Supporting Information

Synthesis of non-hydrolysable mimics of glycosylphosphatidylinositol (GPI) anchor

Mahipal Yadav,^a Riya Raghupathy,^{c,d} Varma Saikam,^{a,b} Saidulu Dara,^{a,b} Parvinder Pal Singh,^{a*} Sanghapal D. Sawant,^a Satyajit Mayor^c and Ram A. Vishwakarma^{a,b*}

^aMedicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180 001, India

^bAcademy of Scientific and Innovative Research

^cNational Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560 065, India

^dShanmugha Arts, Science, Technology, and Research Academy, Thanjavur 613 401, Tamil Nadu, India

Tel.: +91-191-2569111, *Fax:* +91-191-2569333, *e-mail:* <u>ram@iiim.res.in</u> and

ppsingh@iiim.ac.in

IIIM communication No. IIIM/1523/2013

Table of contents:

S. No.	Contents	Page No.
1.	General	3
2.	Synthesis of acceptor 2	3-6
3.	Inhibition experiment data	7
4.	¹ H NMR, ¹³ C NMR, ³¹ P NMR, HSQC and Mass Spectrogram	8-32
5.	References	32

1. General:

All NMR measurements (¹H, ¹³C and ³¹P) were recorded on 400 or 500 MHz spectrometer fitted with pulse-field gradient probe, and tetramethylsilane (TMS) or residual resonance of deuterated solvent were used as internal reference. Chemical shifts are expressed in (δ) parts per million and coupling constants *J* in hertz. Mass spectra were recorded either with LCMS-QTOF instrument or with MALDI-TOF/TOF mass spectrophotometer using 2, 5-Dihydroxy benzoic acid/ α -Cyano-4-hydroxy cinnamic acid as matrix in acetonitrile:water containing 0.01% TFA.

2. Synthesis of acceptor 2 (2,3,4,5-tetra-*O*-benzyl-1-*O*-(4-methoxybenzyl)-*D*-myo-inositol): This chiral intermediate was prepared in following steps (Scheme 1)¹

Scheme S1: Synthesis of acceptor 2. Reagents and conditions: (a) camphor dimethyl ketal, dry CH_2CI_2 , *p*-TSA, reflux, 2 h; (b) PTSA, MeOH, 50 °C, 3 h; (c) i). (Bu)₂SnO, MeOH, reflux, 2 h ii). PMBCI, (Bu)₄NBr, dry toluene, 4A° MS, reflux 6 h; (d). BnBr, NaH, DMF, rt, 3 h; (e) i). *t*-BuOK, DMSO, 80 °C, 3 h; ii). 1M HCI:acetone (1:9), 80 °C, 30 min.

6-O-Allyl-3,4,5-tri-O-benzyl-1,2-O-{(+)-1,1,7-trimethyl[2,2,1]bicyclohepta-6-ylidene}-D-myoinositol (iiia): To the solution of 6-O-Allyl-3,4,5-tri-O-benzyl-myo-inositol ii (10.00 g, 20.4 mmol) in a dry CH₂Cl₂ (120 mL), *p*-TSA (380 mg, 0.4 mmol) and camphordimethylacetal (10.10 g, 50.0 mmol) was added and the reaction mixture was heated to reflux for 2 h. After completion, reaction mixture was neutralized with triethylamine. Normal workup followed by flash chromatography (EOAc: hexane 1:9) provided the desired D-isomer iiia (5.00 g, 43.6%). TLC (EtOAc:hexane 1:9): R_f = 0.33; [α]_D = -7.1 (c 0.1, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 7.38-7.25 (m, 15H), 6.01-5.94 (m, 1H), 5.30 (dd, *J* = 17.3, 1.7 Hz, 1H), 5.17 (dd, *J* = 10.6 1.5 Hz, 1H), 4.81-4.69 (m, 6H), 4.40-4.36 (dtdt, J = 6.9, 5.7, 1.4 Hz, 1H), 4. 28-4.22 (m, 2H), 3.87 (dd, J = 7.1, 6.2 Hz, 1H), 3.89 (t, J = 8.5 Hz, 1H), 3.75-3.72 (m, 1H), 3.68 (dd, J = 9.8, 7.1 Hz, 1H), 3.36 (dd, J = 9.8, 8.2 Hz, 1H), 1.99-1.90 (m, 2H), 1.75-1.69 (m, 2H), 1.46 (d, J = 12.9 Hz, 1H), 1.43-1.37 (m, 1H), 1.26-1.24 (m, 1H), 1.07 (s, 3H), 0.88 (s, 3H), 0.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 138.70, 138.58, 138.51, 135.40, 128.39-127.37 (multiple peaks), 117.94, 116.23, 82.65, 82.29, 80.72, 78.20, 76.72, 74.76, 74.29, 72.70, 72.53, 72.40, 51.36, 47.98, 45.03, 44.83, 29.85, 26.95, 20.37, 20.18, 10.79; MALDI TOF MS: calcd for C₄₀H₄₈O₆ (M+Na)⁺ 647.3349, found 647.3264.

6-O-Allyl-3,4,5-tri-O-benzyl-D-myo-inositol (iva): The compound iiia (2 g, 3.5 mmol) and *p*-TSA (0.72 g, 4.2 mmol) was dissolved in MeOH (33 mL) and stirred for 3 h at 50 °C. Reaction mixture was neutralized at room temperature with Et₃N and solvent was evaporated and diluted with EtOAc (100 mL), washed with water and brine solution. The organic layer was dried using Na₂SO₄ and concentrated. The residue was purified by flash chromatography to give 6-O-Allyl-3,4,5-tri-O-benzyl-D-*myo*-inositol **iva** (1.47 g, 86%) as a white solid. TLC (hexane/EtOAc, 1:1): R_f = 0.50; [α]_D = -10.5 (c 0.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.34-7.22 (m, 15H), 5.98-5.91 (m, 1H), 5.25 (dd, *J* = 17.1, 1.6 Hz, 1H), 5.15 (dd, *J* = 10.4, 1.3 Hz, 1H), 4.93-4.79 (m, 4H), 4.70-4.69 (m, 2H), 4.43-4.37 (dtdt, *J* = 12.4, 5.9, 1.3 Hz, 1H), 4.28-4.23 (dtdt, *J* = 12.6, 5.6, 1.3Hz, 1H), 4.17 (t, *J* = 2.4 Hz, 1H), 3.92 (t, *J* = 9.6 Hz, 1H), 3.69 (t, *J* = 9.6 Hz, 1H), 3.44-3.38 (m, 3H), 2.73-2.70 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): 138.66, 138.53, 137.79, 135.02, 128.51-127.60 (multiple peaks), 117.16, 83.19, 81.56, 80.93, 79.96, 75.91, 75.67, 74.33, 72.74, 71.69, 69.25; MALDI TOF MS: calcd for C₃₀H₃₄O₆ (M+Na)⁺ 513.2253, found 513.2035.

6-O-Allyl-3,4,5-tri-O-benzyl-1-O-(4-methoxybenzyl)-D-myo-inositol (va): A solution of diol iva (2.00 g, 4.1 mmol) and dibutyltin oxide (1.00 g, 4.1 mmol) in toluene (140 mL) was heated to reflux for 3 h using Dean-Stark apparatus. After that PMBCl (0.71 mL, 5.3 mmol) and (Bu)₄NBr (1.92 g, 6.0 mmol) was added and reflux for 1 h. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (9:1 to 8:2 hexane/EtOAc) to provide 6-O-Allyl-3,4,5-tri-O-benzyl-1-O-(4-methoxybenzyl)-D-myo-inositol va (2.25 g, 90%) as white solid. TLC (hexane/EtOAc, 7:3): R_f = 0.56; [α]_D = -1.7 (c 0.01, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 7.33-7.25 (m, 17H), 6.87 (d, J = 8.59, 2H), 6.03-5.93 (m, 1H), 5.20-5.17 (dd, J = 15.5, 1.2 Hz, 1H), 5.14 (dd, J = 11.7, 1.6 Hz, 1H), 4.89-4.81 (m, 4H), 4.69-4.60 (m, 4H), 4.45-4.38 (dtdt, J = 12.2, 5.6, 1.6 Hz, 1H), 4.37-4.30 (dtdt, J = 12.3, 5.9, 1.7 Hz, 1H), 4.15 (t, J = 2.3 Hz, 1H), 3.90 (t, J = 9.6 Hz, 1H), 3.81-3.77 (m, 4H), 3.41-3.35 (m, 2H), 3.30 (dd, J = 9.8, 2.0 Hz, 1H), 2.42 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): 159.36, 138.80, 138.72, 137.99, 135.35, 130.14, 129.47, 128.63-127.54 (multiple peaks), 116.58, 113.96, 113.86, 83.16, 81.11, 80.89, 79.75, 79.27, 75.96, 75.91, 74.56, 72.70, 72.47, 67.71, 55.29; MALDI TOF MS: calcd for C₃₈H₄₂O₇ (M+Na)⁺ 633.2828 found, 633.2833.

6-O-Allyl-2,3,4,5-tetra-O-benzyl-1-O-(4-methoxybenzyl)-D-myo-inositol (via): The compound va (2.15 g, 3.5 mmol) was dissolved in anhyd DMF (50 mL), solution was brought to 0 °C followed by addition of NaH (0.26 g, 11.1 mmol) and benzyl bromide (0.63 ml, 5.3 mmol). The reaction mixture stirred for 3 h at room temperature was subjected to brine treatment (500 ml) and extracted with EtOAc (80 ml). The organic extract was dried over anhyd Na₂SO₄, concentrated followed by column purification to provide 6-O-Allyl-2,3,4,5-tetra-O-benzyl-1-O-(4-methoxybenzyl)-D-myo-inositol via (2.42 g, 93%) as colorless syrup. TLC (hexane/EtOAc, 8:2): $R_f = 0.45$; $[\alpha]_D = -4.6$ (c 0.01, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 7.39-7.23 (m, 22H), 6.87 (d, J = 8.6 Hz, 2H), 5.98-5.95 (m, 1H), 5.27 (dd, J = 17.2, 1.7 Hz, 1H), 5.13 (dd, J = 10.5, 1.5 Hz, 1H), 4.90-4.80 (m, 6H), 4.64-4.56 (m, 3H), 4.53-4.50 (m, 1H), 4.41-4.37 (dtdt, J = 12.2, 2.3 Hz, 1H), 3.93 (t, J = 9.6 Hz, 1H), 3.81 (s, 3H), 3.40 (t, J = 9.2 Hz, 1H), 3.32 (dd, J = 9.8, 2.3 Hz, 1H), 3.26 (dd, J = 9.8, 2.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): 159.36, 138.81, 138.72, 137.99, 135.36, 130.14, 129.48, 128.65-128.64 (multiple peaks), 116.59, 113.86, 83.17, 81.12, 80.91, 79.76, 79.29, 77.76, 77.24, 75.98, 74.57, 72.71, 72.48, 67.72, 55.30; MALDI TOF MS: calcd for $C_{45}H_{48}O_7(M+Na)^+$ 723.3298, found 723.3182.

2,3,4,5-tetra-O-benzyl-1-O-(4-methoxybenzyl)-D-myo-inositol (2): The compound via (1.6 g, 2.14 mmol) was dissolved in anhyd DMSO (80 ml) and treated with potassium tert-butoxide (2.9 g, 11.42 mmol). The reaction mixture was heated at 80 °C after 3 h, poured into ice-cold water, and extracted with EtOAc. The organic layer was washed with brine and water, dried (Na₂SO₄), and concentrated. This compound was dissolved in a solution of 1 M HCl/acetone (1:9, 50 ml) and kept at 50 °C for 30 min, neutralized with TEA and concentrated. The residue on flash

chromatography (hexane/EtOAc, 3:1) resulted 2,3,4,5-tetra-*O*-benzyl-1-*O*-(4-methoxybenzyl)-D*myo*-inositol **2**, 1.24 g (82% yield) as white solid. TLC (hexane/EtOAc, 7:3): $R_f = 0.5$; $[\alpha]_D = -$ 10.38 (c 0.13, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 7.39-7.25 (m, 20H), 7.21 (d, J = 8.6 Hz, 2H), 6.86 (d, J = 8.6 Hz, 2H), 4.90 (d, J = 10.7 Hz, 1H), 4.89-4.83 (m, 3H), 4.82 (d, J = 10.7 Hz, 1H), 4.78 (d, J = 11.9 Hz, 1H), 4.67 (d, J = 11.9 Hz, 1H), 4.62 (d, J = 11.9 Hz, 1H), 4.52 (d, J =11.3 Hz, 1H), 4.44 (d, J = 11.3 Hz, 1H), 4.14 (t, J = 9.7 Hz, 1H), 4.04 (t, J = 9.5 Hz, 1H), 4.02 (t, J = 2.2 Hz, 1H), 3.80 (s, 3H), 3.38-3.35 (m, 2H), 3.17-3.14 (dd, J = 9.9, 2.3 Hz, 1H), 2.47 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): 159.35, 138.87, 138.81, 138.34, 129.97, 129.39, 128.40-127.38 (multiple peaks), 113.92, 83.47, 81.41, 81.11, 79.75, 75.79, 75.33, 74.06, 73.66, 72.86, 72.74, 71.92, 55.29; MALDI TOF MS: calcd for C₄₂H₄₄O₇ (M+Na)⁺ 683.2985, found 683.2974. Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

2. Inhibition experiment data:

Fig 3: Dose response of **23a** on the % inhibition of GPI-NBD by PI-PLC. Fig represents the average data (n=4) for % inhibition of GPI-NBD cleavage by PI-PLC in presence of **23a**

Fig 4: Dose response of **23b** on the % inhibition of GPI-NBD by PI-PLC. Fig represents the average data (n=5) for % inhibition of GPI-NBD cleavage by PI-PLC in presence of **23b**

3. ¹H NMR, ¹³C NMR, ³¹P NMR and Mass Spectrogram:

¹H NMR spectrogram (CDCl₃, 400 MHz) of compound 4:

¹H NMR spectrogram (CDCl₃, 500 MHz) of compound 6:

¹H NMR spectrogram (CDCl₃, 400 MHz) of compound 11:

¹H NMR spectrogram (CD₃OD, 400 MHz) of compound 12:

¹H NMR spectrogram (CDCl₃, 400 MHz) of compound 13:

Jun18-2012-pumima 12P

¹H NMR spectrogram (CDCl₃, 400 MHz) of compound 14a:

¹H NMR spectrogram (CDCl₃, 400 MHz) of compound 14b:

¹H NMR spectrogram (CD₃OD, 400 MHz) of compound 16a:

³¹P NMR spectrogram (CD₃OD, 161 MHz) of compound 16a:

¹H NMR spectrogram (CDCl₃, 400 MHz) of compound 16b:

³¹P NMR spectrogram (CDCl₃, 161 MHz) of compound 16b:

¹H NMR spectrogram (CDCl₃, 400 MHz) of compound 17a:

³¹P NMR spectrogram (CDCl₃, 161 MHz) of compound 17a:

¹³C NMR spectrogram (CDCl₃, 100 MHz) of compound 17a:

DEPT spectrogram (CDCl₃, 100 MHz) of compound 17a:

HRMS (ESI) spectrogram of compound 17a:

¹H NMR spectrogram (CDCl₃, 400 MHz) of compound 17b:

³¹P NMR spectrogram (CDCl₃, 161 MHz) of compound 17b:

¹³C NMR spectrogram (CDCl₃, 100 MHz) of compound 17b:

DEPT spectrogram (CDCl₃, 100 MHz) of compound 17b:

HRMS (ESI) spectrogram of compound 17b:

Data Filename Sample Type Instrument Name Acq Method IRM Calibration Status Comment	CD-2.d Sample Instrument 1 DAILY MS DESI.m Success	Sample Name Position User Name Acquired Time DA Method	CD-2 13 Sanjay Pandey 6/19/2012 5:09:00 PM 1.m					
User Spectra Fragmentor Voltage	Collision Energy	Ionization Mode						
	0 n (0 283 min) Frag	=135 0V CD-2 d						
xiu			2					
1-			553					
0.8			* 689.					
0.6								
0.4				5332	3092			
0.2				-711.	-734.6			
0 610	620 630 640 6	650 660 670 Counts v	680 690 700 s. Mass-to-Charge	710 720 e (m/z)	730 740	750 7	60 770)
Peak List				, ···-/				

¹H NMR spectrogram (CDCl₃, 400 MHz) of compound 18a:

³¹P NMR spectrogram (CDCl₃, 161 MHz) of compound 18a:

19

¹H NMR spectrogram (CDCl₃, 400 MHz) of compound 18b:

³¹P NMR spectrogram (CDCl₃, 161 MHz) of compound 18b:

¹H NMR spectrogram (CDCl₃, 400 MHz) of compound 19:

¹H NMR spectrogram (CDCl₃, 400 MHz) of compound 20:

¹H NMR spectrogram (CDCl₃, 400 MHz) of compound 21:

¹³CNMR spectrogram (CDCl₃, 100 MHz) of compound 21:

Sep01-2011-purnima DI-AC

DEPT spectrogram (CDCl₃, 100 MHz) of compound 21:

¹H NMR spectrogram (CDCl₃, 400 MHz) of compound 22a:

³¹P NMR spectrogram (CDCl₃, 161 MHz) of compound 22a:

¹³C NMR spectrogram (CDCl₃, 100 MHz) of compound 22a:

DEPT spectrogram (CDCl₃, 100 MHz) of compound 22a:

¹H NMR spectrogram (CDCl₃, 500 MHz) of compound 22b:

³¹P NMR spectrogram (CDCl₃, 161 MHz) of compound 22b:

¹H NMR spectrogram (CDCl₃:CD₃OD:D₂O = 4:4:1, 400 MHz) of compound 23a:

³¹P NMR spectrogram (CDCl₃:CD₃OD:D₂O = 4:4:1, 161 MHz) of compound 23a:

HSQC spectrogram (CDCl₃:CD₃OD:D₂O = 4:4:1, 400 MHz) of compound 23a:

HSQC spectrogram (expansion) of compound 23a:

HRMS (ESI) spectrogram of compound 23a:

¹H NMR spectrogram (CDCl₃:CD₃OD:D₂O = 4:4:1, 400 MHz) of compound 23b:

HSQC spectrogram (CDCl₃:CD₃OD:D₂O = 4:4:1, 400 MHz) of compound 23b:

HSQC spectrogram (expansion) of compound 23b:

5.6 5.5 5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 4.3 42 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 f2 (ppm)

HRMS (ESI) spectrogram of compound 23b:

References:

a) V. Saikam, R. Raghupathy, M. Yadav, V. Gannedi, P. P. Singh, N. A. Qazi, S. D. Sawant and R. A. Vishwakarma, *Tetrahedron Lett.*, 2011, **52**, 4277; b) S. Cottaz, J. S. Brimacombe, M. A. J. Ferguson, *J. Chem. Soc.*, *Perkin Trans. 1* 1993, 2945; c) R. A. Vishwakarma and D. Ruhela, *Enzymes* 2009, **26**, 181.