Steric *vs* electronic effects in the *Lactobacillus brevis* ADHcatalyzed bioreduction of ketones

Cristina Rodríguez, Wioleta Borzęcka, Johann H. Sattler, Wolfgang Kroutil, Iván Lavandera, and Vicente Gotor

Electronic Supplementary Information (page S1 of S21)

Table of contents

1.	General	(page S2)
2.	Experimental procedures	(page S3)
3.	Steady-state kinetics	(page S7)
4.	Molecular volume calculations	(page S8)
5.	LBADH-catalyzed reduction of ketones	(page S9)
6.	IR spectroscopy study	(page S13)
7.	Analytics	(page S14)
8.	Supporting references	(page S17)
9.	Copies of ¹ H-, ¹³ C-NMR and DEPT of 9b	(page S19)

1. General

Acetophenone (1a), propiophenone (2a), butyrophenone (3a), α -chloroacetophenone (5a), α bromoacetophenone (6a), α, α -difluoroacetophenone (7a), α, α, α -trifluoroacetophenone (11a), α -hydroxyacetophenone (14a), α -methoxyacetophenone (15a), benzoylacetonitrile (17a), α nitroacetophenone (19a), methyl benzoylformate (21a), ethyl benzoylformate (22a), ethyl benzoylacetate (24a), 1-phenylethanol (1b), 1-phenylpropanol (2b), 1-phenylbutanol (3b), 1phenyl-1,2-ethanediol (14b), and ethyl mandelate (22b) were obtained from Fluka-Sigma-Aldrich and were used without further purification. α -Fluoroacetophenone (4a),¹ α, α, α trichloroacetophenone (12a),² α, α, α -tribromoacetophenone (13a),³ and 2,2,2-tribromo-1phenylethanol $(13b)^4$ have been prepared as previously described. α -Acetoxyacetophenone (16a) and N-(2-oxo-2-phenylethyl)acetamide (20a) were obtained under simple acetylation conditions (acetic anhydride and N,N-dimethylaminopyridine in dichloromethane) starting commercially available α-hydroxyacetophenone and α -aminoacetophenone, from respectively. All other reagents and solvents were of the highest quality available.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2013

2. Experimental procedures

2.1. Synthesis of α, α -dichloroacetophenone (8a)⁵

To a solution of acetophenone (1.5 g, 12.5 mmol) in 8 mL of acetonitrile, *N*-chlorosuccinimide (3.33 g, 25.4 mmol) and *p*-toluenesulfonic acid (2.37 g, 12.5 mmol) were added. The reaction mixture was stirred for 12 h at 50°C. After that time the solvent was evaporated under reduced pressure. Then a water solution of saturated NaHCO₃ (20 mL) was added and the solution was extracted with dichloromethane (3 x 20 mL). The organic layers were combined and dried over Na₂SO₄. The solvent was evaporated and the residue was subjected to column chromatography (silica gel) using hexanes/CH₂Cl₂ (9:1) as an eluent. Isolated yield: 2.10 g (89.1%). This compound exhibited physical and spectral data in agreement with those reported.⁵

2.2. Synthesis of α -bromo- α -chloroacetophenone (**9a**)⁶

To a solution of α -chloroacetophenone (0.5 g, 3.23 mmol) in 2 mL of acetonitrile, *N*bromosuccinimide (0.27 g, 4.85 mmol) and *p*-toluenesulfonic acid (0.61 g, 3.23 mmol) were added. The reaction mixture was stirred for 24 h at 50°C. After that time the solvent was evaporated under reduced pressure. Then, a water solution of saturated NaHCO₃ (10 mL) was added and the solution was extracted with dichloromethane (3 x 10 mL). The organic layers were combined and dried over Na₂SO₄. The solvent was evaporated and the residue was subjected to column chromatography (silica gel) using hexanes/CH₂Cl₂ (9:1) as an eluent. Isolated yield: 0.28 g (37.1%). This compound exhibited physical and spectral data in agreement with those reported.⁶

2.3. Synthesis of α, α -dibromoacetophenone (**10a**)⁷

To a solution of acetophenone (1.5 g, 12.5 mmol) in 8 mL of acetonitrile, *N*-bromosuccinimide (4.43 g, 25.4 mmol) and *p*-toluenesulforic acid (2.37 g, 12.5 mmol) were added. The reaction mixture was stirred for 12 h at 50°C. After that time the solvent was evaporated under reduced pressure. Then a water solution of saturated NaHCO₃ (20 mL) was added and the solution was extracted with dichloromethane (3 x 20 mL). The organic layers

were combined and dried over Na_2SO_4 . The solvent was evaporated and the residue was subjected to column chromatography (silica gel) using hexanes/CH₂Cl₂ (9:1) as an eluent. Isolated yield: 3.02 g (87.0%). This compound exhibited physical and spectral data in agreement with those reported.⁷

2.4. Synthesis of α -azidoacetophenone (**18a**)⁸

To a solution of α -bromoacetophenone (500 mg, 2.5 mmol) in dry THF (8 mL), sodium azide (244 mg, 3.75 mmol) was added under nitrogen atmosphere. The reaction mixture was stirred for 24 h at 50°C. After that time the solvent was evaporated under reduced pressure. Then, water (10 mL) was added and the solution was extracted with dichloromethane (3 x 10 mL). The organic layers were combined and dried over Na₂SO₄. The solvent was evaporated and the residue was subjected to column chromatography (silica gel) using hexanes/ethyl acetate (95:5) as an eluent. Isolated yield: 245 mg (60.8%). This compound exhibited physical and spectral data in agreement with those reported.⁹

2.5. Synthesis of methyl benzoylacetate $(23a)^{10}$

To a solution of ethyl benzoylacetate (1.59 g, 8.3 mmol) in methanol (20 mL), three drops of concentrated hydrochloric acid were added. The reaction mixture was stirred for 24 h under reflux. After that time the solvent was evaporated under reduced pressure. Then, water (10 mL) was added and the solution was extracted with dichloromethane (3 x 20 mL). The organic layers were combined and dried over Na_2SO_4 . The solvent was evaporated and the residue was subjected to column chromatography (silica gel) using hexanes/ethyl acetate (95:5) as an eluent. Isolated yield: 887 mg (60.0%). This compound exhibited physical and spectral data in agreement with those reported.¹⁰

 α, α, α -Tribromoacetophenone (**13a**),¹¹ 2-oxo-2-phenylethyl acetate (**16a**),¹² and *N*-(2-oxo-2-phenylethyl)acetamide (**20a**),¹³ exhibited physical and spectral data in agreement with those reported.

2.6. General procedure for the synthesis of the racemic alcohols

To a solution of the corresponding ketone (4.0 mmol) in methanol (5 mL) at 0°C, sodium borohydride (1.2 mmol) was added. When the reduction was completed (according to the TLC) a few drops of 1M HCl were added. The solvent was evaporated under reduced pressure. Then, water (10 mL) was added and the solution was extracted with dichloromethane (3 x 10 mL). The organic layers were combined and dried over Na₂SO₄. The solvent was evaporated and the residue was subjected to column chromatography (silica gel) using mixtures of hexanes/ethyl acetate as eluents. Isolated yields: 39.0-92.5%.

2-Fluoro-1-phenylethanol (4b),¹⁴ 2-Chloro-1-phenylethanol (5b),⁸ 2-bromo-1-phenylethanol (6b),¹⁵ 2,2-difluoro-1-phenylethanol (7b),¹⁶ 2,2-dichloro-1-phenylethanol (8b),¹⁷ 2,2-dibromo-1-phenylethanol (10b),¹⁸ 2,2,2-trifluoro-1-phenylethanol (11b),¹⁹ 2,2,2-trichloro-1-phenylethanol (12b),²⁰ 2-methoxy-1-phenylethanol (15b),²¹ 2-hydroxy-2-phenylethyl acetate (16b),²² 3-hydroxy-3-phenylpropanenitrile (17b),⁸ 2-azido-1-phenylethanol (18b),⁸ 2-nitro-1-phenylethanol (19b),²³ *N*-(2-hydroxy-2-phenylethyl)acetamide (20b),²⁴ methyl mandelate (21b),²⁵ methyl 3-hydroxy-3-phenylpropanoate (23b),²⁶ and ethyl 3-hydroxy-3-phenylpropanoate (24b),²⁷ exhibited physical and spectral data in agreement with those reported.

 $[\alpha]_D^{20} = +24.7 \ (c \ 2.2, \ \text{CHCl}_3).$

2-Bromo-2-chloro-1-phenylethanol (9b)

m.p. 57.5-59.8°C; IR (NaCl): 3583, 3054, 1453, 1422, 1265, 1187, 896, 740, 705 cm⁻¹; ¹H NMR (300 MHz, CDCl₃, mixture of diastereoisomers 3:1): δ 2.91 (1H, br s), 4.98 (major, 1H, d, ³J_{HH} = 5.4 Hz), 5.10 (minor, 1H, d, ³J_{HH} = 5.0 Hz), 5.87 (major, 1H, d, ³J_{HH} = 5.4 Hz), 5.89

(minor, 1H, d, ${}^{3}J_{HH} = 6.0$ Hz), 7.44-7.40 (5H, m); 13 C NMR (75 MHz): δ 64.6 (minor), 65.8 (major), 78.9 (major), 79.0 (minor), 126.9 (major), 127.0 (minor), 128.5, 129.0, 137.6.

3. Steady-state kinetics

ketone	k _{cat}	K _M	$k_{\rm cat}/K_{\rm M}$
	(s^{-1})	(mM)	$(M^{-1} s^{-1})$
1a	20.3	1.3	16,100
2a	6.5	1.4	4,700
3a	<0.1	n.d.	n.d.
4a	92.4	0.18	512,200
5a	32.8	0.09	378,900
6a	35.5	0.4	87,900
7a	68.5	0.55	125,400
8a	38.9	0.51	75,800
9a	17.5	0.69	25,600
10a	1.4	0.12	11,800
11a	8.6	2.6	3,300
12a	0.6	0.15	4,200
1 3 a	n.d.	n.d.	n.d.
14a	2.3	3.0	800
15a	<0.1	n.d.	n.d.
16a	n.d.	n.d.	n.d.
17a	0.9	2.4	400
18a	4.6	8.1	600
19a	n.d.	n.d.	n.d.
20a	<0.1	n.d.	n.d.
21a	0.8	0.17	4,300
22a	0.5	0.02	26,500
23a	<0.1	n.d.	n.d.
24a	< 0.1	n.d.	n.d.

Table S1. Steady-state kinetic parameters of LBADH for substrates 1-24a

n.d. not determined

4. Molecular volume calculations

ketone	$VSES_{R=1.4}$ (Å ³)	$\mathbf{V}_{\mathbf{mol}}(\mathrm{\AA}^3)$
1a	123.94	117.49
2a	142.44	134.08
3a	160.96	150.60
4 a	129.20	122.35
5a	139.34	131.66
ба	144.08	136.08
7a	134.49	127.24
8a	154.65	145.81
9a	159.32	150.23
10a	163.97	154.60
11a	139.69	132.06
12a	169.32	159.59
1 3 a	183.42	172.67
14a	132.33	125.62
15a	153.58	143.21
16a	173.26	161.73
17a	142.30	134.54
18a	150.91	141.32
19a	149.94	140.67
20a	175.04	164.37
21a	154.75	146.02
22a	172.94	162.50
23a	172.12	161.31
24a	194.62	177.87

Table S2. Measured ketone volumes using the solvent-excluded molecular volume $(VSES_{R=1.4})$ and the van der Waals molecular volume (V_{mol}) methods.

5. LBADH-catalyzed reduction of ketones

5.1. Bioreductions under standard and minimal conditions

In Table S3 are summarized the conversions and enantiomeric excess of the LBADHcatalyzed bioreductions with 2-PrOH.

Table S3. Bioreduction of acetophenone derivatives with LBADH using 5% v v⁻¹ or 2.5 equiv. of 2-propanol (t= 48 h).

entry	ketone	$\operatorname{conv.}(\%)^a$	conv. $(\%)^b$	ee (%) ^c			
Alkylated acetoph	Alkylated acetophenone derivatives						
1	1a	92	49	>99 (<i>R</i>)			
2	2a	93	45	>99 (<i>R</i>)			
3	3a	4	n.d.	n.d.			
α-Halogenated ace	etophenone derivativ	es					
4	4a	>99	92	>99 (<i>S</i>)			
5	5a	>99	>99	>99 (<i>S</i>)			
6	6a	>99	>99	>99 (<i>S</i>)			
7	7a	>99	90	>99 (<i>S</i>)			
8	8a	>99	63 (>99) ^d	>99 (<i>S</i>)			
9	9a	97	75 (93) ^d	$>99(S)^{e}$			
10	10a	>99	>99	>99 (<i>S</i>)			
11	11a	>99	86	>99 (<i>S</i>)			
12	12a	25	18	n.d.			
13	1 3 a	<1	n.d.	n.d.			
α-Oxygenated acetophenone derivatives							
14	14a	>99	90	>99 (<i>S</i>)			
15	15a	<1	n.d.	n.d.			
16	16a	8	n.d.	n.d.			

Table S3. (cont.)

α-Nitrogenated acetophenone derivatives					
17	1 7 a	74	$11(57)^d$	>99 (<i>S</i>)	
18	18a	>99	85	>99 (<i>S</i>)	
19	19a	13	3	n.d.	
20	20a	<1	n.d.	n.d.	
α - and β -Keto esters					
21	21a	99	72	>99 (<i>S</i>)	
22	22a	75	74	>99 (<i>S</i>)	
23	23a	<1	n.d.	n.d.	
24	24a	<1	n.d.	n.d.	

^{*a*} Conversion using an excess of 2-propanol, measured by GC. ^{*b*} Conversion using 2.5 equiv. of 2-propanol, measured by GC. ^{*c*} Measure by chiral GC. ^{*d*} With 2% v v⁻¹ of DMSO. ^{*e*} As a mixture of diastereoisomers. n.d. not determined.

5.2. Time-frame study with selected ketones using 2.5 equiv. of 2-PrOH

In a 1.5 mL Eppendorf vial, LBADH (3U) was added in 50 mM Tris-HCl buffer pH 7.5 (600 μ L, 1 mM NADPH, 1 mM MgCl₂) and mixed with 2-propanol (3 μ L, 2.5 equiv.) and the corresponding ketone (30 mM, 1 equiv.). Reactions were shaken at 30°C and 250 rpm and samples were taken at different times (see Table S4) and extracted with ethyl acetate (2 x 0.5 mL). The organic layer was separated by centrifugation (2 min, 13000 rpm) and dried over Na₂SO₄. Conversions of the corresponding alcohols were determined by GC.

ketone	$\operatorname{conv.} (\%)^a$					
	1h	2h	4h	8h	24h	48h
1 a	49	53	51	51	49	54
5a	43	65	80	>99	>99	>99
14a	12	35	53	92	90	92
18 a	13	29	37	44	65	85
22a	15	22	40	47	60	74

Table S4. LBADH-catalyzed bioreductions of several ketones within the time.

^{*a*} Measured by GC analysis.

5.3. LBADH thermostability study

Protocol 1

In a 1.5 mL Eppendorf vial, LBADH (3U) was added in 50 mM Tris-HCl buffer pH 7.5 (600 μ L, 1 mM NADPH, 1 mM MgCl₂). Reactions were shaken for 24 h at 30°C and 250 rpm. After that, 2-propanol (32 μ L, 5% v v⁻¹) and acetophenone (30 mM) were added and then the reactions were shaken for other 24 h at 30°C and 250 rpm. Then, reactions were extracted with ethyl acetate (2 x 0.5 mL). The organic layer was separated by centrifugation (2 min, 13000 rpm) and dried over Na₂SO₄. Conversion of 1-phenylethanol (91%) was determined by GC.

Protocol 2

In a 1.5 mL Eppendorf vial, LBADH (3U) was added in 50 mM Tris-HCl buffer pH 7.5 (600 μ L, 1 mM NADPH, 1 mM MgCl₂) and with 2-propanol (32 μ L, 5% v v⁻¹). Reactions were shaken for 24 h at 30°C and 250 rpm. After that, acetophenone (30 mM) was added and then the reactions were shaken for other 24 h at 30°C and 250 rpm. Then, reactions were extracted with ethyl acetate (2 x 0.5 mL). The organic layer was separated by centrifugation (2 min, 13000 rpm) and dried over Na₂SO₄. Conversion of 1-phenylethanol (90%) was determined by GC.

6. IR spectroscopy study

IR spectra were recorded on a standard IR spectrophotometer using NaCl plates dissolving the compounds with a drop of CH₂Cl₂.

ketone	$v_{C=0}$ value (cm ⁻¹)
1a	1685.9
2a	1685.4
3a	1686.1
4 a	1709.8
5a	1690.1
6a	1683.9
7a	1711.0
8a	1708.1
9a	1705.7
10a	1701.5
11a	1720.3
12a	1713.0
13 a	1700.1
14a	1689.5
15 a	1699.9
16a	1706.1
17a	1701.9
18a	1698.5
19a	1707.4
20a	1670.9
21 a	1691.1
22a	1690.1
23a	1686.2
24a	1686.2

Table S5. IR carbonyl stretching values of ketones.

7. Analytics

7.1. Determination of conversions by achiral GC

The following columns were used: Column A: Varian Chirasil Dex CB (25 m x 0.25 mm x 0.25 μ m, 12.2 psi N₂); Column B: Hewlett Packard HP1 (30 m x 0.32 mm x 0.25 μ m, 12.2 psi N₂).

compound	column	program ^a	retention time (min)	
			а	b
1	А	110/0/2.5/120/0/10/200/1	4.9	6.7
2	В	110/0/2.5/120/0/10/200/1	6.2	8.0
3	В	110/0/2.5/120/0/10/200/1	7.3	9.3
4	А	70/4/20/110/0/10/130/0/20/200/2	9.6	10.5
5	В	70/4/20/110/0/10/130/0/20/200/1	7.4	7.2
6	В	70/4/20/110/0/10/130/0/20/200/5	11.7	12.5
7	А	110/3/3/180/1	4.2	14.0
8	В	80/20/20/200/2	14.9	19.0
9	В	80/20/20/200/2	22.1	23.0
10	В	80/20/20/200/2	23.9	24.3
11	В	80/10/20/200/2	1.4	2.7
12	В	80/20/20/200/2	21.6	23.4
13	В	80/20/20/200/5	25.9	26.2
14	В	80/10/20/200/2	7.5	11.4
15	В	80/10/20/200/2	8.7	12.6
16	В	100/20/20/200/2	10.7	5.6
17	В	80/20/20/200/2	21.1	21.9
18	В	70/4/10/100/0/2.5/110/0/20/200/2	11.8	11.6
19	В	80/10/20/200/2	13.7	12.8
20	В	100/20/20/200/2	23.2	23.9
21	А	80/10/20/200/2	15.1	16.0

Table S6. Determination of conversion	ions by GC.
---------------------------------------	-------------

it.)	
	ıt.)

22	В	80/20/20/200/2	18.2	15.4
23	А	100/0/5/200/2	5.9	15.9
24	А	100/0/5/200/2	5.9	16.9

^{*a*} Program: initial temp. (°C)/ time (min)/ slope (°C/min)/ temp. (°C)/ time (min)/ slope (°C/min)/ temp. (°C)/ time (min)/ slope (°C/min)/ final temp. (°C)/ time (min).

7.2. Determination of ee by chiral GC

The following columns were used: Column A: Varian Chirasil Dex CB (25 m x 0.25 mm x 0.25 μ m, 12.2 psi N₂); column B: Restek RT-BetaDEXse (30 m x 0.25 mm x 0.25 μ m, 12.2 psi N₂); column C: Restek RT-GAMMA DEXsa (30 m x 0.25 mm x 0.25 μ m, 12.2 psi N₂).

compound	column	program ^a	retention time (min)	
			R	S
$1b^b$	А	110/0/2.5/120/0/10/200/1	6.4	6.1
$2\mathbf{b}^{b}$	А	110/0/2.5/120/0/10/200/1	7.0	6.8
4 b	А	120/20/60/200/1	15.8	14.5
$5b^b$	В	110/0/5/160/10/20/180/2	18.0	18.6
6b	В	110/0/5/160/10/20/180/1	18.6	18.0
7b	А	110/3/3/180/2	14.2	13.5
8b	В	90/5/3/180/4	33.5	32.8
10b	В	110/0/5/160/20/20/180/5	32.8	31.8
11b	А	120/20/60/200/1	17.2	16.1
14b	С	90/10/5/160/20/20/180/10	46.3	46.6
17b	В	170/10/2.5/200/0	14.5	13.9
18b ^b	В	90/5/2.5/105/0/5/135/0/2.5/145/20/20/180/2	37.8	38.4
21b	С	110/0/2.5/120/0/10/200/5	13.7	13.9
22b	С	70/4/10/100/0/2.5/110/0/20/200/10	19.4	19.6

Table S7. Determination of *ee* by chiral GC.

^{*a*} Program: initial temp. (°C)/ time (min)/ slope (°C/min)/ temp. (°C)/ time (min)/ slope (°C/min)/ temp. (°C)/ time (min)/ slope (°C/min)/ final temp. (°C)/ time (min). ^{*b*} Measured as acetate derivative.

8. Supporting references

1. M. Mąkosza and R. Bujok, J. Fluor. Chem., 2005, 126, 209-216.

2. C. Mellin-Morlière, D. J. Aitken, S. D. Bull, S. G. Davies and H.-P. Husson, *Tetrahedron: Asymmetry*, 2001, **12**, 149-155.

3. J. G. Aston, J. D. Newkirk, J. Dorsky and D. M. Jenkins, J. Am. Chem. Soc., 1942, 64, 1413-1416.

4. P. A. Morken, P. C. Bachand, D. C. Swenson and D. J. Burton, *J. Am. Chem. Soc.*, 1993, **115**, 5430-5439.

5. A. Podgorsek, M. Jurisch, S. Stavber, M. Zupan, J. Iskra and J. A. Gladysz, *J. Org. Chem.*, 2009, **74**, 3133-3140.

6. J. Barluenga, L. Llavona, J. M. Concellón and M. Yus, J. Chem. Soc., Perkin Trans. 1, 1991, 297-300.

7. C. Ye and J. M. Shreeve, J. Org. Chem., 2004, 69, 8561-8563.

8. F. R. Bisogno, I. Lavandera, W. Kroutil and V. Gotor, J. Org. Chem., 2009, 74, 1730-1732.

9. K. Edegger, C. C. Gruber, T. M. Poessl, S. R. Wallner, I. Lavandera, K. Faber, F. Niehaus,

J. Eck, R. Oehrlein, A. Hafner and W. Kroutil, Chem. Commun., 2006, 2402-2404.

10. H. Li, Z. He, X. Guo, W. Li, X. Zhao and Z. Li, Org. Lett., 2009, 11, 4176-4179.

11. A. O. Terent'ev, S. V. Khodykin, I. B. Krylov, Y. N. Ogibin and G. I. Nikishin, *Synthesis*, 2006, 1087-1092.

12. C. Sabot, K. A. Kumar, C. Antheaume and C. Mioskowski, J. Org. Chem., 2007, 72, 5001-5004.

13. M. C. Myers, J. Wang, J. A. Iera, J.-k. Bang, T. Hara, S. Saito, G. P. Zambetti and D. H. Appella, *J. Am. Chem. Soc.*, 2005, **127**, 6152-6153.

14. G. Stavber, M. Zupan, M. Jereb and S. Stavber, Org. Lett., 2004, 6, 4973-4976.

15. L. H. Andrade, L. P. Rebelo, C. G. C. M. Netto and H. E. Toma, *J. Mol. Catal. B: Enzym.*, 2010, **66**, 55-62.

P. Beier, A. V. Alexandrova, M. Zibinsky and G. K. Surya Prakash, *Tetrahedron*, 2008,
 64, 10977-10985.

17. P. V. Ramachandran, B. Gong and A. V. Teodorovic, J. Fluor. Chem., 2007, **128**, 844-850.

18. B. Singh, P. Gupta, A. Chaubey, R. Parshad, S. Sharma and S. C. Taneja, *Tetrahedron: Asymmetry*, 2008, **19**, 2579-2588.

19. a) S. Sibille, S. Mcharek and J. Perichon, *Tetrahedron*, 1989, **45**, 1423-1428; b) L. C. M. Castro, D. Bezier, J. B. Sortais and C. Darcel, *Adv. Synth. Catal.*, 2011, **353**, 1279-1284.

20. R. N. Ram and T. P. Manoj, *J. Org. Chem.*, 2008, **73**, 5633-5635.

21. F. K. Cheung, A. M. Hayes, J. Hannedouche, A. S. Y. Yim and M. Wills, *J. Org. Chem.*, 2005, **70**, 3188-3197.

22. P. S. Prathima, C. U. Maheswari, K. Srinivas and M. M. Rao, *Tetrahedron Lett.*, 2010, **51**, 5771-5774.

23. J. M. Saá, F. Tur, J. González and M. Vega, Tetrahedron: Asymmetry, 2006, 17, 99-106.

24. L. Veum, S. R. M. Pereira, J. C. van der Waal and U. Hanefeld, *Eur. J. Org. Chem.*, 2006, 1664-1671.

25. A. R. Katritzky, S. K. Singh, C. Cai and S. Bobrov, J. Org. Chem., 2006, 71, 3364-3374.

26. K. Y.-K. Chow and J. W. Bode, J. Am. Chem. Soc., 2004, 126, 8126-8127.

27. C. W. Downey and M. W. Johnson, Tetrahedron Lett., 2007, 48, 3559-3562.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2013 2-bromo-2-chloro-1-phenylethanol 1H NMR (300 MHz)

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2013 2-bromo-2-chloro-1-phenylethanol 13 NMR (300 MHz)

Т f1 (ppm) S20

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2013 2-bromo-2-chloro-1-phenylethanol DEPT 135 NMR (300 MHz)

f1 (ppm) S21