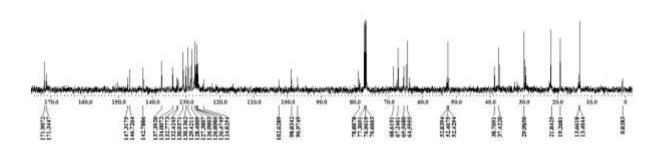


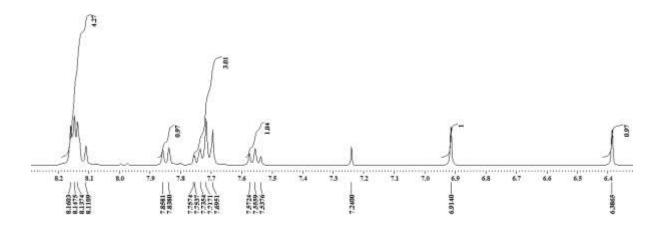

5i

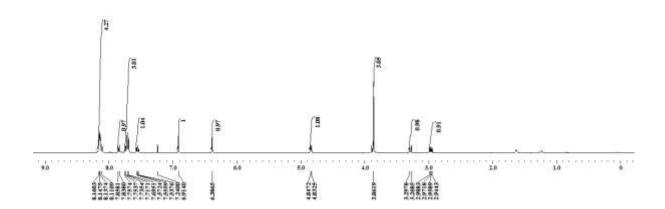


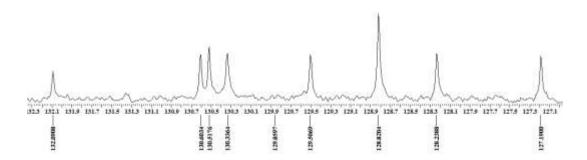

5i

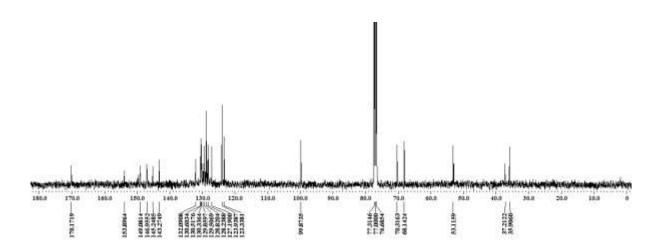

5j

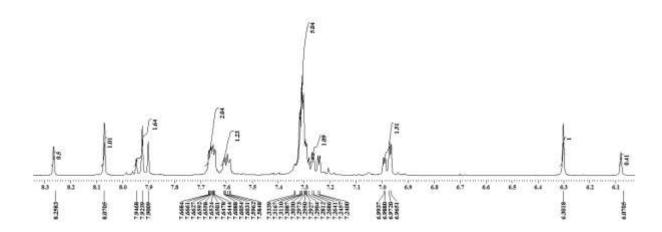


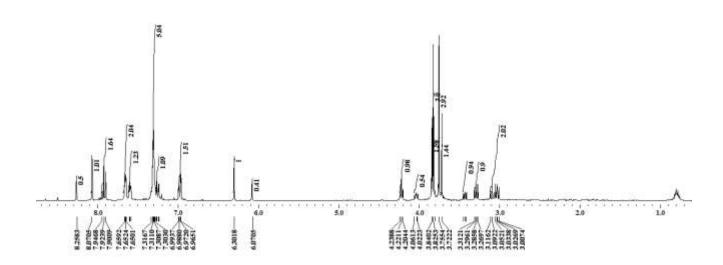

¹³C NMR

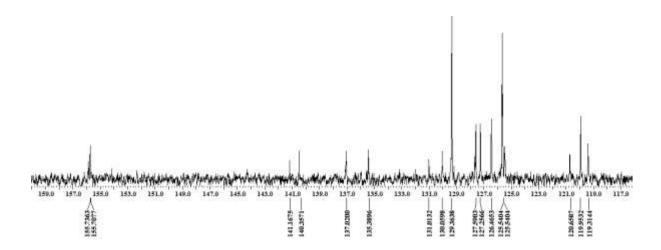

5j

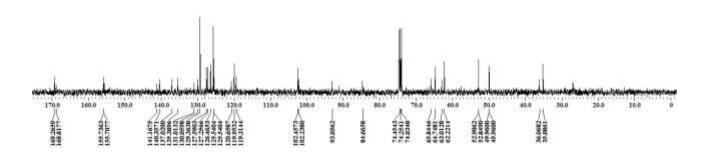

5k

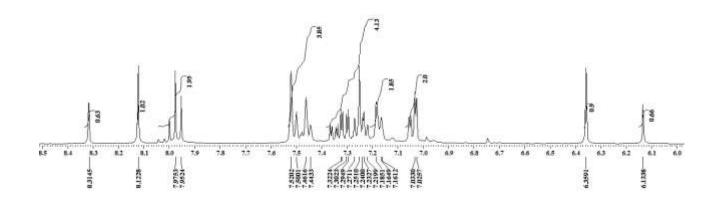


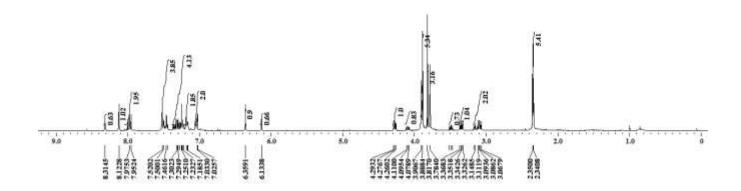

¹³C NMR

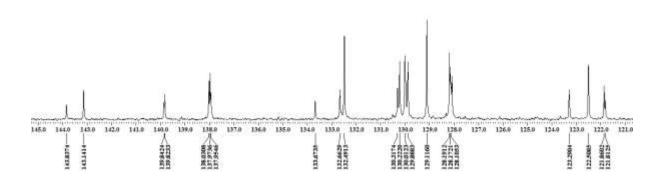

5k

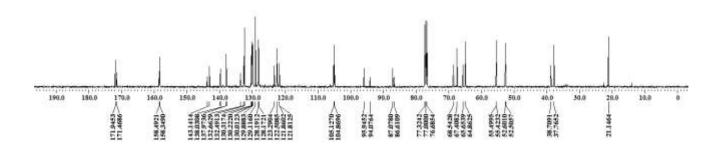


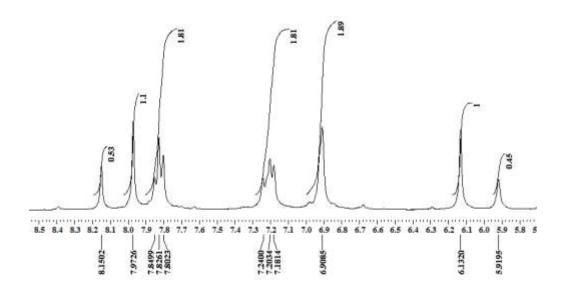

5l

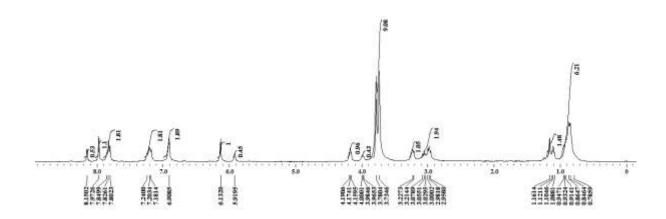


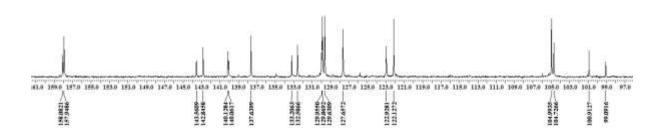

5l

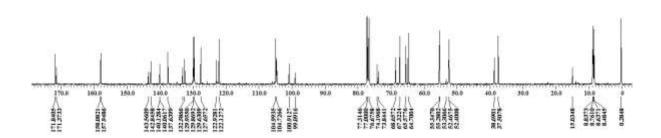

5m

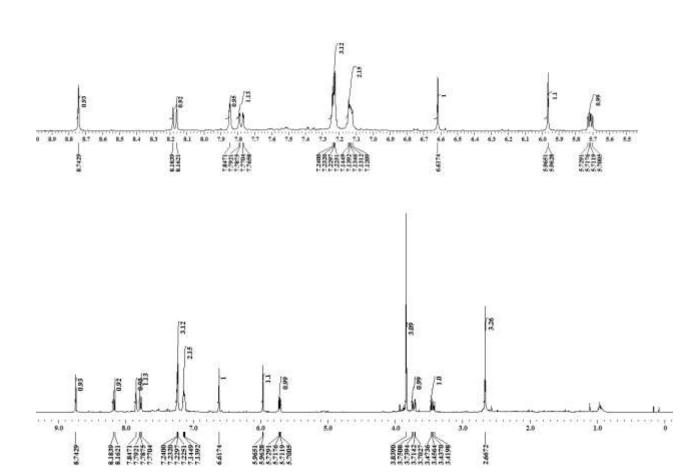


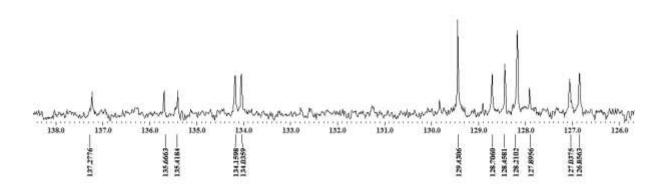

¹³C NMR

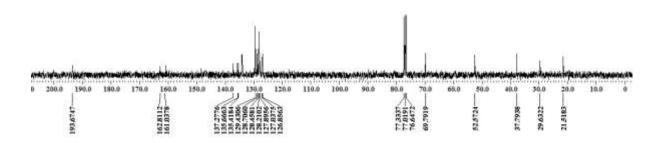

5m

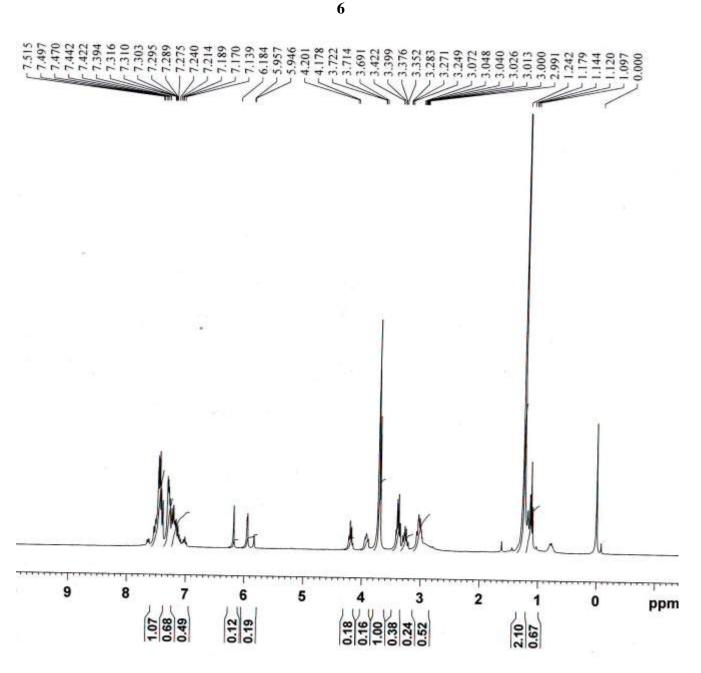

5n

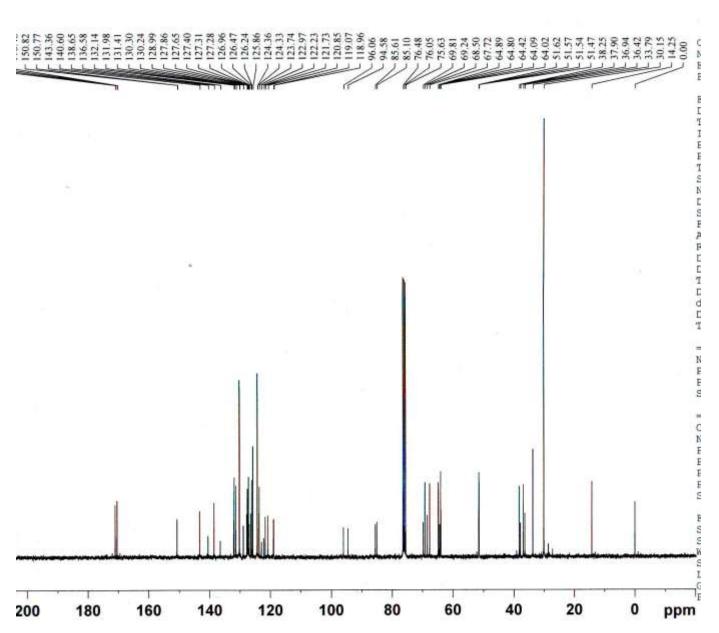


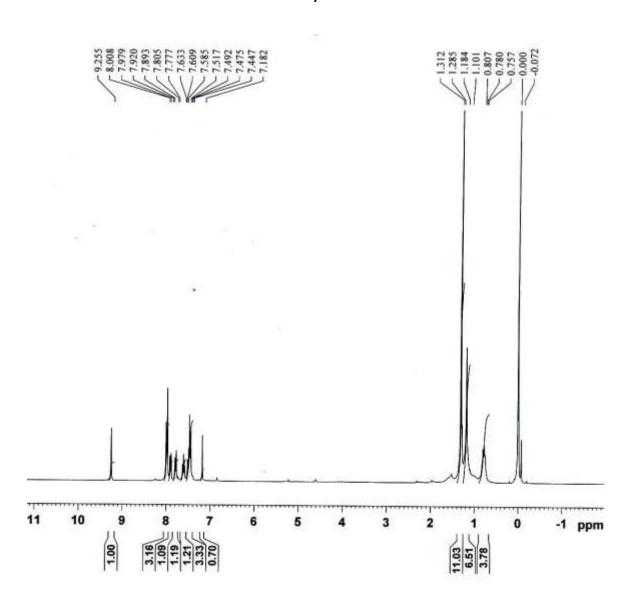


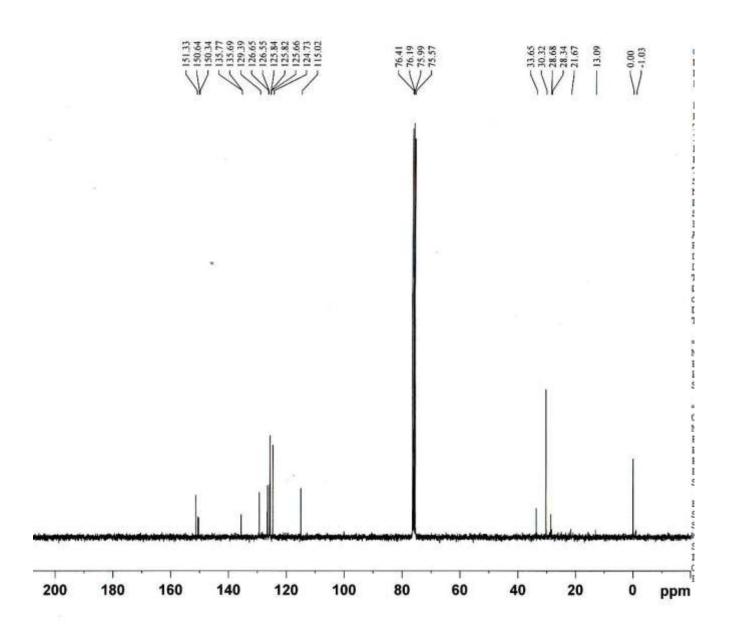

¹³C NMR

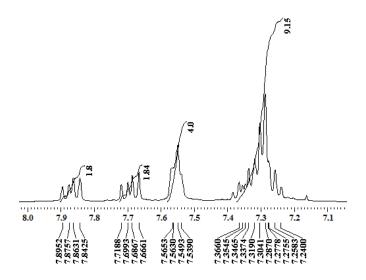

5n

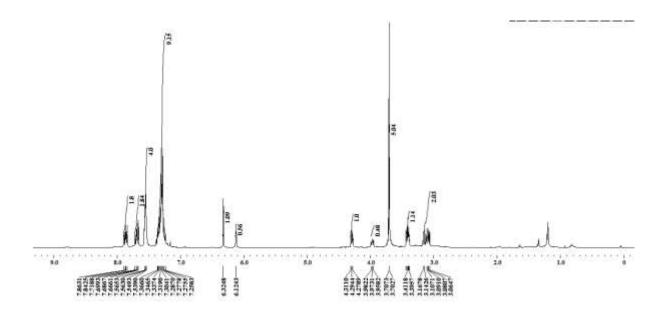


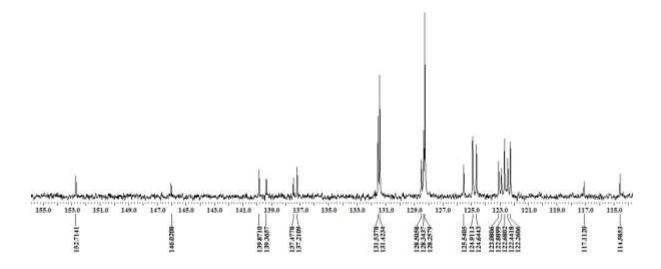


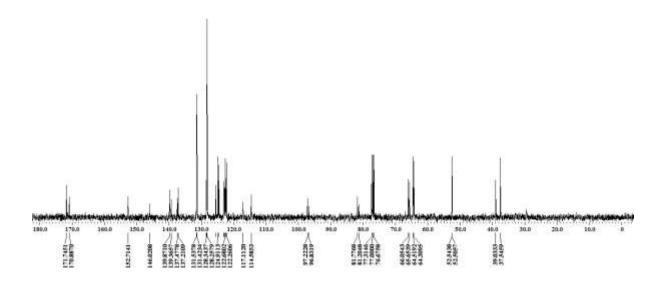


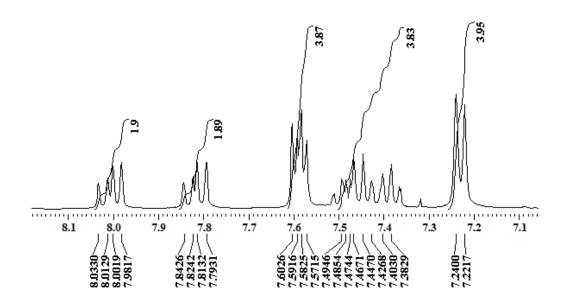


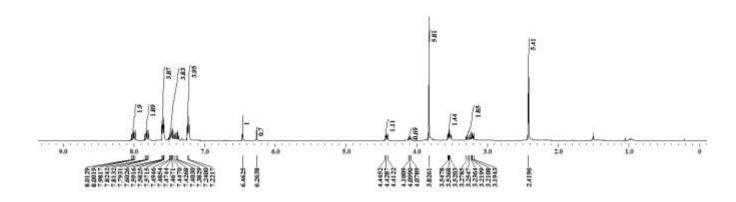


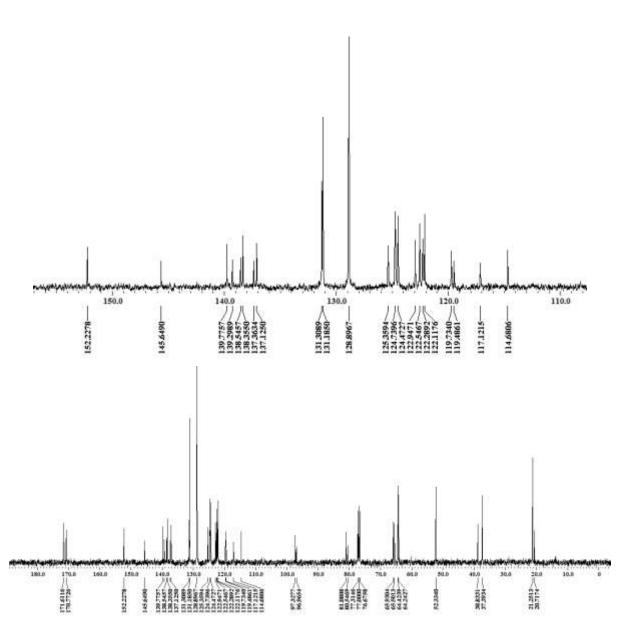



8a

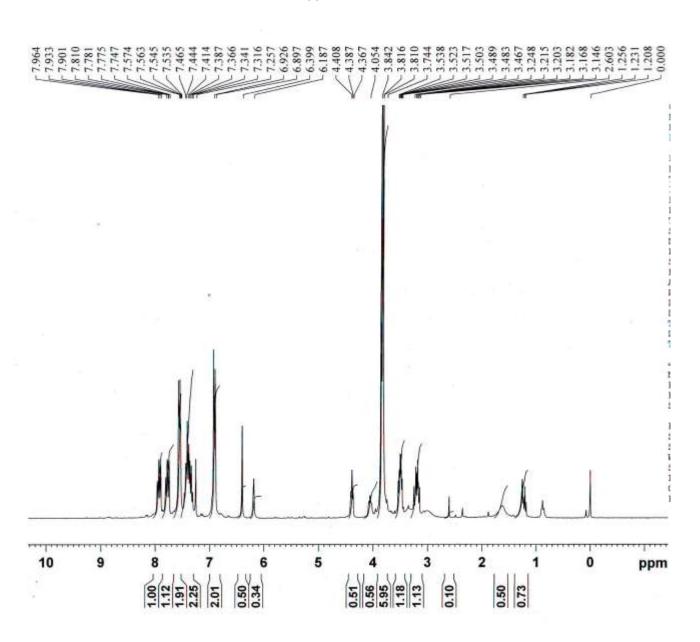


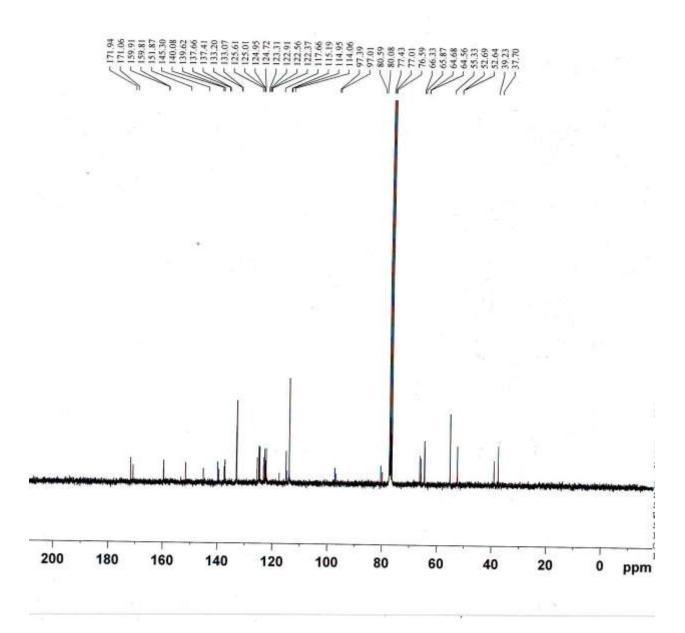

¹³C NMR

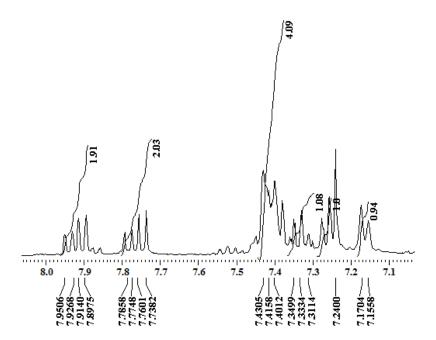

8a

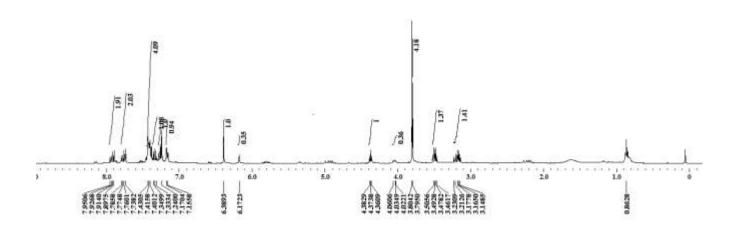


8b

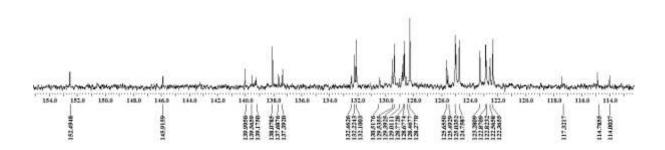


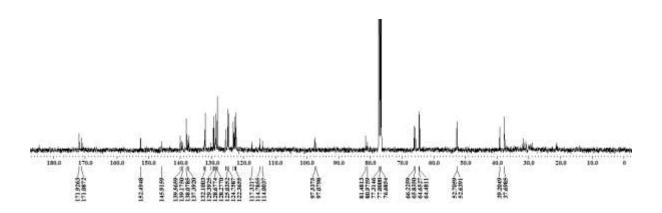

8b

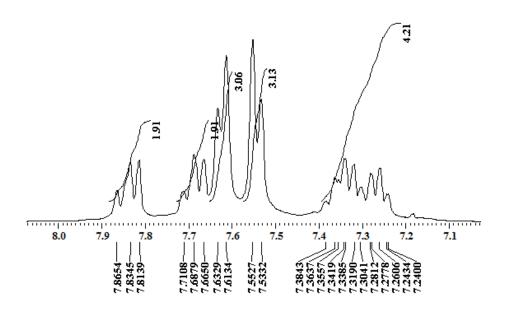

8c

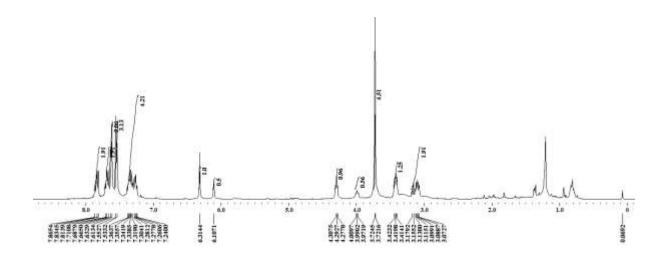


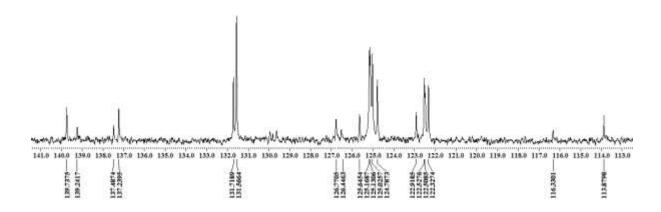
8c

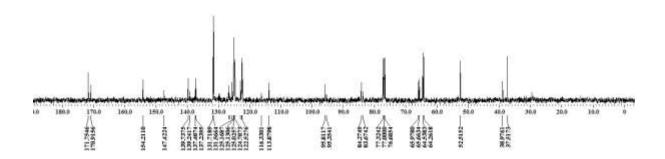

8d

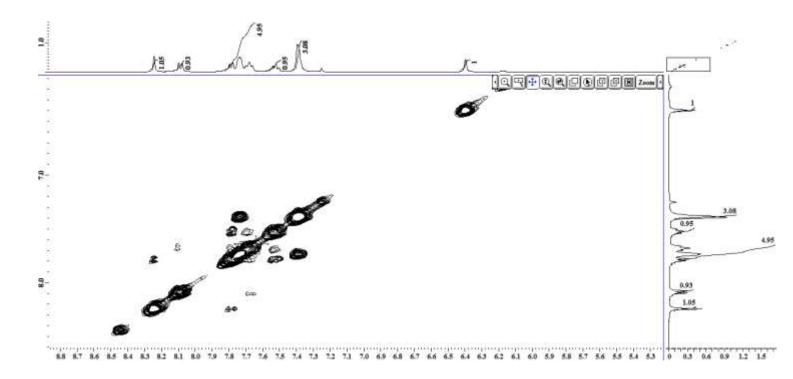


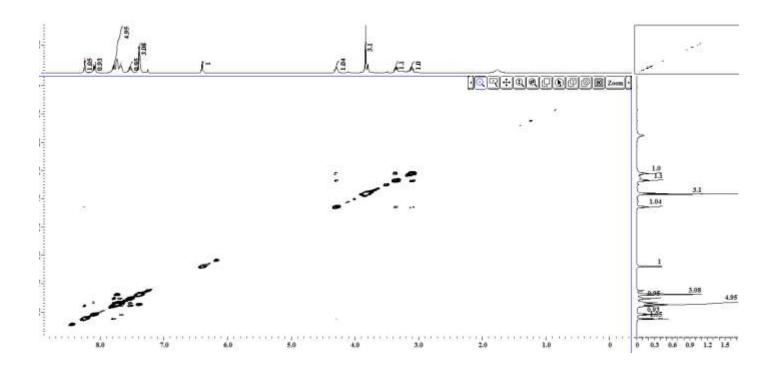

¹³C NMR


8d




8e


8e



NOESY

5a (expanded form)

(Full View of NOESY Spectra of Compound 5a)

