Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2014

Supporting Information for

Molecular Binding Behaviors of Bispyridinium-containing $Bis(\beta$ cyclodextrin)s and [2]Rotaxane toward Bile Salts

Ying-Ming Zhang, Ze Wang, Yong Chen, Hong-Zhong Chen, Fei Ding, and Yu Liu*

Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, P. R. China

yuliu@nankai.edu.cn

Figure S1. ¹H NMR spectrum of compound 3 in D₂O (400 MHz, 25 °C)

Figure S2. ¹³C NMR spectrum of compound 3 in D₂O (100 MHz, 25 °C)

Figure S3. MALDI-MS spectra of compound 3

Figure S4. ¹H NMR spectrum of compound 1 in D₂O (400 MHz, 25 °C)

Figure S5. ¹³C NMR spectrum of compound 1 in D₂O (100 MHz, 25 °C)

Figure S6. MALDI-MS spectra of compound 1

Figure S7. ¹H NMR spectrum of compound 2 in D₂O (400 MHz, 25 °C)

Figure S8. ¹³C NMR spectrum of compound 2 in D₂O (100 MHz, 25 °C)

Figure S9. MALDI-MS spectra of compound 2

Figure S10. ESI-MS spectra of complex 3⊂CB[7]

Figure S11. Typical Job's plots of complexes (a) CA \subset 1, (b) DCA \subset 1, (c) TCA \subset 1, (d) DCA \subset 2, (e) TCA \subset 2, and (f) GCA \subset 2 in D₂O at 25 °C, respectively ([Host] + [Guest] = 1.0×10^{-3} M).

Figure S12. Cyclic voltammograms of (a) 1 and (b) 2 in water containing 0.1 M NaCl as the supporting electrolyte (vs. Ag/AgCl) at 100 mV·s⁻¹ ([1] = [2] = 1.0×10^{-3} M).

Figure S13. ¹H ROESY spectrum of host 1 after a mixing time of 0.220 s ([1] = $2.2 \times$

10⁻³ M, 300 MHz, D₂O, 25 °C).

Figure S14. ¹H NOESY spectrum of host CA⊂2 after a mixing time of 0.190 s ([2] =

 2.2×10^{-3} M and [CA] = 5.0×10^{-3} M, 300 MHz, D₂O, 25 °C).

Figure S15. ¹H NOESY spectrum of complex DCA \subset 1 after a mixing time of 0.200 s ([1] = 2.2 × 10⁻³ M and [DCA] = 5.0 × 10⁻³ M, 300 MHz, D₂O, 25 °C)

Figure S16. ¹H NOESY spectrum of complex GCA \subset 1 after a mixing time of 0.210 s ([1] = 2.2 × 10⁻³ M and [GCA] = 5.0 × 10⁻³ M, 300 MHz, D₂O, 25 °C)

Figure S17. ¹H NOESY spectrum of complex TCA \subset 1 after a mixing time of 0.210 s ([1] = 2.2 × 10⁻³ M and [TCA] = 5.0 × 10⁻³ M, 300 MHz, D₂O, 25 °C)

Figure S18. ¹H NOESY spectrum of complex DCA \subset 2 after a mixing time of 0.190 s ([2] = 2.2 × 10⁻³ M and [DCA] = 5.0 × 10⁻³ M, 300 MHz, D₂O, 25 °C)

Figure S19. ¹H NOESY spectrum of complex GCA \subset 2 after a mixing time of 0.200 s ([2] = 2.2 × 10⁻³ M and [GCA] = 5.0 × 10⁻³ M, 300 MHz, D₂O, 25 °C)

Figure S20. ¹H NOESY spectrum of complex TCA \subset 2 after a mixing time of 0.200 s ([2] = 2.2 × 10⁻³ M and [TCA] = 5.0 × 10⁻³ M, 300 MHz, D₂O, 25 °C)