ELECTRONIC SUPPLEMENTARY INFORMATION Regioselective One-Pot Protection, Protection-Glycosylation and Protection-Glycosylation-Glycosylation of Carbohydrates: A Case Study with d-Glucose

Teng-Yi Huang, Medel Manuel L. Zulueta, and Shang-Cheng Hung*
Genomics Research Center \& Institute of Chemistry, Academia Sinica, 128, Section 2, Academia Road, Taipei 115, Taiwan

General considerations. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was purified and dried from a safe purification system filled with anhydrous $\mathrm{Al}_{2} \mathrm{O}_{3}$. Dry $\mathrm{CH}_{3} \mathrm{CN}$ was freshly distilled from CaH_{2} under N_{2} atmosphere. All other reagents were obtained from commercial sources and used without further purification. Water was either distilled or Milli-Q-purified. Flash column chromatography was carried out on Silica Gel 60 (230-400 mesh, E. Merck). TLC was performed on glass plates pre-coated with Silica Gel 60 F254 (0.25 mm , E. Merck); detection was executed by spraying with a solution of $\mathrm{Ce}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{NO}_{3}\right)_{6},\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24}$, and $\mathrm{H}_{2} \mathrm{SO}_{4}$ in water followed subsequent heating on a hot plate. Specific rotations were taken at ambient conditions and reported in $10^{-1} \cdot \mathrm{deg} \cdot \mathrm{cm}^{2} \cdot \mathrm{~g}^{-1}$; the sample concentrations are in $g \cdot \mathrm{dL}^{-1} .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on 400 and 600 MHz spectrometers. Proton peaks were assigned with the aid of 2D NMR techniques $\left({ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}\right.$ COSY, HMQC and NOESY). Coupling constants are given in Hz. The hydrogen multiplicities of carbon peaks were determined using DEPT-90 and DEPT-135 experiments.

4-Methylphenyl 3,4-di-O-benzyl-1-thio- $\boldsymbol{\beta}$-d-glucopyranoside (2). TMSOTf (5 $\boldsymbol{\mu} \mathrm{L}, 26$ $\mu \mathrm{mol})$ was added to a solution of compound $\mathbf{1}(100 \mathrm{mg}, 174 \mu \mathrm{~mol})$ and benzaldehyde ($19 \mu \mathrm{~L}$, $190 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ with freshly dried $3 \AA$ molecular sieves $(120 \mathrm{mg})$ at $-78{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. The mixture was kept stirring at same temperature for $2 \mathrm{~h} . \mathrm{Et}_{3} \mathrm{SiH}$ ($31 \mu \mathrm{~L}, 190$ $\mu \mathrm{mol}$), benzaldehyde ($18 \mu \mathrm{~L}, 183 \mu \mathrm{~mol}$) and TMSOTf ($5 \mu \mathrm{~L}, 26 \mu \mathrm{~mol}$) were sequentially added to the reaction solution. After stirring for 2.5 h at $-78^{\circ} \mathrm{C}$, the reaction flask was moved to $0{ }^{\circ} \mathrm{C}$, and BH_{3}. THF (1 m solution in THF, $0.87 \mathrm{~mL}, 0.87 \mathrm{mmol}$) was added to the reaction mixture, followed by addition of TMSOTf ($16 \mu \mathrm{~L}, 0.087 \mathrm{mmol}$). The solution was kept stirring for another 5 h at $0^{\circ} \mathrm{C}$. The reaction was slowly quenched with $\mathrm{MeOH}(5 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$. The mixture was filtered through a pad of Celite, and the filtrate was coevaporated with MeOH under reduced pressure. The residue was partitioned between ethyl acetate and $\mathrm{H}_{2} \mathrm{O}$ and the combined organic layer was washed with brine, dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. Purification of the residue by flash column chromatography (ethyl acetate/hexanes = 1/2) gave the 2,6-diol $2(70 \mathrm{mg}, 86 \%)$ as a white solid. m.p. $115-118{ }^{\circ} \mathrm{C} ;[\alpha]^{28}{ }_{\mathrm{D}}-29.5$ (c 0.9 in CHCl_{3}); IR (thin film): $v 3391,3031,2875,1495,1454$, 1090, 807, 733, $697 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.43$ (2 H, d, J 8.1, Ar-H), 7.38-7.28 (10 H, m, Ar-H), 7.12 (2 H, d, J 8.1, Ar-H), 4.94 ($1 \mathrm{H}, \mathrm{d}, J 11.3, \mathrm{ArCH}_{2}$), 4.86 (1 H, d, J 11.3, $\left.\mathrm{ArCH}_{2}\right), 4.85\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.0, \mathrm{ArCH}_{2}\right), 4.64\left(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{ArCH}_{2}\right), 4.50(1 \mathrm{H}, \mathrm{d}, J$ 9.3, 1-H), $3.89\left(1 \mathrm{H}, \mathrm{d}, J 11.8,6-\mathrm{H}_{\mathrm{a}}\right), 3.72-3.69\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{b}}\right), 3.61(1 \mathrm{H}, \mathrm{t}, J 9.3,2-\mathrm{H}), 3.52(1 \mathrm{H}, \mathrm{t}, J 9.3$, 3-H), 3.50-3.39 (2 H, m, 4-H, 5-H), 2.71 (1H, d, J 1.9, 2-OH), 2.33 (3 H, s, CH3), 2.27 (1 H, br s, 6-OH); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 138.5$ (C), 138.4 (C), $137.8(\mathrm{C}), 133.3(\mathrm{CH}), 129.8(\mathrm{CH})$,
$128.4(\mathrm{CH}), 127.9(\mathrm{CH}), 127.87(\mathrm{CH}), 127.83(\mathrm{CH}), 127.7(\mathrm{CH}), 127.6(\mathrm{C}), 88.2(\mathrm{CH}), 85.7$ $(\mathrm{CH}), 79.5(\mathrm{CH}), 77.1(\mathrm{CH}), 75.2\left(\mathrm{CH}_{2}\right), 75.0\left(\mathrm{CH}_{2}\right), 72.6(\mathrm{CH}), 61.9\left(\mathrm{CH}_{2}\right), 21.1\left(\mathrm{CH}_{3}\right)$; HRMS (ESI): m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{SNa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 489.1712$, found: 489.1711.

4-Methylphenyl 3,6-di-O-benzyl-1-thio- $\boldsymbol{\beta}$-D-glucopyranoside (3). TMSOTf (5 $\boldsymbol{\mu} \mathrm{L}, 26$ $\mu \mathrm{mol}$) was added to a solution of compound $1(100 \mathrm{mg}, 174 \mu \mathrm{~mol})$ and benzaldehyde ($19 \mu \mathrm{~L}$, $190 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ with freshly dried $3 \AA$ molecular sieves $(120 \mathrm{mg})$ at $-78{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. The mixture was stirred at same temperature for 2 h . $\mathrm{Et}_{3} \mathrm{SiH}(31 \mu \mathrm{~L}, 190 \mu \mathrm{~mol})$, benzaldehyde ($18 \mu \mathrm{~L}, 183 \mu \mathrm{~mol}$) and TMSOTf ($5 \mu \mathrm{~L}, 26 \mu \mathrm{~mol}$) were sequentially added to the reaction solution. After stirring for another 2.5 h at $-78^{\circ} \mathrm{C}$, the reaction flask was moved to $0^{\circ} \mathrm{C}$, and $\mathrm{Me}_{2} \mathrm{EtSiH}(70 \mu \mathrm{~L}, 522 \mu \mathrm{~mol})$ and $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ were added to the reaction mixture followed by addition of TMSOTf ($6 \mu \mathrm{~L}, 35 \mu \mathrm{~mol}$), and the solution was kept stirring for another 1 h at $0^{\circ} \mathrm{C}$. The reaction was slowly quenched with $\mathrm{Et}_{3} \mathrm{~N}(2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, the mixture was filtered through a pad of Celite, and the filtrate was concentrated under reduced pressure. Purification of the residue by flash column chromatography (ethyl acetate/hexanes $=1 / 2$) supplied the 2,4-diol 3 (58mg, 72\%) as a white solid. m.p. $95-97^{\circ} \mathrm{C}$; $[\alpha]^{28}{ }_{\mathrm{D}}-35.8$ (c 0.66 in CHCl_{3}); IR (thin film): v 3442, 2919, 1494, 1453, 1361, 1071, 809, 736, $698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.45-7.42$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), 7.38-7.25 (10 H, m, Ar-H), 7.06 (2 H, d, J 7.9, Ar-H), $4.93\left(1 \mathrm{H}, \mathrm{d}, J 11.6, \mathrm{ArCH}_{2}\right), 4.79\left(1 \mathrm{H}, \mathrm{d}, J 11.6, \mathrm{ArCH}_{2}\right), 4.59\left(1 \mathrm{H}, \mathrm{d}, J 12.0, \mathrm{ArCH}_{2}\right)$, $4.55\left(1 \mathrm{H}, \mathrm{d}, J 12.0, \mathrm{ArCH}_{2}\right), 4.45(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.3,1-\mathrm{H}), 3.78-3.75\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{a}}, 6-\mathrm{H}_{\mathrm{b}}\right), 3.60-3.55$
($1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$), 3.51-3.38 (3 H, m, 3-H, 4-H, 5-H), $2.69(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.2, \mathrm{OH}), 2.52(1 \mathrm{H}, \mathrm{d}, J 1.6$,

OH), $2.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 138.44$ (C), 138.41 (C), 137.9 (C), 133.5 (CH), 129.7 (CH), 128.6 (CH), 128.4 (CH), $128.0(\mathrm{CH}), 127.9(\mathrm{CH}), 127.7(\mathrm{CH}), 127.6$ $(\mathrm{CH}), 80.4(\mathrm{CH}), 85.1(\mathrm{CH}), 78.5(\mathrm{CH}), 74.8\left(\mathrm{CH}_{2}\right), 73.6\left(\mathrm{CH}_{2}\right), 72.1(\mathrm{CH}), 71.1(\mathrm{CH}), 70.2(\mathrm{C})$, $21.1\left(\mathrm{CH}_{3}\right)$; HRMS (ESI): m/z calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{SNa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$489.1712, found 489.1711 .

4-Methylphenyl 2-O-acetyl-4-O-benzyl-1-thio- β-d-glucopyranoside (4). A solution of

 compound $1(100 \mathrm{mg}, 174 \mu \mathrm{~mol})$ and benzaldehyde (19 $\mu \mathrm{L}, 190 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ with freshly dried $3 \AA$ molecular sieves (120 mg) was stirred at $-78{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. TMSOTf ($5 \mu \mathrm{~L}, 26 \mu \mathrm{~mol}$) was added to the solution, and the mixture was kept stirring at the same temperature for $2 \mathrm{~h} . \mathrm{Et}_{3} \mathrm{SiH}(31 \mu \mathrm{~L}, 191 \mu \mathrm{~mol})$, 2-NaphCHO ($29 \mathrm{mg}, 183 \mu \mathrm{~mol}$) and TMSOTf ($5 \mu \mathrm{~L}, 26 \mu \mathrm{~mol}$) were consecutively added to the reaction solution. The resultant mixture was stirred for another $3 \mathrm{~h} . \mathrm{Ac}_{2} \mathrm{O}(25 \mu \mathrm{~L}, 261 \mu \mathrm{~mol})$ and TMSOTf ($5 \mu \mathrm{~L}, 26 \mu \mathrm{~mol}$) were consecutively added to the solution. The reaction flask was moved to $0^{\circ} \mathrm{C}$, and the mixture was stirred for 1 h . $\mathrm{BH}_{3} \cdot$ THF (1 M solution in THF, $0.52 \mathrm{~mL}, 0.52 \mathrm{mmol}$) was added to the reaction mixture followed by addition of TMSOTf ($16 \mu \mathrm{~L}, 87 \mu \mathrm{~mol}$). The solution was kept stirring for another 5 h at $0^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was slowly added to the solution, the whole mixture was vigorously stirred for 5 min , and the aqueous layer was removed from the reaction bottle by using a pipette. DDQ ($119 \mathrm{mg}, 522 \mu \mathrm{~mol}$) was then added to the solution. The mixture was stirred at room temperature for another 3 h . The reaction mixture was quenched by saturated $\mathrm{NaHCO}_{3(\mathrm{qq)}}(5 \mathrm{~mL})$ and $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3(\mathrm{aq)}}(5 \mathrm{~mL})$, followed by filtration through a pad of Celite. The desired material was extracted with ethyl acetate, and the combined organic layer waswashed with brine, dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. Purification of this residue via flash column chromatography (ethyl acetate/hexanes = $1 / 2$) furnished the desired 3,6-diol $4(30 \mathrm{mg}, 41 \%)$ as a white solid. m.p. $106-111{ }^{\circ} \mathrm{C} ;[\alpha]^{28}{ }_{\mathrm{D}}-20$ (c 0.4 in CHCl_{3}); IR (thin film): v 3438, 2922, 1749, 1493, 1371, 1231, 1043, $752 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.35-7.24$ (7 H, m, Ar-H), 7.10 (2 H, d, J 8.4, Ar-H), 4.79 (1 H, d, J 11.3, ArCH_{2}), 4.77 (1 H, t, J 9.6, 2-H), $4.69\left(1 \mathrm{H}, \mathrm{d}, J 11.3, \mathrm{ArCH}_{2}\right), 4.58(1 \mathrm{H}, \mathrm{d}, J 9.6,1-\mathrm{H})$, 3.88 (1 H, d, J 11.8, 6-Ha), 3.78-3.69 (2 H, m, 3-H, 6-Hb), 3.47 (1 H, t, J 9.6, 4-H), 3.36 (1 H, ddd, J 9.6, 4.4, 2.6, 5-H), $2.66(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{OH}), 2.31\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.14\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.83(1 \mathrm{H}, \mathrm{s}$, 6-OH); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 170.6(\mathrm{C}), 138.4(\mathrm{C}), 137.8(\mathrm{C}), 133.0(\mathrm{CH}), 129.8(\mathrm{CH})$, $128.6(\mathrm{CH}), 128.4(\mathrm{C}), 128.1(\mathrm{CH}), 85.8(\mathrm{CH}), 79.2(\mathrm{CH}), 77.6(\mathrm{CH}), 76.9(\mathrm{CH}), 74.9\left(\mathrm{CH}_{2}\right)$, $72.6(\mathrm{CH}), 61.9\left(\mathrm{CH}_{2}\right)$, $21.1\left(\mathrm{CH}_{3}\right)$, $21.0\left(\mathrm{CH}_{3}\right)$; HRMS (ESI): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{SNa}$ ([M + $\mathrm{Na}]^{+}$): 441.1348, found: 441.1342.

4-Methylphenyl 2-O-acetyl-6-O-benzyl-1-thio- $\boldsymbol{\beta}$-D-glucopyranoside (5). TMSOTf (5 $\mu \mathrm{L}$, $26 \mu \mathrm{~mol}$) was added to a solution of compound $1(100 \mathrm{mg}, 174 \mu \mathrm{~mol})$, benzaldehyde ($19 \mu \mathrm{~L}, 190$ $\mu \mathrm{mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ with freshly dried $3 \AA$ molecular sieves $(120 \mathrm{mg})$ at $-78{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. The mixture was kept stirring at the same temperature for 2 h . $\mathrm{Et}_{3} \mathrm{SiH}(31 \mu \mathrm{~L}, 190$ $\mu \mathrm{mol}$), 2-NaphCHO ($29 \mathrm{mg}, 183 \mu \mathrm{~mol}$) and TMSOTf ($5 \mu \mathrm{~L}, 26 \mu \mathrm{~mol}$) were consecutively added to the reaction solution and the mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for another $3 \mathrm{~h} . \mathrm{Ac}_{2} \mathrm{O}(18 \mu \mathrm{~L}, 261$ $\mu \mathrm{mol}$) and TMSOTf ($5 \mu \mathrm{~L}, 26 \mu \mathrm{~mol}$) were consecutively added to the solution, the reaction flask
was moved to $0^{\circ} \mathrm{C}$, and the mixture was stirred at the same temperature $1 \mathrm{~h} . \mathrm{Me}_{2} \mathrm{EtSiH}(46 \mu \mathrm{~L}$, 0.348 mmol) and $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ were added to the reaction mixture followed by TMSOTf ($6 \mu \mathrm{~L}$, $35 \mu \mathrm{~mol})$, and the solution was kept stirring for another 1 h at $0^{\circ} \mathrm{C}$. DDQ ($119 \mathrm{mg}, 522 \mu \mathrm{~mol}$) and $\mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{~mL})$ were added to the solution, and the mixture was stirred at room temperature for 3 h . The reaction mixture was quenched by saturated $\mathrm{NaHCO}_{3(\mathrm{aq)}}(5 \mathrm{~mL})$ and 10% $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3(\text { aq) }}(5 \mathrm{~mL})$, then filtered through a pad of Celite. The desired material was extracted with ethyl acetate and the combined organic layer was washed with brine, dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. Purification of the residue via flash column chromatography (ethyl acetate/hexanes = 1/2) furnished the 3,4-diol $5(34 \mathrm{mg}, 47 \%)$ as a white solid. m.p. $155-157{ }^{\circ} \mathrm{C}$; $[\alpha]^{28}{ }_{\mathrm{D}}+40.7$ (c 0.36 in CHCl_{3}); IR (thin film): v 3491, 2920, 2872, 1723, 1495, 1375, 1268, 1077, 1049, 743, $695 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38-$ 7.26 (7 H, m, Ar-H), 7.04 (2 H, d, J 8.3, Ar-H), 4.75 (1 H, t, J 9.2, 2-H), 4.57 (1 H, d, J 11.8, $\left.\mathrm{ArCH}_{2}\right), 4.56(1 \mathrm{H}, \mathrm{d}, J 9.2,1-\mathrm{H}), 4.53\left(1 \mathrm{H}, \mathrm{d}, J 11.8, \mathrm{ArCH}_{2}\right), 3.76(2 \mathrm{H}, \mathrm{d}, J 4.5,6-\mathrm{H} \times 2)$, $3.59(1 \mathrm{H}, \mathrm{t}, J 9.2,3-\mathrm{H}), 3.53(1 \mathrm{H}, \mathrm{t}, J 9.2,4-\mathrm{H}), 3.48-3.43(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.26(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$, $3.00(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.14\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 170.7 (C), 138.3 (C), 137.7 (C), 133.2 (CH), 129.6 (CH), 128.4 (CH), 127.8 (C), 127.7 (CH), $85.9(\mathrm{CH}), 78.1(\mathrm{CH}), 76.7(\mathrm{CH}), 73.7\left(\mathrm{CH}_{2}\right), 72.2(\mathrm{CH}), 72.0(\mathrm{CH}), 70.1\left(\mathrm{CH}_{2}\right), 21.1\left(\mathrm{CH}_{3}\right)$, $21.0\left(\mathrm{CH}_{3}\right)$; HRMS (ESI): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{SNa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 441.1348, found: 441.1341 .

4-Methylphenyl 2-O-benzoyl-3-O-benzyl-1-thio- $\boldsymbol{\beta}$-d-glucopyranoside (6). TMSOTf (6.2 $\mu \mathrm{L}, 34 \mu \mathrm{~mol}$) was added to solution of compound $\mathbf{1}$ ($106 \mathrm{mg}, 185 \mu \mathrm{~mol}$), benzaldehyde ($19 \mu \mathrm{~L}$,
$190 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.6 \mathrm{~mL})$ with freshly dried $3 \AA$ molecular sieves (160 mg) at $0{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. The mixture was kept stirring at the same temperature for 2 h . After cooling to to $-78{ }^{\circ} \mathrm{C}, \mathrm{Et}_{3} \mathrm{SiH}(33 \mu \mathrm{~L}, 207 \mu \mathrm{~mol})$, benzaldehyde ($19 \mu \mathrm{~L}, 190 \mu \mathrm{~mol}$) and TMSOTf (3.4 $\mu \mathrm{L}$, $19 \mu \mathrm{~mol}$) were sequentially added, and the resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for another 3 h . The reaction flask was moved to $0{ }^{\circ} \mathrm{C}$, and $\mathrm{Bz}_{2} \mathrm{O}(130 \mathrm{mg}, 0.56 \mathrm{mmol})$, and TMSOTf ($3.4 \mu \mathrm{~L}, 19$ $\mu \mathrm{mol}$) were then added. The reaction flask was gradually warmed up to room temperature and the mixture was stirred at the same temperature for $18 \mathrm{~h} .70 \% \mathrm{TFA}_{\text {(aq) }}(3 \mathrm{~mL})$ was added to the resulting solution and the mixture was continuously stirred at room temperature for another 1 h . The reaction was quenched by saturated $\mathrm{NaHCO}_{3(\mathrm{aq})}$, and the desired material was extracted with ethyl acetate. The combined organic layer was washed with brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (ethyl acetate/hexanes = 1/1) to afford the 4,6-diol 6 (67 mg, 75\%). mp 117$118{ }^{\circ} \mathrm{C} ;[\alpha]^{22}{ }_{\mathrm{D}}+12.9\left(c 1.0\right.$ in CHCl_{3}); IR (thin film): $v 3630,3100,1724,1267,1254,1094$, $1070 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 8.07-8.05(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.61-7.57(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$, 7.49-7.44 (2 H, m, Ar-H), 7.30 (2 H, d, J 8.1, Ar-H), 7.21-7.15 (5 H, m, Ar-H), 7.06 (2 H, d, J 7.9, Ar-H), 5.20 (1 H, dd, J 10.0, 9.0, 2-H), 4.75 (1 H, d, J 10.0, 1-H), 4.70 (1 H, d, J 11.4, $\left.\mathrm{ArCH}_{2}\right), 4.55\left(1 \mathrm{H}, \mathrm{d}, J 11.4, \mathrm{ArCH}_{2}\right), 3.90\left(1 \mathrm{H}, \mathrm{ddd}, J 12.0,6.6,3.4,6-\mathrm{H}_{\mathrm{a}}\right), 3.81-3.75(1 \mathrm{H}, \mathrm{m}$, 6- H_{b}), 3.71-3.66 (2 H, m, 3-H, 4-H), 3.46-3.42 (1 H, m, 5-H), 2.37 (1 H, d, J 2.2, 4-OH), 2.30 (3 $\mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}$), 2.11 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.6,6-\mathrm{OH}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.2$ (C), 138.4 (C), 137.6 (C), 133.3 (CH), 133.1 (CH), 129.9 (CH), 129.7 (CH), 128.6 (C), 128.51 (CH), 128.49 $(\mathrm{CH}), 128.0(\mathrm{CH}), 86.6(\mathrm{CH}), 83.9(\mathrm{CH}), 79.4(\mathrm{CH}), 74.8\left(\mathrm{CH}_{2}\right), 72.4(\mathrm{CH}), 70.3(\mathrm{CH}), 62.6$ $\left(\mathrm{CH}_{2}\right), 21.1\left(\mathrm{CH}_{3}\right)$; HRMS (FAB): m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{O}_{6} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 481.1685, found: 481.1696.

4-Methylphenyl 2,3-di- \boldsymbol{O}-acetyl-1-thio- $\boldsymbol{\beta}$-D-glucopyranoside (7). TMSOTf (5 $\boldsymbol{\mu} \mathrm{L}, 26$ $\mu \mathrm{mol}$) was added to a solution of compound $1(100 \mathrm{mg}, 174 \mu \mathrm{~mol})$ and benzaldehyde ($19 \mu \mathrm{~L}$, $190 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ with freshly dried $3 \AA$ molecular sieves $(120 \mathrm{mg})$ at $0{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. The mixture was stirred at same temperature for $2 \mathrm{~h} . \mathrm{Ac}_{2} \mathrm{O}(40 \mu \mathrm{~L}, 418 \mu \mathrm{~mol})$ and TMSOTf ($10 \mu \mathrm{~L}, 52 \mu \mathrm{~mol}$) were consecutively added to the solution, and the mixture was stirred at the same temperature. After stirring for $1 \mathrm{~h}, 70 \% \mathrm{TFA}_{(\mathrm{aq})}(1 \mathrm{~mL})$ was added to the resulting solution, ice-bath was removed, and the reaction was continuously stirred at room temperature for another 1 h . The reaction was quenched by saturated $\mathrm{NaHCO}_{3(a q)}$ (5 mL), and the desired material was extracted with ethyl acetate. The combined organic layer was washed with brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure. Purification of the residue by flash column chromatography (ethyl acetate/hexanes $=2 / 1$) to acquire the 2,3-diacetate 7 (45 mg, 70%) as a colorless oil. $[\alpha]^{28}{ }_{\mathrm{D}}-28.4\left(c 0.88, \mathrm{CHCl}_{3}\right.$); IR (thin film): $v 3441,2930,1752$, 1374, 1044, 900, 808, $759 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.32$ ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.1, \mathrm{Ar}-\mathrm{H}$), 7.08 (2 H, d, J 8.1, Ar-H), 5.03 (1 H, t, J 9.6, 2-H), 4.84 (1 H, t, J 9.6, 3-H), 4.65 (1 H, d, J 9.6, 1-H), 3.87 (1 H, dd, J 12.1, 3.3, 6-H ${ }^{2}$), 3.77 ($1 \mathrm{H}, \mathrm{dd}, J 12.1,4.3,6-\mathrm{H}_{\mathrm{b}}$), 3.66 ($1 \mathrm{H}, \mathrm{t}, J 9.6,4-\mathrm{H}$), 3.6 (1 H, br s, OH), 3.38 (1 H, ddd, J 9.6, 4.3, 3.3, 5-H), $2.69\left(1 \mathrm{H}, \mathrm{br}\right.$ s, OH), $2.3\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.05$ (3 $\left.\mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.3(\mathrm{C}), 169.6(\mathrm{C}), 133.1(\mathrm{CH})$, 129.8 (CH), 128.1 (C), 85.9 (CH), 79.6 (CH), 76.8 (CH2), $70.15(\mathrm{CH}), 68.7(\mathrm{CH}), 61.9\left(\mathrm{CH}_{2}\right)$, $21.1\left(\mathrm{CH}_{3}\right)$, $20.8\left(\mathrm{CH}_{3}\right)$, $20.8\left(\mathrm{CH}_{3}\right)$; HRMS (ESI): m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{SNa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 393.0984, found: 393.0992.

8

4-Methylphenyl \quad 2,6-di- O-acetyl-3,4-di- O-benzyl-1-thio- β-d-glucopyranoside (8). TMSOTf ($5 \mu \mathrm{~L}, 26 \mu \mathrm{~mol}$) was added to a solution of compound $\mathbf{1}(100 \mathrm{mg}, 174 \mu \mathrm{~mol}$) and benzaldehyde ($19 \mu \mathrm{~L}, 190 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ with freshly dried $3 \AA$ molecular sieves (160 mg) at $-78{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. The mixture was stirred at same temperature for 2 h . $\mathrm{Et}_{3} \mathrm{SiH}(31 \mu \mathrm{~L}, 190 \mu \mathrm{~mol}$), benzaldehyde ($18 \mu \mathrm{~L}, 183 \mu \mathrm{~mol}$) and TMSOTf ($5 \mu \mathrm{~L}, 26 \mu \mathrm{~mol}$) were sequentially added to the reaction solution. After stirring at $-78{ }^{\circ} \mathrm{C}$ for another 2.5 h , the reaction flask was moved to $0{ }^{\circ} \mathrm{C} . \mathrm{BH}_{3} \cdot \mathrm{THF}(1 \mathrm{~m}$ solution in THF, $0.87 \mathrm{~mL}, 0.87 \mathrm{mmol}$) was added to the reaction mixture followed by TMSOTf ($16 \mu \mathrm{~L}, 87 \mu \mathrm{~mol}$), and the solution was kept stirring for another 5 h at $0^{\circ} \mathrm{C}$. Borane was slowly quenched with $\mathrm{MeOH}(70 \mu \mathrm{~L}, 1.74 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, followed by further stirring for $30 \mathrm{~min} . \mathrm{Et}_{3} \mathrm{~N}(1.4 \mathrm{~mL}, 8.7 \mathrm{mmol}), \mathrm{Ac}_{2} \mathrm{O}(0.66 \mathrm{~mL}, 6.96$ mmol) and DMAP ($2 \mathrm{mg}, 17.4 \mu \mathrm{~mol}$) were added to the reaction mixture and the solution was stirred at room temperature for another 12 h . The whole mixture was filtered through a pad of Celite. $\mathrm{H}_{2} \mathrm{O}$ was added to the filtrate followed by extraction with ethyl acetate. The combined organic layer was washed with brine, dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure to give a residue, which was purified by flash column chromatography (ethyl acetate/hexanes = 1/4) to afford the diacetate $\mathbf{8}(74 \mathrm{mg}, 77 \%)$ as a white solid. m.p. 132$136{ }^{\circ} \mathrm{C} ;[\alpha]^{28}{ }_{\mathrm{D}}+10.9\left(c 0.76\right.$ in CHCl_{3}); IR (thin film): $v 2901,1742,1453,1358,1238,1126$, 1043, 808, 743, $696 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.36$ (2 h, d, J 8.1, Ar-H), 7.34-7.24 (8 H, m, Ar-H), 7.23-7.22 (2 H, m, Ar-H), 7.07 (2 H, d, J 7.8, Ar-H), 4.94 (1 H, t, J 9.8, 2-H), 4.80-4.76 (2 H, m, ArCH 2), $4.66\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.3, \mathrm{ArCH}_{2}\right), 4.54\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.6, \mathrm{ArCH}_{2}\right), 4.51(1 \mathrm{H}$, d, J 9.8, 1-H), 4.38 (1 H, dd, J 11.9, 1.8, 6-H H_{a}), $4.15\left(1 \mathrm{H}, \mathrm{dd}, J 11.9,4.7,6-\mathrm{H}_{\mathrm{b}}\right), 3.67(1 \mathrm{H}, \mathrm{t}, J$
8.7, 3-H), 3.56-3.52 (2 H, m, 4-H, 5-H), $2.31\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.00(3 \mathrm{H}, \mathrm{s}$, CH_{3}); ${ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}): $\delta 170.5$ (C), 169.4 (C), 138.1 (C), 137.8 (C), 137.4 (C), 133.18 (CH), 129.4 (CH), 128.5 (C), 128.4 (CH), 128.3 (CH), 127.9 (CH), 128.0 (CH), 127.9 $(\mathrm{CH}), 127.8(\mathrm{CH}), 86.0(\mathrm{CH}), 84.4(\mathrm{CH}), 77.3(\mathrm{CH}), 76.9(\mathrm{CH}), 75.3\left(\mathrm{CH}_{2}\right), 75.0\left(\mathrm{CH}_{2}\right), 71.6$ $(\mathrm{CH}), 62.8\left(\mathrm{CH}_{2}\right), 21.0\left(\mathrm{CH}_{3}\right), 20.9\left(\mathrm{CH}_{3}\right), 20.7\left(\mathrm{CH}_{3}\right)$; HRMS (ESI): m/z calcd for $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{O}_{7} \mathrm{SNa}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 573.1923$, found: 573.1924.

9

4-Methylphenyl \quad 2,4-di- O-acetyl-3,6-di- O-benzyl-1-thio- $\boldsymbol{\beta}$-d-glucopyranoside

TMSOTf ($5 \mu \mathrm{~L}, 26 \mu \mathrm{~mol}$) was added to a solution of compound $\mathbf{1}(100 \mathrm{mg}, 174 \mu \mathrm{~mol}$) and benzaldehyde ($19 \mu \mathrm{~L}, 190 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ with freshly dried $3 \AA$ molecular sieves (150 mg) at $-78{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. The mixture was stirred for 2 h at the same temperature. $\mathrm{Et}_{3} \mathrm{SiH}(31 \mu \mathrm{~L}, 190 \mu \mathrm{~mol}$), benzaldehyde ($18 \mu \mathrm{~L}, 183 \mu \mathrm{~mol}$) and TMSOTf ($5 \mu \mathrm{~L}, 26 \mu \mathrm{~mol}$) were sequentially added to the reaction solution. After stirring for another 2.5 h at $-78{ }^{\circ} \mathrm{C}$, the reaction flask was moved to $0^{\circ} \mathrm{C} . \mathrm{Me}_{2} \mathrm{EtSiH}(69 \mu \mathrm{~L}, 522 \mu \mathrm{~mol})$ and $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ were added to the reaction mixture followed by addition of TMSOTf ($5 \mu \mathrm{~L}, 26 \mu \mathrm{~mol}$). The solution was kept stirring for another 1 h at $0^{\circ} \mathrm{C}$. Then, $\mathrm{Ac}_{2} \mathrm{O}(75 \mu \mathrm{~L}, 783 \mu \mathrm{~mol})$ and TMSOTf ($15 \mu \mathrm{~L}, 78$ $\mu \mathrm{mol}$) were consecutively added to the mixture, which stirred further for 12 h at the same temperature. The reaction was slowly quenched by $\mathrm{Et}_{3} \mathrm{~N}(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, the mixture was filtered through a pad of Celite, and the filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography (ethyl acetate/hexanes $=1 / 4$) to obtain the desired fully protected thioglucoside 9 (40 mg, 42\%) as a white solid. m.p. $110-112{ }^{\circ} \mathrm{C}$; $[\alpha]^{28}{ }_{\mathrm{D}}-12.2$ (c
0.76 in CHCl_{3}); IR (thin film): v 2868, 1749, 1495, 1372, 1220, 1061, 808, 737, $698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$): $\delta 7.40$ ($\left.2 \mathrm{H}, \mathrm{d}, ~ J ~ 8.1, ~ A r-H\right), ~ 7.37-7.20 ~(10 ~ H, ~ m, ~ A r-H), ~ 7.03 ~(2 ~ H, ~ d, ~$ J 8.1, Ar-H), 5.04-5.00 (2 H, m, 2-H, 4-H), 4.62-4.55 (3 H, m, 1-H, ArCH $)^{2}$, 4.53-4.47 (2 H, m, ArCH_{2}), 3.70 (1 H, t, J 9.2, 3-H), 3.63-3.54 (3 H, m, 5-H, 6-H × 2), 2.29 ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$), 2.04 (3 H, $\left.\mathrm{s}, \mathrm{CH}_{3}\right), 1.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.4$ (C), 169.2 (C), 138.1 (C), 137.9 (C), 137.8 (C), 132.9 (CH), 129.6 (CH), 128.7 (C), 128.3 (CH), 128.2 (CH), 127.7 (CH), $127.6(\mathrm{CH}), 86.3(\mathrm{CH}), 81.6(\mathrm{CH}), 77.8(\mathrm{CH}), 73.9\left(\mathrm{CH}_{2}\right), 73.6\left(\mathrm{CH}_{2}\right), 71.4(\mathrm{CH}), 70.6(\mathrm{CH})$, $69.7\left(\mathrm{CH}_{2}\right)$, $21.0\left(\mathrm{CH}_{3}\right)$, $20.9\left(\mathrm{CH}_{3}\right)$, $20.7\left(\mathrm{CH}_{3}\right)$; HRMS (ESI): m/z calcd for $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{O}_{7} \mathrm{SNa}([\mathrm{M}+$ $\left.\mathrm{Na}]^{+}\right): 573.1923$, found: 573.1926.

4-Methylphenyl 4-O-benzyl-1-thio- $\boldsymbol{\beta}$-d-glucopyranoside (10). TMSOTf (5 $\mu \mathrm{L}, 26 \mu \mathrm{~mol}$) was added to a mixture of compound $1(100 \mathrm{mg}, 174 \mu \mathrm{~mol})$ and benzaldehyde ($19 \mu \mathrm{~L}, 190 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ with freshly dried $3 \AA$ molecular sieves $(120 \mathrm{mg})$ at $0^{\circ} \mathrm{C}$ under N_{2} atmosphere. After 2 h of stirring at $0^{\circ} \mathrm{C}, \mathrm{BH}_{3} \cdot \mathrm{THF}(1 \mathrm{~m}$ solution in THF, $0.87 \mathrm{~mL}, 0.87 \mathrm{mmol}$) was added to the reaction mixture followed by addition of TMSOTf ($16 \mu \mathrm{~L}, 87 \mu \mathrm{~mol}$). The solution was kept stirring for another 5 h at $0^{\circ} \mathrm{C}$. The reaction was slowly quenched with $\mathrm{MeOH}(5 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}$ (1 mL) at $0{ }^{\circ} \mathrm{C}$, the mixture was filtered through a pad of Celite, and the filtrate was coevaporated with MeOH under reduced pressure. Ethyl acetate and $\mathrm{H}_{2} \mathrm{O}$ were added to the residue followed by extraction with ethyl acetate. The combined organic layer was washed with brine, dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. Purification by flash column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=20 / 1\right)$ provided the 2,3,6-triol $\mathbf{1 0}$
(53 mg, 81\%) as a white solid. m.p. $113-116{ }^{\circ} \mathrm{C} ;[\alpha]^{28}{ }_{\mathrm{D}}-41.7$ (c 0.26 in CHCl_{3}); IR (thin film): $v 3419,1493,1028,807,751,699 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.38(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8, \mathrm{Ar}-\mathrm{H})$, 7.31-7.23 (5 H, m, Ar-H), 7.07 (2 H, d, J 8, Ar-H), 4.83 (1 H, d, J 11.3, ArCH ${ }_{2}$), 4.65 (1 H, d, J 11.3, ArCH_{2}), $4.47(1 \mathrm{H}, \mathrm{d}, J 9.7,1-\mathrm{H}), 3.86\left(1 \mathrm{H}, \mathrm{d}, J 11.8,6-\mathrm{H}_{\mathrm{a}}\right), 3.71-3.67(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 6-$ H_{b}), 3.48 (1 H, br s, OH), 3.44-3.30 (4 H, m, 3-H, 4-H, 5-H, OH), 2.41 (1 H, d, J 1.9, 6-OH), $2.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 138.4$ (C), 138.0 (C), $133.0(\mathrm{CH}), 129.8$ (CH), $128.5(\mathrm{CH}), 127.9(\mathrm{CH}), 127.8(\mathrm{CH}), 87.9(\mathrm{CH}), 79.2(\mathrm{CH}), 78(\mathrm{CH}), 76.9(\mathrm{CH}), 74.7$ $\left(\mathrm{CH}_{2}\right), 72.3(\mathrm{CH}), 62.0\left(\mathrm{CH}_{2}\right), 21.1\left(\mathrm{CH}_{3}\right)$; HRMS (ESI): m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{SNa}([\mathrm{M}+$ $\mathrm{Na}]^{+}$): 399.1242, found: 399.1246.

4-Methylphenyl 6-O-benzyl-1-thio- $\boldsymbol{\beta}$-d-glucopyranoside (11). TMSOTf (5 $\mu \mathrm{L}, 26 \mu \mathrm{~mol}$) was added to a solution of compound $\mathbf{1}(100 \mathrm{mg}, 174 \mu \mathrm{~mol})$ and benzaldehyde ($19 \mu \mathrm{~L}, 190 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ with freshly dried $3 \AA$ molecular sieves $(120 \mathrm{mg})$ at $0^{\circ} \mathrm{C}$ under N_{2} atmosphere. The mixture was stirred at same temperature for 2 h ; then moved to $0^{\circ} \mathrm{C}$ afterwards. $\mathrm{Me}_{2} \mathrm{EtSiH}$ ($46 \mu \mathrm{~L}, 0.522 \mathrm{mmol}$) and $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ were added to the reaction mixture followed by addition of TMSOTf ($6 \mu \mathrm{~L}, 35 \mu \mathrm{~mol}$), and the solution was kept stirring for 1 h at $0^{\circ} \mathrm{C}$. TBAF ($1.74 \mathrm{~mL}, 1.74 \mathrm{mmol}$) was added to the mixture, the reaction flask was gradually warmed up to room temperature, and the solution was kept stirring overnight. The whole mixture was filtered through a pad of Celite, and the filtrate was mixed with saturated $\mathrm{NaHCO}_{3(\mathrm{aq})}(10 \mathrm{~mL})$. The desired material was extracted with ethyl acetate, and the combined organic layer was washed with brine, dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. The
residue was purified by flash column chromatography (ethyl acetate/hexanes $=2 / 1$) to obtain the 2,3,4-triol 11 (32 mg, 51%) as a white solid. m.p. $79-81{ }^{\circ} \mathrm{C}$; $[\alpha]^{28}{ }_{\mathrm{D}}-47.3$ (c 0.4 in CHCl_{3}); IR (thin film): v 3375, 2919, 1493, 1453, 1366, 1045, 808, 733, $696 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.38$ (2 H, d, J 8.1, Ar-H), 7.30-7.21 (5 H, m, Ar-H), 6.97 (2 H, d, J 8.1, Ar-H), 4.87 (1 H, br s, OH), 4.35-4.43 (3 H, m, 1-H, ArCH 2), $4.28(1 \mathrm{H}, \mathrm{br}$ s, OH), $4.12(1 \mathrm{H}, \mathrm{br}$ s, OH), 3.72 (1 H, dd, J 10.9, 2.8, 6-Ha), 3.64 (1 H, dd, J 10.9, 4.9, 6-Hb), 3.53-3.38 (3 H, m, 2-H, 3-H, 5-H), $3.3(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 9.1,4-\mathrm{H}), 2.23\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 138.0(\mathrm{C}), 137.9(\mathrm{C})$, 133.0 (CH), 129.7 (CH), 128.5 (CH), 128.4 (CH), 127.8 (CH), 127.67 (CH), 87.9 (CH), 78.7 $(\mathrm{CH}), 77.9(\mathrm{CH}), 73.6\left(\mathrm{CH}_{2}\right), 71.9(\mathrm{CH}), 70.7(\mathrm{CH}), 69.9\left(\mathrm{CH}_{2}\right), 21.1\left(\mathrm{CH}_{3}\right)$; HRMS (ESI): m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{SNa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 399.1242, found: 399.1248.

12

4-Methylphenyl 3-O-benzyl-1-thio- $\boldsymbol{\beta}$-d-glucopyranoside (12). TMSOTf (5 $\mu \mathrm{L}, 26 \mu \mathrm{~mol}$) was added to a solution of compound $\mathbf{1}(100 \mathrm{mg}, 174 \mu \mathrm{~mol})$ and benzaldehyde ($19 \mu \mathrm{~L}, 190 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ with freshly dried $3 \AA$ molecular sieves $(120 \mathrm{mg})$ at $-78{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. The mixture was stirred for 2 h at the same temperature. $\mathrm{Et}_{3} \mathrm{SiH}(31 \mu \mathrm{~L}, 190 \mu \mathrm{~mol})$, benzaldehyde (18 $\mu \mathrm{L}, 183 \mu \mathrm{~mol}$) and TMSOTf ($5 \mu \mathrm{~L}, 26 \mu \mathrm{~mol}$) were successively added to the solution. After stirring for another 2.5 h at $-78^{\circ} \mathrm{C}$, the reaction flask was moved to $0{ }^{\circ} \mathrm{C}$. A 70% aqueous TFA solution (1 mL) was added to the resultant mixture. The reaction was continuously stirred at room temperature for 1 h . The reaction was quenched by saturated $\mathrm{NaHCO}_{3(\mathrm{qq)}}$, followed by extraction with ethyl acetate. The combined organic layer was washed with brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified
by flash column chromatography (ethyl acetate/hexanes = 1/1) to afford the 2,4,6-triol 12 (40 mg , 62%) as a white solid. m.p. $136-140{ }^{\circ} \mathrm{C}$; $[\alpha]^{28}{ }_{\mathrm{D}}-72.4$ (c 0.6 in CHCl_{3}); IR (thin film): $v 3325$, 1493, 1367, 1121, 1035, 808, 751, $701 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.41-7.37(2 \mathrm{H}, \mathrm{m}$, Ar-H), 7.35-7.25 (5 H, m, Ar-H), 7.10 (2 H, d, J 7.9, Ar-H), 4.97 (1 H, d, J 11.6, ArCH2), 4.74 (1 H, d, J 11.6, ArCH_{2}), $4.47(1 \mathrm{H}, \mathrm{d}, J 9.3,1-\mathrm{H}), 3.87-3.84\left(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{a}}\right), 3.76-3.70(1 \mathrm{H}, \mathrm{m}$, $\left.6-\mathrm{H}_{\mathrm{b}}\right), 3.53-3.48(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.44-3.32(3 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}, 4-\mathrm{H}, 5-\mathrm{H}), 2.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.6, \mathrm{OH})$, $2.61(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.6, \mathrm{OH}), 2.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.30-2.27(1 \mathrm{H}, \mathrm{m}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 138.7(\mathrm{C}), 138.4(\mathrm{C}), 133.3(\mathrm{CH}), 129.9(\mathrm{CH}), 128.6(\mathrm{CH}), 128.0(\mathrm{CH}), 127.5(\mathrm{C})$, $88.7(\mathrm{CH}), 85.1(\mathrm{CH}), 79.4(\mathrm{CH}), 79.4(\mathrm{CH}), 74.8\left(\mathrm{CH}_{2}\right), 72.5(\mathrm{CH}), 69.9(\mathrm{CH}), 62.6\left(\mathrm{CH}_{2}\right), 21.1$ $\left(\mathrm{CH}_{3}\right)$; HRMS (ESI): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{SNa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 399.1242, found: 399.1235.

4-Methylphenyl 2-O-acetyl-1-thio- $\boldsymbol{\beta}$-D-glucopyranoside (13). TMSOTf ($5 \mu \mathrm{~L}, 26 \mu \mathrm{~mol}$) was added to a solution of compound $\mathbf{1}(100 \mathrm{mg}, 174 \mu \mathrm{~mol})$ and benzaldehyde ($19 \mu \mathrm{~L}, 190 \mu \mathrm{~mol}$) $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ with freshly dried $3 \AA$ molecular sieves $(120 \mathrm{mg})$ at $-78^{\circ} \mathrm{C}$ under N_{2} atmosphere. The mixture was kept stirring at the same temperature for 2 h . $\mathrm{Et}_{3} \mathrm{SiH}(31 \mu \mathrm{~L}, 228 \mu \mathrm{~mol})$, 2NaphCHO ($29 \mathrm{mg}, 183 \mu \mathrm{~mol}$) and TMSOTf ($5 \mu \mathrm{~L}, 26 \mu \mathrm{~mol}$) were consecutively added to the reaction solution. After stirring at $-78{ }^{\circ} \mathrm{C}$ for $3 \mathrm{~h}, \mathrm{Ac}_{2} \mathrm{O}$ ($25 \mu \mathrm{~L}$, $261 \mu \mathrm{~mol}$) and TMSOTf (5 $\mu \mathrm{L}, 26 \mu \mathrm{~mol})$ were consecutively added to the solution, the reaction flask was moved to $0^{\circ} \mathrm{C}$, and the mixture was stirred at the same temperature for 1 h . A 70% aqueous TFA (1 mL) was added to the resulting solution, the ice-bath was removed, and the reaction was continuously stirred at room temperature for another 1 h . The reaction was quenched by saturated $\mathrm{NaHCO}_{3(\mathrm{qq)}}$,
followed by extraction with ethyl acetate. The combined organic layer was washed with brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure. Purification by flash column chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}=15 / 1\right)$ gave the 3,4,6-triol product $13(30 \mathrm{mg}, 53 \%)$ as a white solid. m.p. $201-205^{\circ} \mathrm{C} ;[\alpha]^{28}{ }_{\mathrm{D}}-63.2$ (c 0.3 in ethyl acetate); IR (thin film): $v 3510$, 3234, 2923, 1721, 1456, 1263, 1040, 810, 720, $668 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.40-$ 7.37 (2 H, m, Ar-H), 7.11 (2 H, d, J 7.9, Ar-H), 4.73-4.64 (2 H, m, 1-H, 2-H), 3.86 (1 H, dd, J 12.1, 2.1, 6-Ha), 3.67 ($1 \mathrm{H}, \mathrm{dd}, J$ 12.1, 5.4, 6-Hb), 3.53 ($1 \mathrm{H}, \mathrm{t}, J 8.6,3-\mathrm{H}$), 3.38-3.29 (2 H, m, 4H, 5-H), $2.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.8$ (C), 139.0 (CH), 133.4 (CH), 133.1 (C), 130.6 (CH), 87.7 (CH), 82.2 (CH), 77.5 (CH), 74.0 (CH), 71.4 $(\mathrm{CH}), 62.8\left(\mathrm{CH}_{2}\right), 21.1\left(\mathrm{CH}_{3}\right)$; HRMS (ESI): m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{6} \mathrm{SNa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 351.0878$, found: 351.0876.

14

4-Methylphenyl 2,3,6-tri- O-acetyl-4-O-benzyl-1-thio- β-d-glucopyranoside

(14).

TMSOTf ($5 \mu \mathrm{~L}, 26 \mu \mathrm{~mol}$) was added to a solution of compound $1(100 \mathrm{mg}, 174 \mu \mathrm{~mol}$) and benzaldehyde ($19 \mu \mathrm{~L}, 190 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ with freshly dried $3 \AA$ molecular sieves (120 mg) at $0{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. The mixture was stirred for 2 h at same temperature. $\mathrm{BH}_{3} \cdot$ THF (1 M solution in THF, $0.9 \mathrm{~mL}, 0.9 \mathrm{mmol}$) was added to the reaction mixture followed by addition of TMSOTf ($16 \mu \mathrm{~L}, 87 \mu \mathrm{~mol}$). After 5 h of stirring at $0{ }^{\circ} \mathrm{C}, \mathrm{BH}_{3}$ was slowly quenched by $\mathrm{MeOH}(70 \mu \mathrm{~L}, 1.74 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred for $30 \mathrm{~min} . \mathrm{Et}_{3} \mathrm{~N}$ ($3.6 \mathrm{~mL}, 26.1 \mathrm{mmol}$), $\mathrm{Ac}_{2} \mathrm{O}(1.6 \mathrm{~mL}, 17.4 \mathrm{mmol})$ and DMAP ($2 \mathrm{mg}, 17.4 \mu \mathrm{~mol}$) were added to the reaction mixture, followed by 12 h of stirring at room temperature. The whole mixture was
filtered through a pad of Celite. $\mathrm{H}_{2} \mathrm{O}$ was added to the filtrate and the desired material was extracted with ethyl acetate. The combined organic layer was washed with brine, dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. Purification of the residue by flash column chromatography (ethyl acetate/hexanes = 1/3) supplied the triacetate 14 (67 mg , 77%) as a white solid. m.p. $95-98{ }^{\circ} \mathrm{C}$; $[\alpha]^{28}{ }_{\mathrm{D}}-26.9$ (c 0.96 in CHCl_{3}); IR (thin film): $v 2945$, 1751, 1494, 1366, 1231, 1046, 809, 752, $700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.34(2 \mathrm{H}, \mathrm{d}$, J 8.1, Ar-H), 7.31-7.19 (5 H, m, Ar-H), 7.07 (2 H, d, J 8.1, Ar-H), 5.23 (1 H, t, J 9.6, 2-H), 4.82
($1 \mathrm{H}, \mathrm{t}, J 9.6 \mathrm{~Hz}, 3-\mathrm{H}), 4.59(1 \mathrm{H}, \mathrm{d}, J 9.6,1-\mathrm{H}), 4.55\left(1 \mathrm{H}, \mathrm{d}, J 11.3, \mathrm{ArCH}_{2}\right), 4.51(1 \mathrm{H}, \mathrm{d}, J$ 11.3, ArCH_{2}), 4.38 (1 H, d, J 11.9, 6-Ha), 4.14 (1 H, dd, J 11.9, 3.4, 6-Hb), 3.59-3.53 (2 H, m, 4H, 5-H), $2.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.91\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.5$ (C), 170.0 (C), 169.7 (C), 138.6 (C), 137.3 (C), 133.8 (CH), 129.7 (CH), 128.7 (CH), 128.2 (CH), 128.1 (CH), 127.9 (C), $85.6(\mathrm{CH}), 77.0(\mathrm{CH}), 76.3(\mathrm{CH}), 75.7$ $(\mathrm{CH}), 74.8\left(\mathrm{CH}_{2}\right), 70.6(\mathrm{CH}), 62.8\left(\mathrm{CH}_{2}\right), 21.3\left(\mathrm{CH}_{3}\right), 20.9\left(\mathrm{CH}_{3} \times 3\right)$; HRMS (ESI): m/z calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{8} \mathrm{SNa}\left(\left[\mathrm{M}+\mathrm{Na}^{+}\right)\right.$: 525.1559 , found: 525.1555 .

4-Methylphenyl 2,3,4-tri-O-acetyl-6-O-benzyl-1-thio- β-d-glucopyranoside

TMSOTf ($5 \mu \mathrm{~L}, 26 \mu \mathrm{~mol}$) was added to a solution of compound $\mathbf{1}(100 \mathrm{mg}, 174 \mu \mathrm{~mol}$) and benzaldehyde ($19 \mu \mathrm{~L}, 190 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ with freshly dried $3 \AA$ molecular sieves (120 mg) at $0{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. The mixture was stirred at same temperature for 2 h , then $\mathrm{Me}_{2} \mathrm{EtSiH}(69 \mu \mathrm{~L}, 0.522 \mathrm{mmol}$) and acetonitrile (3 mL) were added to the reaction mixture followed by addition of TMSOTf ($5 \mu \mathrm{~L}, 26 \mu \mathrm{~mol}$). After stirring for 1 h at $0^{\circ} \mathrm{C}, \mathrm{Ac}_{2} \mathrm{O}(66 \mu \mathrm{~L}$,
$696 \mu \mathrm{~mol})$ and TMSOTf ($15 \mu \mathrm{~L}, 78 \mu \mathrm{~mol}$) were consecutively added to the solution. Stirring was continued at $0{ }^{\circ} \mathrm{C}$ for 12 h . The reaction was slowly quenched by $\mathrm{Et}_{3} \mathrm{~N}(2 \mathrm{~mL})$, the mixture was filtered through a pad of Celite, and the filtrate was concentrated under reduced pressure. Purification by flash column chromatography (ethyl acetate/hexanes $=1 / 3$) furnished the triacetate 15 ($41 \mathrm{mg}, 47 \%$) as a white solid. m.p. $92-95{ }^{\circ} \mathrm{C} ;[\alpha]^{28}{ }_{\mathrm{D}}-8.8\left(c 0.55\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; IR (thin film): v 2922, 1755, 1494, 1373, 1243, 1219, 1048, 912, 808, $699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 7.39-7.27(7 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.04(2 \mathrm{H}, \mathrm{d}, J 8.4$, Ar-H $), 5.18(1 \mathrm{H}, \mathrm{t}, J 9.7,2-\mathrm{H})$, 5.00 ($1 \mathrm{H}, \mathrm{t}, J 9.7,3-\mathrm{H}$), 4.92 ($1 \mathrm{H}, \mathrm{dd}, J 9.9,9.7,4-\mathrm{H}), 4.63(1 \mathrm{H}, \mathrm{d}, J 9.7,1-\mathrm{H}), 4.52(1 \mathrm{H}, \mathrm{d}, J$ $\left.11.8 \mathrm{~Hz}, \mathrm{ArCH}_{2}\right), 4.47\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.8, \mathrm{ArCH}_{2}\right), 3.69-3.64(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.57(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H} \times 2)$, $2.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.96\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.90\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.2$ (C), 169.5 (C), 169.2 (C), 138.5 (C), 137.8 (C), $133.5(\mathrm{CH}), 129.7$ (CH), $128.3(\mathrm{CH}), 127.8(\mathrm{CH}), 127.7(\mathrm{CH}), 85.8(\mathrm{CH}), 77.5(\mathrm{CH}), 74.2(\mathrm{CH}), 73.6(\mathrm{CH}), 70.1\left(\mathrm{CH}_{2}\right)$, $69.1(\mathrm{CH})$, $69.0\left(\mathrm{CH}_{2}\right)$, $21.1\left(\mathrm{CH}_{3}\right)$, $20.6\left(\mathrm{CH}_{3} \times 3\right)$; HRMS $(\mathrm{ESI}): \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{8} \mathrm{SNa}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 525.1559$, found: 525.1563.

Methyl 6-O-(2-O-acetyl-3-O-benzyl-4,6-O-benzylidene- β-d-glucopyranosyl)-2,3,4-tri-O-

 benzyl- α-D-glucopyranoside (18). TMSOTf ($9 \mu \mathrm{~L}, 52 \mu \mathrm{~mol}$) was added to a solution of compound $1(200 \mathrm{mg}, 348 \mu \mathrm{~mol})$ and benzaldehyde ($39 \mu \mathrm{~L}, 383 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ with freshly dried $3 \AA$ molecular sieves $(400 \mathrm{mg})$ at $-78^{\circ} \mathrm{C}$ under N_{2} atmosphere. The mixture was kept stirring at the same temperature for 2 h . $\mathrm{Et}_{3} \mathrm{SiH}(61 \mu \mathrm{~L}, 383 \mu \mathrm{~mol}$), benzaldehyde ($37 \mu \mathrm{~L}$,$366 \mu \mathrm{~mol}$) and TMSOTf ($9 \mu \mathrm{~L}$, $52 \mu \mathrm{~mol}$) were consecutively added to the reaction solution. After stirring at $-78{ }^{\circ} \mathrm{C}$ for $2.5 \mathrm{~h}, \mathrm{Ac}_{2} \mathrm{O}(40 \mu \mathrm{~L}, 365 \mu \mathrm{~mol})$ and TMSOTf ($\left.9 \mu \mathrm{~L}, 52 \mu \mathrm{~mol}\right)$ were consecutively added to the solution, the reaction flask was moved to $0^{\circ} \mathrm{C}$, and the mixture was stirred at the same temperature 1 h . The solution of glycosyl acceptor $17(156 \mathrm{mg}, 522 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml})$, NIS $(97 \mathrm{mg}, 420 \mu \mathrm{~mol})$ and $\mathrm{TfOH}(6 \mu \mathrm{~L}, 70 \mu \mathrm{~mol})$ were sequentially added to the solution at $-78{ }^{\circ} \mathrm{C}$. The reaction temperature gradually raised to $0^{\circ} \mathrm{C}$ for a period of 2 h . Saturated $\mathrm{NaHCO}_{3(\mathrm{aq})}(5 \mathrm{~mL})$ and $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3(\mathrm{aq)}}(5 \mathrm{~mL})$ were added to quench the reaction, the mixture was filtered through Celite followed by extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layer was dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. Purification of the residue via flash column chromatography (ethyl acetate/hexanes = $1 / 3$) furnished the desired adduct 18 (121 mg, 41\%) as a white foam. $[\alpha]^{27}{ }_{\mathrm{D}}+10.7$ (c 3.4 in CHCl_{3}); IR (thin film): v2927, 1752, 1230, 1095, 1070, $698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.48-7.47$ (2 H, m, Ar-H), 7.41-7.25 (23 H, m, Ar-H), 5.46 ($1 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}$), 4.91-4.88 (2 H, m, 2-H', ArCH_{2}), $4.85\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.1, \mathrm{ArCH}_{2}\right), 4.80-4.76\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2}\right), 4.72(1 \mathrm{H}, \mathrm{d}, J 12.0$, $\left.\mathrm{ArCH}_{2}\right), 4.63-4.60\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2}\right), 4.57(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.6,1-\mathrm{H}), 4.40\left(1 \mathrm{H}, \mathrm{d}, J 8.1,1-\mathrm{H}^{\prime}\right), 4.37$ (1 H, d, J 12.0, ArCH $)^{2}$, 4.11 (1 H, dd, J 10.5, 4.9, 6-H'a $), 3.86-3.80(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}, 4-\mathrm{H}), 3.73$ (1 H, dd, J 10.5, 2.7, 6-Ha), $3.63(1 \mathrm{H}, \mathrm{t}, J 9.3,3-\mathrm{H}), 3.73\left(1 \mathrm{H}, \mathrm{dd}, J 10.5,2.7,6-\mathrm{H}_{\mathrm{a}}\right), 3.59-3.55(2 \mathrm{H}$, m, $5-\mathrm{H}, 6-\mathrm{H}_{\mathrm{b}}$), $3.50-3.44\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 3-\mathrm{H}^{\prime}\right), 3.40\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 10.3,6-\mathrm{H}_{\mathrm{b}}\right.$), $3.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, 3.12 ($\left.1 \mathrm{H}, \mathrm{td}, J 9.7,5.0,5-\mathrm{H}^{\prime}\right), 1.91\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.0$ (C), 139.3 (C), 138.3 (C), 137.6 (C), 137.2 (C), 129.0 (CH), 128.5 (CH), 128.4 (CH), 128.3 (CH), 128.26 (CH), $128.22(\mathrm{CH}), 128.20(\mathrm{CH}), 128.1(\mathrm{CH}), 128.0(\mathrm{CH}), 127.7(\mathrm{CH}), 127.67(\mathrm{CH})$, 127.60 (CH), 127.4 (CH), 127.2 (CH), 126.0 (CH), 101.1 (CH), 100.7 (CH), 98.4 (CH), 81.6 $(\mathrm{CH}), 79.8(\mathrm{CH}), 78.8(\mathrm{CH}), 78.5(\mathrm{CH}), 75.3\left(\mathrm{CH}_{2}\right), 73.9\left(\mathrm{CH}_{2}\right), 73.6\left(\mathrm{CH}_{2}\right), 73.5\left(\mathrm{CH}_{2}\right), 73.2$
$(\mathrm{CH}), 69.8(\mathrm{CH}), 68.5\left(\mathrm{CH}_{2}\right), 67.4\left(\mathrm{CH}_{2}\right), 65.8(\mathrm{CH}), 55.3\left(\mathrm{CH}_{3}\right), 20.9\left(\mathrm{CH}_{3}\right)$; HRMS (ESI): m/z calcd for $\mathrm{C}_{50} \mathrm{H}_{54} \mathrm{O}_{12} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 869.3513, found: 869.3499.

Methyl 4-O-(2-O-acetyl-3-O-benzyl-4,6-O-benzylidene- β-d-glucopyranosyl)-2,3,6-tri- O -

 benzyl- α-D-glucopyranoside (20). TMSOTf ($5 \mu \mathrm{~L}, 32 \mu \mathrm{~mol}$) was added to a solution of compound 1 (120 mg, $215 \mu \mathrm{~mol}$) and benzaldehyde ($24 \mu \mathrm{~L}, 237 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ with freshly dried $3 \AA$ molecular sieves (240 mg) at $-78{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. The mixture was kept stirring at the same temperature for 2 h . $\mathrm{Et}_{3} \mathrm{SiH}(37 \mu \mathrm{~L}, 237 \mu \mathrm{~mol}$), benzaldehyde ($22 \mu \mathrm{~L}$, $226 \mu \mathrm{~mol}$) and TMSOTf ($5 \mu \mathrm{~L}, 32 \mu \mathrm{~mol}$) were consecutively added to the reaction solution. After stirring at $-78{ }^{\circ} \mathrm{C}$ for $2.5 \mathrm{~h}, \mathrm{Ac}_{2} \mathrm{O}(20 \mu \mathrm{~L}, 226 \mu \mathrm{~mol})$ and TMSOTf ($5 \mu \mathrm{~L}, 32 \mu \mathrm{~mol}$) were consecutively added to the mixture, and the reaction flask was moved to $0^{\circ} \mathrm{C}$, where the mixture was stirred for 1 h . Then, the vessel was cooled again to $-78^{\circ} \mathrm{C}$, and a solution of the glycosyl acceptor $19(120 \mathrm{mg}, 323 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml})$, NIS $(60 \mathrm{mg}, 258 \mu \mathrm{~mol})$ and $\mathrm{TfOH}(4 \mu \mathrm{~L}, 43$ $\mu \mathrm{mol})$ were sequentially added to the mixture. Reaction temperature was gradually raised up to $0{ }^{\circ} \mathrm{C}$ for a period of 2 h . Saturated $\mathrm{NaHCO}_{3(\mathrm{aq})}(5 \mathrm{~mL})$ and $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3(\mathrm{aq})}(5 \mathrm{~mL})$ were added to quench the reaction. The mixture was filtered through Celite, and the desired material was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. Purification of the residue via flash column chromatography (ethyl acetate/hexanes $=1 / 3)$ furnished the adduct $20(95 \mathrm{mg}, 52 \%)$ as a white foam. $[\alpha]^{27}{ }_{\mathrm{D}}+4.33$ (c 3.5 in CHCl_{3}); IR (thin film): $v 2871,1752,1493,1229,1096,1062,738$, $697 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.49-7.48(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.40-7.23(23 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$,$5.55(1 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}), 5.08\left(1 \mathrm{H}, \mathrm{t}, J 8.3,2-\mathrm{H}^{\prime}\right), 4.97\left(1 \mathrm{H}, \mathrm{d}, J 11.0, \mathrm{ArCH}_{2}\right), 4.87-4.77(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{ArCH}_{2}\right), 4.66-4.63\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2}\right), 4.57(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.3,1-\mathrm{H}), 4.51\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.0, \mathrm{ArCH}_{2}\right), 4.47$
(1 H, d, J 8.3, 1-H'), $4.32\left(1 \mathrm{H}, \mathrm{dd}, J 10.5,5.0,6-\mathrm{H}_{\mathrm{a}}^{\prime}\right), 4.04\left(1 \mathrm{H}, \mathrm{d}, J 10.3,6-\mathrm{H}_{\mathrm{a}}\right), 3.96(1 \mathrm{H}, \mathrm{t}, J$ 9.3, 3-H), 3.81-3.67 (5 H, m, 5-H, 6-Hb, 3-H', 4-H', 6-H'b), 3.52 (1 H, dd, J 9.8, 3.5, 2-H), 3.45 ($1 \mathrm{H}, \mathrm{t}, J 9.5,4-\mathrm{H}), 3.40\left(1 \mathrm{H}, \mathrm{td}, J 9.7,5.0,5-\mathrm{H}^{\prime}\right), 3.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 1.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}): $\delta 169.0$ (C), 138.7 (C), 138.2 (C), 138.1 (C), 138.0 (C), 137.1 (C), $129.0(\mathrm{CH}), 128.4(\mathrm{CH}), 128.3(\mathrm{CH}), 128.25(\mathrm{CH}), 128.23(\mathrm{CH}), 128.1(\mathrm{CH}), 127.9(\mathrm{CH}), 127.8$ (CH), 127.7 (CH), $127.6(\mathrm{CH}), 127.5(\mathrm{CH}), 125.9(\mathrm{CH}), 101.4(\mathrm{CH}), 101.2(\mathrm{CH}), 98.1(\mathrm{CH})$, $81.9(\mathrm{CH}), 81.3(\mathrm{CH}), 79.7(\mathrm{CH}), 78.5(\mathrm{CH}), 77.5(\mathrm{CH}), 75.6\left(\mathrm{CH}_{2}\right), 74.8\left(\mathrm{CH}_{2}\right), 74.0\left(\mathrm{CH}_{2}\right)$, $73.4\left(\mathrm{CH}_{2}\right)$, $72.6\left(\mathrm{CH}_{2}\right), 69.5(\mathrm{CH}), 68.5\left(\mathrm{CH}_{2}\right), 68.0\left(\mathrm{CH}_{2}\right), 66.3(\mathrm{CH}), 55.1\left(\mathrm{CH}_{3}\right), 20.8\left(\mathrm{CH}_{3}\right)$; HRMS (ESI): m/z calcd for $\mathrm{C}_{50} \mathrm{H}_{54} \mathrm{O}_{12} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 869.3513, found: 869.3547.

4-Methylphenyl

2-O-(6-O-tert-butyldiphenylsilyl-2,3,4-tri-O-benzyl- α-D-mannopyranosyl)-3-O-benzyl-4,6-O-benzylidene-1-thio- β-d-glucopyranoside (23). TMSOTf ($9 \mu \mathrm{~L}, 52 \mu \mathrm{~mol}$) was added to a solution of compound $\mathbf{1}(200 \mathrm{mg}, 348 \mu \mathrm{~mol})$ and benzaldehyde (39 $\mu \mathrm{L}, 383 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ with freshly dried $3 \AA$ molecular sieves $(400 \mathrm{mg})$ at $-78{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. The mixture was stirred at same temperature for 2 h . $\mathrm{Et}_{3} \mathrm{SiH}(61 \mu \mathrm{~L}, 383$ $\mu \mathrm{mol}$), benzaldehyde ($37 \mu \mathrm{~L}, 366 \mu \mathrm{~mol}$) and TMSOTf ($9 \mu \mathrm{~L}, 52 \mu \mathrm{~mol}$) were sequentially added to the reaction solution. After stirring at $-78^{\circ} \mathrm{C}$ for 2.5 h , a solution of glycosyl donor 22 (406 $\mathrm{mg}, 520 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.5 \mathrm{ml})$, NIS ($129 \mathrm{mg}, 560 \mu \mathrm{~mol}$), AW-300 molecular sieves (700 mg)
and $\mathrm{TfOH}(16 \mu \mathrm{~L}, 104 \mu \mathrm{~mol})$ were sequentially added to the mixture at $-78{ }^{\circ} \mathrm{C}$. The reaction temperature was gradually raised to $-40^{\circ} \mathrm{C}$ for a period of 3 h . Saturated $\mathrm{NaHCO}_{3(\mathrm{aq})}(10 \mathrm{~mL})$ and $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3 \text { (aq) }}(10 \mathrm{~mL})$ were added to quench the reaction. The mixture was filtered through Celite followed by extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. Purification of the residue via flash column chromatography (ethyl acetate/hexanes = 1/4) furnished the adduct 23 (286 mg , 72%) as a white foam. $[\alpha]^{26}{ }_{\mathrm{D}}+11.04$ (c 1.2 in CHCl_{3}); IR (thin film): $v 2857,1494,1454,1028$, $697 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.74-7.72(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.64-7.62(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H})$, 7.46-7.38 (8 H, m, Ar-H), 7.34-7.22 (20 H, m, Ar-H), 7.17-7.16 (2 H, m, Ar-H), 7.09-7.07 (2 H, m, Ar-H), 7.03-7.00 (1 H, m, Ar-H), 6.94-6.91(2 H, m, Ar-H), 5.63 (1 H, d, J 0.7, 1-H'), 5.52 (1 H, s, ArCH), 5.01 (1 H, d, J 10.9, ArCH_{2}), 4.84 (1 H, d, J 12.7, ArCH_{2}), 4.85-4.78 (3 H, m, $\left.\mathrm{ArCH}_{2}\right), 4.71-4.67\left(3 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2}\right), 4.57-4.54\left(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}, \mathrm{ArCH}_{2}\right), 4.38-4.34\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{\mathrm{a}}\right.$, 3-H), 3.98-3.96 (2 H, m, 3-H, 2-H'), 3.92 (1 H, d, J 9.7, 4-H'), 3.75 (1 H, t, J 10.3, 6-Hb), 3.663.62 (4 H, m, 2-H, 4-H, 5-H', 6-H'a), 3.51 (1 H, dd, J 11.3, 1.0, 6-H'b), 3.51 (1 H, dt, J 9.6, 5.1, 5H), $2.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.04(9 \mathrm{H}, \mathrm{s}, t-\mathrm{Bu}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 139.1$ (C), 138.7 (C), 138.6 (C), 138.2 (C), 137.5 (C), 137.1 (C), 136.0 (CH), 135.6 (CH), 134.1 (C), 133.6 (C), 132.8 $(\mathrm{CH}), 129.8(\mathrm{CH}), 129.3(\mathrm{CH}), 129.27(\mathrm{CH}), 128.9(\mathrm{CH}), 128.7(\mathrm{C}), 128.5(\mathrm{CH}), 128.3(\mathrm{CH})$, 128.23 (CH), 128.21 (CH), 128.16 (CH), 128.10 (CH), 127.9 (CH), 127.7 (CH), 127.53 (CH), 127.52 (CH), 127.49 (CH), 127.44 (CH), 127.38 (CH), 127.31 (CH), $125.9(\mathrm{CH}), 101.1(\mathrm{CH})$, $98.0(\mathrm{CH}), 88.6(\mathrm{CH}), 81.7(\mathrm{CH}), 81.2(\mathrm{CH}), 79.8(\mathrm{CH}), 76.0(\mathrm{CH}), 75.14(\mathrm{CH}), 75.13\left(\mathrm{CH}_{2}\right)$, $75.0\left(\mathrm{CH}_{2}\right), 74.3(\mathrm{CH}), 73.2(\mathrm{CH}), 72.2\left(\mathrm{CH}_{2}\right), 72.1\left(\mathrm{CH}_{2}\right), 70.1(\mathrm{CH}), 68.6\left(\mathrm{CH}_{2}\right), 62.4\left(\mathrm{CH}_{2}\right)$, $26.8\left(\mathrm{CH}_{3}\right), 21.1\left(\mathrm{CH}_{3}\right), 19.3(\mathrm{C})$; HRMS (ESI): m/z calcd for $\mathrm{C}_{70} \mathrm{H}_{74} \mathrm{O}_{10} \mathrm{SSiNa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 1157.4670, found 1157.4663.

24

Methyl (6-O-tert-butyldiphenylsilyl-2,3,4-tri-O-benzyl- α-D-mannopyranosyl)-(1 $\boldsymbol{\rightarrow} \mathbf{2}$)-3-O-benzyl-4,6-O-benzylidene- α / β-D-glucopyranosyl)-(1 $\rightarrow 6$)-2,3,4-tri- O-benzyl- α-D-
glucopyranoside (24). TMSOTf ($4 \mu \mathrm{~L}, 23 \mu \mathrm{~mol}$) was added to a solution of compound $\mathbf{1}$ (87 $\mathrm{mg}, 152 \mu \mathrm{~mol})$ and benzaldehyde $(17 \mu \mathrm{~L}, 166 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ with freshly dried $3 \AA$ molecular sieves (200 mg) at $-78{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. The mixture was stirred at same temperature for $2 \mathrm{~h} . \mathrm{Et}_{3} \mathrm{SiH}(27 \mu \mathrm{~L}, 166 \mu \mathrm{~mol})$, benzaldehyde ($16 \mu \mathrm{~L}, 160 \mu \mathrm{~mol}$) and TMSOTf ($4 \mu \mathrm{~L}, 23 \mu \mathrm{~mol}$) were sequentially added to the reaction solution. After stirring at $-78^{\circ} \mathrm{C}$ for 2.5 h, a solution of glycosyl donor $22(176 \mathrm{mg}, 226 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.5 \mathrm{~mL})$, NIS ($63 \mathrm{mg}, 270$ $\mu \mathrm{mol}$), AW-300 molecular sieves (300 mg) and TfOH ($3 \mu \mathrm{~L}, 35 \mu \mathrm{~mol}$) were sequentially added to the mixture at $-78{ }^{\circ} \mathrm{C}$. The reaction temperature was gradually raised to $-40^{\circ} \mathrm{C}$ for a period of 3 h . Then, a solution of glycosyl acceptor 17 ($101 \mathrm{mg}, 270 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{ml})$, NIS (56 $\mathrm{mg}, 240 \mu \mathrm{~mol}$) and $\mathrm{TfOH}(7 \mu \mathrm{~L}, 75 \mu \mathrm{~mol})$ were sequentially added to the solution at $-40^{\circ} \mathrm{C}$, and the reaction temperature was gradually raised to $0^{\circ} \mathrm{C}$ for a period of 2 h . Saturated $\mathrm{NaHCO}_{3(a q)}$ (5 mL) and $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3(\text { aq) }}(5 \mathrm{~mL}$) were added to quench the reaction, the mixture was filtered through Celite followed by extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layer was dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. Purification of the residue via flash column chromatography (ethyl acetate/hexanes $=1 / 6$) furnished the trisaccharide 24 ($117 \mathrm{mg}, 52 \%$, crude $\alpha / \beta=2 / 1$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.69-7.61$ (10.1 H, m, Ar-H), 7.45-7.41 (5.5 H, m, Ar-H), 7.38-7.25 (68.2 H, m, Ar-H), 7.23-7.15 (29.7 H,
m, Ar-H), 7.12-7.04 (1.5 H, m, Ar-H), 7.01-6.96 (3.9 H, m, Ar-H), 6.89-6.86 (3 H, m, Ar-H), 5.62 (1 H, d, J 1.1), 5.50 (1.3 H, s, ArCH), 5.45 ($1 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}$), 5.06 ($1 \mathrm{H}, \mathrm{d}, J 2.8$), 5.04 ($1 \mathrm{H}, \mathrm{d}$, J 1.3), 4.99-4.89 (7.4 H, m), 4.84-4.81 (2.2 H, m), 4.77-4.73 (4 H, m), 4.71-4.60 (13.1 H, m), 4.58-4.55 (4.2 H, m), 4.52-4.47 (3.9 H, m), 4.40-4.35 (4.2 H, m), 4.31-4.26 (2.8 H, m), 4.19$4.16(1 \mathrm{H}, \mathrm{m}), 4.12-4.06(2.4 \mathrm{H}, \mathrm{m}), 4.02-3.94(6.1 \mathrm{H}, \mathrm{m}), 3.91-3.78(12.9 \mathrm{H}, \mathrm{m}), 3.74-3.71$ (3 H, m), 3.68-3.45 (12.5 H, m), 3.40-3.38 (1.5 H, m), 3.36-3.27 (6 H, m), 3.32 ($4 \mathrm{H}, \mathrm{s}$), 1.03 (25.9 H, m); HRMS (ESI): m/z calcd for $\mathrm{C}_{91} \mathrm{H}_{98} \mathrm{O}_{16} \mathrm{SiNa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 1497.6522, found: 1497.6523.

4-Methylphenyl 2-O-(2-O-benzoyl-3,4,6-tri-O-benzyl- β-d-glucopyranosyl)-3-O-benzyl-

4,6-O-benzylidene-1-thio- $\boldsymbol{\beta}$-d-glucopyranoside (26). TMSOTf ($4 \mu \mathrm{~L}, 23 \mu \mathrm{~mol}$) was added to a solution of compound $\mathbf{1}(87 \mathrm{mg}, 152 \mu \mathrm{~mol})$ and benzaldehyde ($17 \mu \mathrm{~L}, 166 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5$ $\mathrm{mL})$ with freshly dried $3 \AA$ molecular sieves $(200 \mathrm{mg})$ at $-78{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. The mixture was stirred at same temperature for 2 h . $\mathrm{Et}_{3} \mathrm{SiH}$ ($27 \mu \mathrm{~L}$, $165 \mu \mathrm{~mol}$), benzaldehyde (16 $\mu \mathrm{L}, 160 \mu \mathrm{~mol})$ and TMSOTf ($4 \mu \mathrm{~L}, 23 \mu \mathrm{~mol}$) were sequentially added to the reaction solution. After stirring at $-78{ }^{\circ} \mathrm{C}$ for 2.5 h , a solution of glycosyl donor $\mathbf{2 5}(110 \mathrm{mg}, 166 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 ml), NIS (46 mg, $198 \mu \mathrm{~mol}$), AW-300 molecular sieves (300 mg) and TfOH ($3 \mu \mathrm{~L}, 30 \mu \mathrm{~mol}$) were sequentially added to the solution at $-78^{\circ} \mathrm{C}$. The reaction temperature was gradually raised to $-60{ }^{\circ} \mathrm{C}$ for 3 h . Saturated $\mathrm{NaHCO}_{3(\mathrm{aq)}}(10 \mathrm{~mL})$ and $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3(\mathrm{qq)}}(10 \mathrm{~mL})$ were added to quench the reaction, and the mixture was filtered through Celite followed by extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was dried over anhydrous MgSO_{4}, filtered, and
concentrated under reduced pressure. Purification of the residue via flash column chromatography (ethyl acetate/hexanes = 1/5) furnished the adduct $26(105 \mathrm{mg}, 70 \%)$ as a white foam. $[\alpha]^{27}{ }_{\mathrm{D}}-6.9$ (c 1.4 in CHCl_{3}); IR (thin film): v 2866, 1730, 1453, 1266, 1092, 1027, 697 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.91(1 \mathrm{H}, \mathrm{d}, J 7.2, \mathrm{Ar}-\mathrm{H}), 7.52-7.49(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.45-$ 7.43 (2 H, m, Ar-H), 7.39-7.37 (4 H, m, Ar-H), 7.34-7.29 (15 H, m, Ar-H), 7.27-7.23 (3 H, m, Ar-H), 7.14-7.11 (5 H, m, Ar-H), 7.09-7.07 (2 H, m, Ar-H), 7.03-7.00 (1 H, m, Ar-H), 5.48 (1 H, s, ArCH), 5.40 (1 H, dd, J 9.4, 8.1, 2-H'), 5.26 (1 H, d, J 8.1, 1-H'), 4.80-4.78 (2 H, m, ArCH_{2}), $4.76\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.2, \mathrm{ArCH}_{2}\right), 4.67-4.65\left(4 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}, \mathrm{ArCH}_{2}\right), 4.51(1 \mathrm{H}, \mathrm{d}, J 11.1$, $\left.\mathrm{ArCH}_{2}\right), 4.30\left(1 \mathrm{H}, \mathrm{dd}, J 10.6,5.1,6-\mathrm{H}_{\mathrm{a}}\right), 3.94-3.90\left(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 4-\mathrm{H}^{\prime}\right), 3.87(1 \mathrm{H}, \mathrm{dd}, J 11.4$, 4.1, 6-H'a $)$, 3.82-3.77 (2 H, m, 3-H', 6-H'b), 3.71 (1 H, t, J 10.4, 6-Hb), 3.66-3.61 (2 H, m, 3-H, 4-H), 3.51 (1 H, ddd, J 9.8, 4.0, 1.7, 5-H'), $3.36(1 \mathrm{H}, \mathrm{dt}, J 9.5,5.1,5-\mathrm{H}), 2.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}): $\delta 165.1$ (C), 138.4 (C), 138.3 (C), 137.9 (C), 137.8 (C), 137.6 (C), 137.1 (C), $133.0(\mathrm{CH}), 129.8$ (C), $129.7(\mathrm{CH}), 129.6(\mathrm{C}), 129.5(\mathrm{CH}), 128.9(\mathrm{CH}), 128.43(\mathrm{CH})$, 128.40 (CH), 128.35 (CH), 128.32 (CH), 128.2 (CH), 128.16 (CH), 128.12 (CH), 127.9 (CH), $127.8(\mathrm{CH}), 127.68(\mathrm{CH}), 127.65(\mathrm{CH}), 127.56(\mathrm{CH}), 127.4(\mathrm{CH}), 127.3(\mathrm{CH}), 125.9(\mathrm{CH})$, 101.1 (CH), 100.5 (CH), 87.2 (CH), 83.5 (CH), 82.8 (CH), 81.5 (CH), $78.0(\mathrm{CH}), 76.1(\mathrm{CH})$, $75.5\left(\mathrm{CH}_{2}\right), 75.1\left(\mathrm{CH}_{2}\right), 74.9\left(\mathrm{CH}_{2}\right), 74.7\left(\mathrm{CH}_{2}\right), 73.9(\mathrm{CH}), 73.87\left(\mathrm{CH}_{2}\right), 69.7(\mathrm{CH}), 68.6\left(\mathrm{CH}_{2}\right)$, $68.58\left(\mathrm{CH}_{2}\right), 21.1\left(\mathrm{CH}_{3}\right)$; HRMS (ESI): m / z calcd for $\mathrm{C}_{61} \mathrm{H}_{60} \mathrm{O}_{11} \mathrm{SNa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 1023.3754$, found: 1023.3745.

Methyl (2-O-benzoyl-3,4,6-tri-O-benzyl- β-d-glucopyranosyl)-(1 \rightarrow 2)-3-O-benzyl-4,6-O-

 benzylidene- α / β-D-glucopyranosyl)-(1 \rightarrow 6)-2,3,4-tri- O-benzyl- α-D-glucopyranosideTMSOTf ($4 \mu \mathrm{~L}, 23 \mu \mathrm{~mol}$) was added to a solution of compound $1(87 \mathrm{mg}, 152 \mu \mathrm{~mol})$ and benzaldehyde ($17 \mu \mathrm{~L}, 166 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ with freshly dried $3 \AA$ molecular sieves (200 mg) at $-78{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. The mixture was stirred at same temperature for 2 h . Et3SiH (27 $\mu \mathrm{L}, 166 \mu \mathrm{~mol}$), benzaldehyde ($16 \mu \mathrm{~L}, 160 \mu \mathrm{~mol}$) and TMSOTf ($4 \mu \mathrm{~L}, 23 \mu \mathrm{~mol}$) were sequentially added to the reaction solution. After stirring $-78{ }^{\circ} \mathrm{C}$ for 2.5 h , a solution of glycosyl donor 25 ($110 \mathrm{mg}, 167 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml})$, NIS ($46 \mathrm{mg}, 200 \mu \mathrm{~mol}$), AW-300 molecular sieves (300 mg) and $\mathrm{TfOH}(3 \mu \mathrm{~L}, 30 \mu \mathrm{~mol}$) were sequentially added to the solution at $-78^{\circ} \mathrm{C}$. The reaction temperature was gradually raised to $-60^{\circ} \mathrm{C}$ for a period of 3 h . Then, a solution of the glycosyl acceptor $17(84 \mathrm{mg}, 228 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{ml})$, NIS ($42 \mathrm{mg}, 182$ $\mu \mathrm{mol}$) and $\mathrm{TfOH}\left(7 \mu \mathrm{~L}, 75 \mu \mathrm{~mol}\right.$) were sequentially added to the mixture at $-60{ }^{\circ} \mathrm{C}$. The reaction temperature was gradually raised to $0^{\circ} \mathrm{C}$ for a period of 2 h . Saturated $\mathrm{NaHCO}_{3(\mathrm{aq)}}(5$ mL) and $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3(\text { (aq) }}(5 \mathrm{~mL})$ were added to quench the reaction, the mixture was filtered through Celite followed by extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layer was dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. Purification of the residue via flash column chromatography (ethyl acetate/hexanes $=1 / 3$) furnished the trisaccharide 27 ($131 \mathrm{mg}, 65 \%$, crude $\alpha / \beta=3 / 1$). For the α-isomer: $[\alpha]^{27}{ }_{\mathrm{D}}{ }^{2}+63.1$ (c 1.2 in CHCl_{3}); IR (thin film): v 2859, 1731, 1453, 1365, 1266, 1089, 1027, $736 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (600 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.88$ (2 H, d, J 8.3, Ar-H), 7.42 (1 H, t, J 7.4, Ar-H), 7.39-7.34 (6 H, m, Ar-H), 7.32-7.25 (20 H, m, Ar-H), 7.23-7.15 (9 H, m, Ar-H), 7.13-7.10 (5 H, m, Ar-H), 7.06-7.04 (2 H, m, Ar-H), 5.47 (1 H, s, ArCH), 5.38 (1 H, t, J 8.5, 2-H'), 5.13 (1 H, d, J 3.5, 1-H'), 5.00 (1 H, d, J 11.0, ArCH_{2}), $4.96\left(1 \mathrm{H}, \mathrm{d}, J\right.$ 8.5, 1-H'), $4.91\left(1 \mathrm{H}, \mathrm{d}, J 11.2, \mathrm{ArCH}_{2}\right), 4.84(1 \mathrm{H}, \mathrm{d}, J 11.0$,
$\left.\mathrm{ArCH}_{2}\right), 4.79\left(1 \mathrm{H}, \mathrm{d}, J 12.0, \mathrm{ArCH}_{2}\right), 4.76\left(1 \mathrm{H}, \mathrm{d}, J 10.8, \mathrm{ArCH}_{2}\right), 4.73-4.69\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2}\right)$, 4.66-4.64 (2 H, m, ArCH 2), $4.60\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.2, \mathrm{ArCH}_{2}\right), 4.57\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.7, \mathrm{ArCH}_{2}\right), 4.54(1 \mathrm{H}$, d, J 12.2, ArCH_{2}), 4.51-4.48 (2 H, m, ArCH_{2}), $4.38\left(1 \mathrm{H}, \mathrm{d}, J 11.6, \mathrm{ArCH}_{2}\right), 4.20(1 \mathrm{H}, \mathrm{dd}, J$ 10.2, 4.9, 6-H'a), 4.02 (1 H, t, J 9.3, 3-H), 3.88-3.63 (12 H, m, 2-H, 4-H, 6-H × 2, 2-H', 3-H', 4$\mathrm{H}^{\prime}, 6-\mathrm{H}^{\prime}$, $\left.3-\mathrm{H}^{\prime \prime}, 4-\mathrm{H}^{\prime \prime}, 6-\mathrm{H}^{\prime \prime} \times 2\right), 3.57-3.52\left(3 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}, 5-\mathrm{H}^{\prime}, 5-\mathrm{H}^{\prime}\right), 3.35\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}): $\delta 164.7$ (C), 139.1 (C), 138.6 (C), 138.5 (C), 138.4 (C), 137.9 (C), 137.8 (C), 137.7 (C), 137.4 (C), 132.8 (CH), 129.8 (C), 129.7 (CH), 128.1 (CH), 128.4 (CH), $128.34(\mathrm{CH}), 128.30(\mathrm{CH}), 128.28(\mathrm{CH}), 128.21(\mathrm{CH}), 128.1(\mathrm{CH}), 128.08(\mathrm{CH}), 128.05(\mathrm{CH})$, $127.97(\mathrm{CH}), 127.93(\mathrm{CH}), 127.8(\mathrm{CH}), 127.78(\mathrm{CH}), 127.70(\mathrm{CH}), 127.65(\mathrm{CH}), 127.60(\mathrm{CH})$, 127.5 (CH), 127.3 (CH), 127.21 (CH), 127.18 (CH), $126.0(\mathrm{CH}), 101.8(\mathrm{CH}), 101.3(\mathrm{CH}), 99.6$ (CH), $97.7(\mathrm{CH}), 82.9(\mathrm{CH}), 82.2(\mathrm{CH}), 80.3(\mathrm{CH}), 78.4(\mathrm{CH}), 78.2(\mathrm{CH}), 77.9(\mathrm{CH}), 77.8(\mathrm{CH})$, $75.6\left(\mathrm{CH}_{2}\right), 75.1\left(\mathrm{CH}_{2}\right), 75.0\left(\mathrm{CH}_{2}\right), 74.8\left(\mathrm{CH}_{2}\right), 74.5\left(\mathrm{CH}_{2}\right), 73.7(\mathrm{CH}), 73.3\left(\mathrm{CH}_{2}\right), 70.0(\mathrm{CH})$, $69.1\left(\mathrm{CH}_{2}\right), 68.8\left(\mathrm{CH}_{2}\right), 67.0\left(\mathrm{CH}_{2}\right), 62.4(\mathrm{CH}), 55.1\left(\mathrm{CH}_{3}\right)$; HRMS (ESI): m/z calcd for $\mathrm{C}_{82} \mathrm{H}_{84} \mathrm{O}_{17} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 1363.5606 , found: 1363.5602. For the β-isomer: IR (thin film): v 2925, 1731, 1453, 1266, 1093, 737, $697 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.81(2 \mathrm{H}, \mathrm{d}, J 7.3$, Ar-H), 7.46-7.41 (3 H, m, Ar-H), 7.34-7.31 (6 H, m, Ar-H), 7.30-7.21 (26 H, m, Ar-H), 7.177.14 (1 H, m, Ar-H), 7.10-7.02 (7 H, m, Ar-H), 5.42 ($1 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}$), 5.17 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 8.2,2-\mathrm{H}^{\prime}$), 5.11 (1 H, d, J 8.2, 1-H'), 5.00-4.97 (2 H, m, ArCH 2$), 4.85-4.81\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2}\right), 4.70-4.67$ (2 H, m, ArCH $)^{2}$, 4.61-4.51 (4 H, m, 1-H, ArCH_{2}), 4.52-4.48 (4 H, m, 1-H', ArCH), 4.39 (1 H, d, J 11.4, ArCH_{2}), 4.26-4.24 (2 H, m, 6-H' ${ }_{\mathrm{a}}, \mathrm{ArCH}_{2}$), $4.05\left(1 \mathrm{H}, \mathrm{d}, J 10.3,6-\mathrm{H}_{\mathrm{a}}\right), 3.98(1 \mathrm{H}, \mathrm{t}, J$ 9.1, 3-H), 3.85 (1 H, t, J 7.8, 2-H'), 3.80 (1 H, dd, J 10.4, 3.2, 6-H" ${ }_{\mathrm{a}}$), 3.77-3.76 (2 H, m, 4-H, 4-H'), $3.71-3.60\left(5 \mathrm{H}, \mathrm{m}, 6-\mathrm{H} \times 2,4-\mathrm{H}^{\prime}, 6-\mathrm{H}_{\mathrm{b}}^{\prime}, 3-\mathrm{H}^{\prime \prime}\right), 3.57-3.48\left(3 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 3-\mathrm{H}^{\prime}, 5-\mathrm{H}^{\prime \prime}\right), 3.36(3 \mathrm{H}, \mathrm{s}$, CH_{3}), 3.34-3.40 (2 H, m, 5-H, 5-H'); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.9$ (C), 139.0 (C),
138.8 (C), 138.4 (C), 138.3 (C), 138.2 (C), 137.8 (C), 137.1 (C), 132.9 (CH), 129.8 (C), 129.7 $(\mathrm{CH}), 128.9(\mathrm{CH}), 128.5(\mathrm{CH}), 128.4(\mathrm{CH}), 128.3(\mathrm{CH}), 128.22(\mathrm{CH}), 128.20(\mathrm{CH}), 128.1(\mathrm{CH})$, $128.0(\mathrm{CH}), 127.9(\mathrm{CH}), 127.88(\mathrm{CH}), 127.83(\mathrm{CH}), 127.78(\mathrm{CH}), 127.5(\mathrm{CH}), 127.49(\mathrm{CH})$, 127.45 (CH), 127.2 (CH), 125.9 (CH), 102.1 (CH), 101.0 (CH), 100.7 (CH), 97.9 (CH), 82.8 $(\mathrm{CH}), 82.1(\mathrm{CH}), 82.05(\mathrm{CH}), 81.3(\mathrm{CH}), 80.0(\mathrm{CH}), 78.7(\mathrm{CH}), 78.3(\mathrm{CH}), 77.6(\mathrm{CH}), 75.8$ $\left(\mathrm{CH}_{2}\right), 75.2\left(\mathrm{CH}_{2}\right), 75.1(\mathrm{CH}), 75.0\left(\mathrm{CH}_{2}\right), 74.7\left(\mathrm{CH}_{2}\right), 74.5\left(\mathrm{CH}_{2}\right), 74.0(\mathrm{CH}), 73.3\left(\mathrm{CH}_{2}\right), 73.2$ $\left(\mathrm{CH}_{2}\right), 69.9(\mathrm{CH}), 69.2\left(\mathrm{CH}_{2}\right), 68.7\left(\mathrm{CH}_{2}\right), 68.5\left(\mathrm{CH}_{2}\right), 65.6(\mathrm{CH}), 55.2\left(\mathrm{CH}_{3}\right) ;$ HRMS $(\mathrm{ESI}): \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{82} \mathrm{H}_{84} \mathrm{O}_{17} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 1363.5606, found: 1363.5601.

29

4-Methylphenyl
 2-O-(2-O-benzoyl-3,4,6-tri-O-benzyl- β-d-galactopyranosyl)-3-O-

benzyl-4,6-O-benzylidene-1-thio- $\boldsymbol{\beta}$-d-glucopyranoside (29). TMSOTf ($4 \mu \mathrm{~L}, 23 \mu \mathrm{~mol}$) was added to a solution of compound $\mathbf{1}(87 \mathrm{mg}, 152 \mu \mathrm{~mol})$ and benzaldehyde ($17 \mu \mathrm{~L}, 166 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with freshly dried $3 \AA$ molecular sieves $(200 \mathrm{mg})$ at $-78^{\circ} \mathrm{C}$ under N_{2} atmosphere. The mixture was stirred at same temperature for 2 h . $\mathrm{Et}_{3} \mathrm{SiH}(27 \mu \mathrm{~L}, 165 \mu \mathrm{~mol}$), benzaldehyde (16 $\mu \mathrm{L}, 160 \mu \mathrm{~mol})$ and TMSOTf ($4 \mu \mathrm{~L}, 23 \mu \mathrm{~mol}$) were sequentially added to the reaction mixture. After stirring at $-78{ }^{\circ} \mathrm{C}$ for 2.5 h , a solution of glycosyl donor $28(110 \mathrm{mg}, 166 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 mL), NIS ($46 \mathrm{mg}, 198 \mu \mathrm{~mol}$), AW-300 molecular sieves (300 mg) and TfOH ($3 \mu \mathrm{~L}, 30 \mu \mathrm{~mol}$) were sequentially added again to the solution at $-78^{\circ} \mathrm{C}$. The reaction temperature was gradually raised up to $-60{ }^{\circ} \mathrm{C}$ for 3 h . Saturated $\mathrm{NaHCO}_{3(\mathrm{aq})}(10 \mathrm{~mL})$ and $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3(\mathrm{aq)}}(10 \mathrm{~mL})$ were added to quench the reaction, the mixture was filtered through Celite followed by extraction with
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined organic layer was dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. Purification of the residue via flash column chromatography (ethyl acetate/hexanes $=1 / 5)$ furnished the adduct $29(94 \mathrm{mg}, 63 \%)$ as a white foam. $[\alpha]^{27}{ }_{\mathrm{D}}-11.9$ (c 0.9 in CHCl_{3}); IR (thin film): $v 1731,1454,1269,1095,751,698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.93$ (2 H, d, J 8.1, Ar-H), 7.52 (1 H, t, J 7.0, Ar-H), 7.45 ($2 \mathrm{H}, \mathrm{d}, J$ 8.1, Ar-H), 7.40 (2 H, d, J 7.0, Ar-H), 7.38-7.31 (14 H, m, Ar-H), 7.28-7.20 (7 H, m, Ar-H), 7.18-7.16 (4 H, m, Ar-H), 7.01 (2 H, d, J 8.1, Ar-H), 5.71 ($\left.1 \mathrm{H}, \mathrm{t}, J 8.1,2-\mathrm{H}^{\prime}\right), 5.47$ ($1 \mathrm{H}, \mathrm{s}$, ArCH), 5.19 ($1 \mathrm{H}, \mathrm{d}, J$ 8.1, 1-H'), 5.03 ($1 \mathrm{H}, \mathrm{d}, J 11.7, \mathrm{ArCH}_{2}$), 4.68 ($1 \mathrm{H}, \mathrm{d}, J 11.8, \mathrm{ArCH}_{2}$), 4.64-4.61 ($2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}, \mathrm{ArCH}_{2}$), 4.51 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.1, \mathrm{ArCH}_{2}$), 4.48-4.45 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2}$), 4.30 (1 H, dd, J 10.6, 5.1, 6-Ha), $4.05\left(1 \mathrm{H}, \mathrm{d}, ~ J 2.4,4-\mathrm{H}^{\prime}\right), 3.86(1 \mathrm{H}, \mathrm{t}, J 8.8,2-\mathrm{H}), 3.75(1 \mathrm{H}, \mathrm{t}, J 8.4$, $\left.6-\mathrm{H}_{\mathrm{a}}^{\prime}\right), 3.69\left(1 \mathrm{H}, \mathrm{t}, J 10.4,6-\mathrm{H}_{\mathrm{b}}\right), 3.65(1 \mathrm{H}, \mathrm{t}, J 9.2,3-\mathrm{H}), 3.62-3.55\left(4 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}^{\prime}, 4-\mathrm{H}^{\prime}, 5-\mathrm{H}^{\prime}\right.$, $6-\mathrm{H}_{\mathrm{b}}$), $3.35(1 \mathrm{H}, \mathrm{dt}, J 9.8,5.1,5-\mathrm{H}), 2.31\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.3$ (C), 138.6 (C), 138.3 (C), 137.8 (C), 137.7 (C), 137.5 (C), 137.1 (C), 133.7 (CH), 132.9 (CH), 130.0 (C), 129.8 (CH), 129.4 (CH), 128.9 (C), 128.8 (CH), $128.5(\mathrm{CH}), 128.3(\mathrm{CH}), 128.26(\mathrm{CH})$, $128.20(\mathrm{CH}), 128.1(\mathrm{CH}), 128.0(\mathrm{CH}), 127.9(\mathrm{CH}), 127.8(\mathrm{CH}), 127.7(\mathrm{CH}), 127.66(\mathrm{CH})$, $127.50(\mathrm{CH}), 127.49(\mathrm{CH}), 127.44(\mathrm{CH}), 125.9(\mathrm{CH}), 101.0(\mathrm{CH}), 100.5(\mathrm{CH}), 86.6(\mathrm{CH}), 83.4$ $(\mathrm{CH}), 81.4(\mathrm{CH}), 79.7(\mathrm{CH}), 76.0(\mathrm{CH}), 74.7\left(\mathrm{CH}_{2}\right), 74.4\left(\mathrm{CH}_{2}\right), 73.6\left(\mathrm{CH}_{2}\right), 73.5(\mathrm{CH}), 72.4$ $(\mathrm{CH}), 72.2(\mathrm{CH}), 71.4(\mathrm{CH}), 69.6(\mathrm{CH}), 68.6\left(\mathrm{CH}_{2}\right), 68.3\left(\mathrm{CH}_{2}\right), 21.1\left(\mathrm{CH}_{3}\right)$; HRMS (ESI): m/z calcd for $\mathrm{C}_{61} \mathrm{H}_{60} \mathrm{O}_{11} \mathrm{SNa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 1023.3754$, found: 1023.3733.

Methyl (2-O-benzoyl-3,4,6-tri-O-benzyl- β-D-galactopyranosyl)-(1 \rightarrow 2)-(3-O-benzyl-4,6-O-benzylidene- α / β-d-glucopyranosyl)-(1 $\rightarrow 6$)-2,3,4-tri- O-benzyl- α-D-glucopyranoside (30). TMSOTf ($4 \mu \mathrm{~L}, 23 \mu \mathrm{~mol}$) was added to a solution of compound $1(87 \mathrm{mg}, 152 \mu \mathrm{~mol})$ and benzaldehyde ($17 \mu \mathrm{~L}, 166 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ with freshly dried $3 \AA$ molecular sieves (200 mg) at $-78{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. The mixture was kept stirring at same temperature for 2 h. $\mathrm{Et}_{3} \mathrm{SiH}(27 \mu \mathrm{~L}, 166 \mu \mathrm{~mol})$, benzaldehyde ($16 \mu \mathrm{~L}, 160 \mu \mathrm{~mol}$) and TMSOTf ($4 \mu \mathrm{~L}, 23 \mu \mathrm{~mol}$) were sequentially added to the reaction solution. After 2.5 h of stirring at $-78^{\circ} \mathrm{C}$, a solution of the glycosyl donor 28 ($110 \mathrm{mg}, 167 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$, NIS ($46 \mathrm{mg}, 200 \mu \mathrm{~mol}$), AW-300 molecular sieves (300 mg) and $\mathrm{TfOH}(3 \mu \mathrm{~L}, 30 \mu \mathrm{~mol}$) were sequentially added to the mixture. The reaction temperature was gradually raised to $-60^{\circ} \mathrm{C}$ for 3 h . Then, a solution of the glycosyl acceptor 17 ($84 \mathrm{mg}, 228 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{ml})$, NIS ($42 \mathrm{mg}, 182 \mu \mathrm{~mol}$) and TfOH ($7 \mu \mathrm{~L}, 75$ $\mu \mathrm{mol})$ were sequentially added to the solution at $-60{ }^{\circ} \mathrm{C}$. The reaction temperature was gradually raised to $0{ }^{\circ} \mathrm{C}$ for 2 h . Saturated $\mathrm{NaHCO}_{3(\mathrm{aq)}}(5 \mathrm{~mL})$ and $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3(\mathrm{qq)}}(5 \mathrm{~mL})$ were added to quench the reaction, the mixture was filtered through Celite, and the desired material was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. Purification of the residue via flash column chromatography (ethyl acetate/hexanes = 1/3) provided the trisaccharide 30 (124 mg, 61\%, crude $\alpha / \beta=2 / 1$) as a white foam. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.94-7.92$ ($2.4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), 7.877.86 (2 H, m, Ar-H), 7.51-7.45 (4.5 H, m, Ar-H), 7.43-7.29 (45.8 H, m, Ar-H), 7.26-7.18 (25.5 H, m, Ar-H), 7.17-7.05 (20.4 H, m, Ar-H), 5.69 (1.2 H, t, J 8.9), 5.66 (1 H, t, J 8.9), 5.48 (1.2 H, s, PhCH), 5.45 (1 H, s, PhCH), 5.10-4.96 (9.1 H, m), 4.92-4.87 (4.1 H, m), 4.84-4.77 (4.2 H, m), 4.73-4.68 (6.1 H, m), 4.65-4.57 (7 H, m), 4.53 (1 H, d, J 7.4), 4.48-4.35 (9.4 H, m), 4.29 (1 H, dd, J 10.6, 5.1), 4.24-4.19 (2.2 H, m), 4.06-4.00 (4.5 H, m), 3.96 (1 H, d, J 2.5), 3.90-3.80 (8.6
$\mathrm{H}, \mathrm{m}), 3.78-3.74(3.1 \mathrm{H}, \mathrm{m}), 3.73-3.68(5.8 \mathrm{H}, \mathrm{m}), 3.67-3.59(8.6 \mathrm{H}, \mathrm{m}), 3.56-3.53(2.1 \mathrm{H}, \mathrm{m})$, 3.52-3.51 (1.5 h, m), 3.44 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 9.4$), 3.38-3.37 ($6.6 \mathrm{H}, \mathrm{m}$), 3.36-3.34 (1.2 H, m); HRMS (ESI): m/z calcd for $\mathrm{C}_{82} \mathrm{H}_{84} \mathrm{O}_{17} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 1363.5606$, found: 1363.5580 .

32

Methyl 3-O-tert-butyl-(2R)-2-O-[3-O-benzyl-2-O-(2,3,4-tri-O-benzyl-6-O-tert-

butyldiphenylsilyl- α-D-mannopyranosyl)-4,6-O-benzylidene- α-D-glucopyranosyl]-2,3-

dihydroxypropanoate (32). TMSOTf ($4 \mu \mathrm{~L}, 23 \mu \mathrm{~mol}$) was added to a solution of compound $\mathbf{1}$ ($87 \mathrm{mg}, 152 \mu \mathrm{~mol}$) and benzaldehyde ($17 \mu \mathrm{~L}, 166 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ with freshly dried 3 \AA A molecular sieves (200 mg) at $-78^{\circ} \mathrm{C}$ under N_{2} atmosphere. The mixture was stirred at same temperature for $2 \mathrm{~h} . \mathrm{Et}_{3} \mathrm{SiH}(27 \mu \mathrm{~L}, 166 \mu \mathrm{~mol})$, benzaldehyde ($16 \mu \mathrm{~L}, 160 \mu \mathrm{~mol}$) and TMSOTf ($4 \mu \mathrm{~L}, 23 \mu \mathrm{~mol}$) were sequentially added to the reaction solution. After 2.5 h of stirring at -78 ${ }^{\circ} \mathrm{C}$, a solution of the glycosyl donor $22(176 \mathrm{mg}, 176 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.5 \mathrm{ml})$, NIS ($61 \mathrm{mg}, 270$ $\mu \mathrm{mol}$), AW-300 molecular sieves (300 mg) and $\mathrm{TfOH}(3 \mu \mathrm{~L}, 35 \mu \mathrm{~mol})$ were sequentially added to the solution at $-78{ }^{\circ} \mathrm{C}$. The reaction temperature was gradually raised to $-40^{\circ} \mathrm{C}$ for a period of 3 h . Then, a solution of the glycerate $31(97 \mathrm{mg}, 270 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{ml})$, NIS (34 mg , $146 \mu \mathrm{~mol}$) and TfOH ($7 \mu \mathrm{~L}$, $75 \mu \mathrm{~mol}$) were sequentially added to the mixture at $-40^{\circ} \mathrm{C}$, and the reaction temperature was gradually raised to $0^{\circ} \mathrm{C}$ for a period of 2 h . Saturated $\mathrm{NaHCO}_{3(\mathrm{aq)}}(5$ mL) and $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3(\text { aq) }}(5 \mathrm{~mL})$ were added to quench the reaction. The mixture was filtered through Celite, followed by extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. Purification of the residue
via flash column chromatography (ethyl acetate/hexanes = 1/6) delivered the MMG backbone 32 (70 mg, 34\%). $[\alpha]^{24}{ }_{\mathrm{D}}+24.4$ (c 3.1 in CHCl_{3}); IR (thin film): $\delta 2930,2857,1752,1427,1112$, 1044, 737, $698 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.79-7.70(8 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.48-7.46(4 \mathrm{H}$, m, Ar-H), 7.43-7.35 (11 H, m, Ar-H), 7.33-7.25 (13 H, m, Ar-H), 7.24-7.18 (6 H, m, Ar-H), 7.11-7.09 (1 H, m, Ar-H), 7.03-7.01 (2 H, m, Ar-H), 5.59 (1 H, s, 1'-H), 5.49 (1 H, s, ArCH), $5.35(1 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 4.99\left(1 \mathrm{H}, \mathrm{d}, J 11.1, \mathrm{ArCH}_{2}\right), 4.90\left(1 \mathrm{H}, \mathrm{d}, J 12.2, \mathrm{ArCH}_{2}\right), 4.85(1 \mathrm{H}, \mathrm{d}, J$ 12.2, ArCH_{2}), $4.78\left(1 \mathrm{H}, \mathrm{d}, J 10.9, \mathrm{ArCH}_{2}\right), 4.74\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.9, \mathrm{ArCH}_{2}\right), 4.63(1 \mathrm{H}, \mathrm{d}, J 11.1$, ArCH_{2}), 4.54-4.48 (3 H, m, glycerate-CH, ArCH_{2}), 4.20 (1 H, dd, J 10.3, 4.8, 6-H H_{a}, 4.16-4.15 (5 H, m, 2'-H, 3'-H, 4'-H, 5-H, glycerate-CH2), 4.04-4.03 (2 H, m, 2-H, 3-H), 4.00 (1 H, dd, J 10.8, 2.4, glycerate- CH_{2}), 3.91-3.84 (3 H, m, 5-H, 6'-H $\times 2$), 3.77 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), 3.68 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $10.3,6-\mathrm{H}_{\mathrm{b}}$), $3.60(1 \mathrm{H}, \mathrm{t}, J 8.9,4-\mathrm{H}), 1.07-1.06(18 \mathrm{H}, \mathrm{m}, \mathrm{t}-\mathrm{Bu}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 170.0 (C), 139.14 (C), 139.11 (C), 138.6 (C), 138.3 (C), 137.4 (C), 135.9 (CH), 135.7 (CH), 135.5 (CH), 133.9 (C), 133.6 (C), 133.1 (C), 132.8 (C), 129.8 (CH), 129.4 (CH), 129.3 (CH), 128.8 (CH), 128.2 (CH), 128.1 (CH), 128.09 (CH), 128.06 (CH), $128.04(\mathrm{CH}), 127.8$ (CH), 127.79 (CH), 127.75 (CH), $127.6(\mathrm{CH}), 127.5(\mathrm{CH}), 127.45(\mathrm{CH}), 127.43(\mathrm{CH}), 127.3(\mathrm{CH})$, 127.2 (CH), 127.1 (CH), 127.0 (CH), 126.0 (CH), 101.3 (CH), 94.5 (CH), 93.9 (CH), 81.9 (CH), $80.1(\mathrm{CH}), 75.4\left(\mathrm{CH}_{2}\right), 75.2(\mathrm{CH}), 74.9\left(\mathrm{CH}_{2}\right), 74.6(\mathrm{CH}), 74.3(\mathrm{CH}), 73.0(\mathrm{CH}), 72.4(\mathrm{CH}), 72.3$ $\left(\mathrm{CH}_{2}\right), 71.5\left(\mathrm{CH}_{2}\right), 68.8\left(\mathrm{CH}_{2}\right), 64.9\left(\mathrm{CH}_{2}\right), 63.3\left(\mathrm{CH}_{2}\right), 62.8(\mathrm{CH}), 51.9\left(\mathrm{CH}_{3}\right), 26.9\left(\mathrm{CH}_{3}\right), 26.7$ $\left(\mathrm{CH}_{3}\right), 19.3$ (C), 19.2 (C); HRMS (ESI): m/z calcd for $\mathrm{C}_{83} \mathrm{H}_{92} \mathrm{O}_{14} \mathrm{Si}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 1391.5923$, found: 1391.5970.

9.5	9.0	8.5	8.0				.	1		T	4.0	3.5	3.0	2.5	2	1.5	1.0	ppm
				7.5	7.0	6.5	6.0	5.5	5.0	4.5								
									+	\|								

088L`991

08.TLI

$\left.\begin{array}{l} \varepsilon \varepsilon 88^{\circ}{ }^{\tau} \\ \tau 乙 \sqcap \varepsilon \cdot \varepsilon_{\rceil} \end{array}\right]$	
とて9を	
	［66\％${ }^{\text {c }}$
てLOも	
Lもらも	
$869 \sigma^{\circ} \cdot \varepsilon$$890 G^{\circ} \cdot$	
9ZTS＊${ }^{\text {c }}$	
	0 ¢ ¢ $^{\circ} \mathrm{E}$
68てS ${ }^{\text {• }}$	
¢0L9	
0889	
8 ± 69	
8602	
	9 IてL。
GI9L	
99LL	
とて6L	
ع608	
とらも6	
6096＊＊ 6 ¢ $0^{\circ} \mathrm{F}$	
6てを0＊\ddagger	
logo．	
乙0¢	
ع0tE	
L6IE	
¢ 9 ¢0G	
LてZS	
$5699 \cdot{ }^{\circ} / / /$	
OGLS．\quad／	
0089＊ヶ	
00¢9	
6799	
OZLL	
26LL	
ع26L	
	¢L6L．
	6Sて8．
	とぁぁ8＊＊
	S6も8．
	6698° ஏ
	$9096{ }^{\circ}$
O6L6．${ }^{\text {LS9 }}$	
$2080{ }^{\circ} \mathrm{s}$	
$8 \angle \mathrm{LG} \cdot \mathrm{G}$／	
	9عとでし
	SSもて＊${ }^{\text {c }}$
	LIGZ＊
	0も9でし」
	9โ8て＊
	さて6でし
	8ヵ0と＊
	2918＊
	8してを＇し
	て9もを・レ
	S89を＊${ }^{\text {¢ }}$
	$09 L E \cdot L$
	$068 \varepsilon^{\circ} L^{\prime}$
	0668＊ $\mathrm{L}^{\text {－}}$
	LLLも＊
	2685＊

18

틀
0
-
0

${ }^{\circ}$
0

\circ

10
∞
0.6 G＂ 6

[^0]

[^1]

[^2]

$\begin{array}{lr} \\ \text { Current } \\ \text { NAME } & \text { Data Parameters } \\ \text { EXPH－1340－1B }\end{array}$

[^0]: $\left.\begin{array}{lllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30\end{array}\right) 20 \quad 10 \mathrm{ppm}$

[^1]:

[^2]: $\begin{array}{lllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}$

