# Azacalix[2]arene[2]triazine-based receptors bearing carboxymethyl pendant arms on nitrogen bridges: synthesis and evaluation of their coordination ability towards copper(II)

João M. Caio,<sup>a,b</sup> Teresa Esteves,<sup>b</sup> Silvia Carvalho,<sup>a</sup> Cristina Moiteiro\*<sup>b</sup> and Vítor Félix<sup>\*a</sup>

# Contents

| <sup>1</sup> H and <sup>13</sup> C NMR Spectra |    |
|------------------------------------------------|----|
| Infrared spectra                               | 11 |
| Mass Spectra                                   | 14 |
| UV-vis Titration                               |    |
| Crystallographic data                          |    |

#### <sup>1</sup>H and <sup>13</sup>C NMR Spectra



Figure S1. <sup>1</sup>H NMR spectrum of 1 (CDCl<sub>3</sub>, 400 MHz).



Figure S2. <sup>13</sup>C NMR spectrum of 1 (CDCl<sub>3</sub>, 101 MHz).



Figure S3. <sup>1</sup>H NMR spectrum of 2 (CDCl<sub>3</sub>, 400 MHz).



Figure S4. <sup>13</sup>C NMR spectrum of **2** (CDCl<sub>3</sub>, 101 MHz).



Figure S5. <sup>1</sup>H NMR spectrum of **3** (CDCl<sub>3</sub>, 400 MHz).



Figure S6. <sup>13</sup>C NMR spectrum of 3 (CDCl<sub>3</sub>, 101 MHz).



Figure S7. <sup>1</sup>H NMR spectrum of 4 (DMSO, 400 MHz).



Figure S8. <sup>13</sup>C NMR spectrum of 4 (DMSO, 101 MHz).



Figure S9. <sup>1</sup>H NMR spectrum of 5 (acetone, 400 MHz).



Figure S10. <sup>13</sup>C NMR spectrum of 5 (acetone, 101 MHz).



Figure S11. <sup>1</sup>H NMR spectrum of 10 (DMSO, 400 MHz).



Figure S12. <sup>13</sup>C NMR spectrum of 10 (DMSO, 101 MHz).



Figure S13. <sup>1</sup>H NMR spectrum of 11 (DMSO, 400 MHz).



Figure S14. <sup>13</sup>C NMR spectrum of 11 (DMSO, 101 MHz).



Figure S15. <sup>1</sup>H NMR spectrum of 12 (CDCl<sub>3</sub>, 400 MHz).



Figure S16. <sup>13</sup>C NMR spectrum of 12 (CDCl<sub>3</sub>, 101 MHz).



Figure S17. <sup>1</sup>H NMR spectrum of 13 (DMSO, 400 MHz).



Figure S18. <sup>13</sup>C NMR spectrum of 13 (DMSO, 101 MHz).

## **Infrared spectra**



Figure S19. Infrared spectrum of 1.



Figure S20. Infrared spectrum of 2.



Figure S21. Infrared spectrum of 3.



Figure S22. Infrared spectrum of 4.



Figure S23. Infrared spectrum of 5.



Figure S24. Infrared spectrum of 13.

### **Mass Spectra**



Figure S25. MS (ESI) spectrum of 1.



**Figure S26.**  $MS^2$  spectrum of the  $[M+H]^+$  of **1**.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013



Figure S27. HRMS (ESI) spectrum of the  $[M+H]^+$  of 1.



Figure S28. MS (ESI) spectrum of 2.



**Figure S29.**  $MS^2$  spectrum of the  $[M+H]^+$  of **2**.



Figure S30. MS (ESI) spectrum of 3.



**Figure S31.**  $MS^2$  spectrum of the  $[M+H]^+$  of **3**.



Figure S32. MS (ESI) spectrum of 4.



**Figure S33.**  $MS^2$  spectrum of the  $[M+H]^+$  of **4**.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013



Figure S34. HRMS (ESI) spectrum of the  $[M+H]^+$  of 4.



Figure S35. MS (ESI) spectrum of 5.



**Figure S36.**  $MS^2$  spectrum of the  $[M+H]^+$  of **5**.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013



**Figure S37.** HRMS (ESI) spectrum of the  $[M+H]^+$  of **5**.



Figure S38. MS spectrum of 11.



Figure S39.  $MS^2$  spectrum of the  $[M+H]^+$  of 11.



Figure S40. MS spectrum of 12.



Figure S41. MS (ESI) spectrum of 13.



**Figure S42.**  $MS^2$  spectrum of the  $[M+H]^+$  of **13**.

#### **UV-vis Titration**



**Figure S43.** UV-vis titration of **4**  $(1.47 \times 10^{-3} \text{ M})$  with Cu<sup>2+</sup> in water, monitoring the metal absorption bands. UV-vis spectra were recorded at 20 °C with pH $\approx$  11 by the addition of increasing amount of CuCl<sub>2</sub>. The total concentrations of Cu<sup>2+</sup> and ligand for curves, from bottom to top ranging between 0 and  $1.30 \times 10^{-3}$  M and  $1.47 \times 10^{-3}$  and  $1.27 \times 10^{-3}$  M, respectively.



**Figure S44.** UV-vis titration of **4** ( $5.86 \times 10^{-5}$  M) with Cu<sup>2+</sup> in water, monitoring the ligand absorption bands. UV-Vis spectra were recorded at 20 °C with pH $\approx$  11 by the addition of increasing amount of CuCl<sub>2</sub>. The total concentrations of Cu<sup>2+</sup> and ligand for curves, from bottom to top ranging between 0 and  $5.71 \times 10^{-5}$  M and  $5.86 \times 10^{-5}$  and  $4.19 \times 10^{-5}$  M, respectively.



**Figure S45.** UV-vis titration of **5** ( $3.46 \times 10^{-3}$  M) with Cu<sup>2+</sup> in water, monitoring the metal absorption bands. UV-vis spectra were recorded at 20 °C with pH $\approx$  11 by the addition of increasing amount of CuCl<sub>2</sub>. The total concentrations of Cu<sup>2+</sup> and ligand for curves, from bottom to top ranging between 0 and  $2.65 \times 10^{-3}$  M and  $3.46 \times 10^{-3}$  and  $2.54 \times 10^{-3}$  M, respectively.



**Figure S46.** UV-vis titration of **5** ( $2.57 \times 10^{-5}$  M) with Cu<sup>2+</sup> in water, monitoring the ligand absorption bands. UV-vis spectra were recorded at 20 °C with pH $\approx$  11 by the addition of increasing amount of CuCl<sub>2</sub>. The total concentrations of Cu<sup>2+</sup> and ligand for curves, from bottom to top ranging between 0 and  $2.98 \times 10^{-5}$  M and  $2.57 \times 10^{-5}$  and  $2.19 \times 10^{-5}$  M, respectively.

#### Crystallographic data

 Table S1. Structural comparison of the tetraazacalix[2]arene[2]triazine scaffold in macrocyles 1, 2 and 12.

| Macrocyle        | C-N <sub>bridge,triazine</sub> <sup>a</sup> | C-N <sub>bridge,phenyl</sub> <sup>a</sup> | C-N <sub>bridge</sub> -C <sup>b</sup> | $\Omega^{\mathrm{b,c}}$ | $\phi^{b,c}$ | $H_{ortho}{\cdots}H_{ortho}{}^{a,d}$ | $H_{meta} \! \cdots \! H_{meta}{}^{a,d}$ |
|------------------|---------------------------------------------|-------------------------------------------|---------------------------------------|-------------------------|--------------|--------------------------------------|------------------------------------------|
|                  |                                             |                                           |                                       |                         |              |                                      |                                          |
| 1 <sup>[e]</sup> | 1.442(2)-1.444(2)                           | 1.349(2)-1.358(2)                         | 119.8(1), 120.0(1)                    | 88.2                    | 33.7         | 4.49                                 | 4.80                                     |
| •                | 1 422(2) 1 440(2)                           | 1 2(0(2) 1 271(2)                         | 121 5(2) 122 4(2)                     | (0.2.71.4               | 25.2.26.0    | 2 70                                 | ( 77                                     |
| 2                | 1.432(3)-1.440(3)                           | 1.308(3)-1.3/1(3)                         | 121.5(2)-122.4(2)                     | 68.3, /1.4              | 35.2, 36.0   | 3.70                                 | 6.//                                     |
| 12               | 1.414(3) - 1.416(3)                         | 1.355(3)-1.360(3)                         | 132.2(2)-133.1(2)                     | 25.8.28.2               | 3.8.4.3      | 2.75                                 | 11.54                                    |
| 12               | (5) 1.110(5)                                | 1.5555(5) 1.566(5)                        | 152.2(2) 155.1(2)                     | 20.0, 20.2              | 5.0, 1.5     | 2.75                                 | 11.51                                    |

<sup>a</sup>All distances are in Å. <sup>b</sup>All angles are in deg. <sup>c</sup> $\Omega$  and  $\phi$  Dihedral angles definition is given in the main text. <sup>d</sup>The H<sub>ortho</sub>…H<sub>ortho</sub> and H<sub>meta</sub>…H<sub>meta</sub> distances are defined in the main text. <sup>e</sup> 1 Contains a 2-fold crystallographic axis.

| Molecular formula                       | 1•diglyc                       | <b>2•</b> THF              | <b>12•</b> 2CHCl <sub>3</sub> |
|-----------------------------------------|--------------------------------|----------------------------|-------------------------------|
| Empirical Formula                       | $C_{36}H_{38}Cl_2N_{10}O_{13}$ | $C_{38}H_{48}N_{12}O_9 \\$ | $C_{44}H_{66}Cl_6N_{12}$      |
| $M_{\rm w}$                             | 889.66                         | 816.88                     | 975.78                        |
| Crystal System                          | Monoclinic                     | Triclinic                  | Monoclinic                    |
| Space group                             | <i>C</i> 2/c                   | $P\overline{1}$            | <i>P</i> 2 <sub>1</sub> /c    |
| a / Å                                   | 12.2611(11)                    | 10.6377(4)                 | 11.5804(7)                    |
| b / Å                                   | 18.2064(13)                    | 12.7007(5)                 | 14.7466(9)                    |
| c / Å                                   | 17.7004(19)                    | 15.6556(7)                 | 29.1684(19)                   |
| α/°                                     | (90.0)                         | 96.879(2)                  | (90)                          |
| β / °                                   | 100.734(4)                     | 90.055(2)                  | 90.758(2)                     |
| γ / °                                   | (90.0)                         | 106.439(2)                 | (90)                          |
| $V/Å^3$                                 | 3882.1(6)                      | 2012.75(14)                | 4980.7(5)                     |
| Z                                       | 4                              | 2                          | 4                             |
| $\rho_{calc}/mg\;mm^{\text{-}3}$        | 1.522                          | 1.348                      | 1.301                         |
| $\mu$ /mm <sup>-1</sup>                 | 0.249                          | 0.099                      | 0.390                         |
| Reflections collected                   | 23350                          | 26416                      | 25720                         |
| Unique reflections, [R <sub>int</sub> ] | 5940, [0.0394]                 | 9481, [0.0399]             | 10935, [0.0325]               |
| Final R indices                         |                                |                            |                               |
| $R_1$ , $wR_2[I>2\sigma I]$             | 0.0444, 0.1005 [4218]          | 0.0642, 0.1894 [7100]      | 0.0579, 0.1670 [7179]         |
| $R_1$ , w $R_2$ (all data)              | 0.0725, 0.1131                 | 0.0854, 0.2073             | 0.0946, 0.2046                |
|                                         |                                |                            |                               |

 Table S2. Crystal data and selected refinement details for macrocycles 1, 2 and 12.



**Figure S47**. Molecular structure of 1-diglyc with ellipsoids for non-hydrogen atoms drawn at the 50% probability level.<sup>1</sup>



**Figure S48**. Molecular structure of **2**. THF with ellipsoids for non-hydrogen atoms drawn at the 50% probability level.<sup>1</sup>



Figure S49. Molecular structure of 12.2CHCl<sub>3</sub> with ellipsoids for non-hydrogen atoms drawn at the 50% probability level.<sup>1</sup>

Reference

O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program, *J. Appl. Cryst.* 2009, 42, 339–341.