Electronic Supplementary Information

New fluorescent bis dithienylethene (DTE)-based bipyridines as reverse interrupters: single *vs* double photochromism

Lucie Ordronneau,^{*a*} Julien Boixel,^{*a*} Vincent Aubert,^{*a*} Mattias S. Vidal,^{*b*} Sergio Moya,^{*b*} Pedro Aguirre,^{*c*} Loic Toupet,^{*d*} J. A. Gareth Williams,^{*e*} Hubert Le Bozec,^{**a*} and Véronique Guerchais^{**a*}

^aInstitut des Sciences Chimiques de Rennes UMR 6226 CNRS-Université de Rennes 1, Campus de Beaulieu, 35042 Rennes, France. Fax: 33223236939; Tel: 33223236544; E-mail: lebozec@univ-rennes1.fr, veronique.guerchais@univ-rennes1.fr.

^b Universidad de Santiago de Chile, Facultad de Química y Biología, Av. Libertador Bernardo O'Higgins 3363, Casilla 40, Correo 33, Santiago, Chile.

^c Universidad de Chile, Facultad de Ciencias Químicas y Farmacéuticas, Casilla 233, Santiago 1, Chile.

^dInstitut de Physique de Rennes, UMR 6251 CNRS-Université de Rennes 1, Campus de Beaulieu, 35042 Rennes, France.

^eDepartment of Chemistry, Durham University, South Road, Durham, DH1 3LE, United Kingdom.

Table of contents

- **S1.** ¹³C NMR of **6a** in $CDCl_3$
- **S2**. ¹³C NMR of **6b** in CD_2Cl_2
- **S3.** 13 C NMR of **6c** in CDCl₃
- **S4.** ¹³C NMR of **L**^a in CDCl₃
- **S5.** ¹³C NMR of $\mathbf{L}^{\mathbf{b}}$ in CD_2Cl_2
- **S6.** ¹³C NMR of L^c in CDCl₃
- **S7.** ¹³C NMR of **ReL**^b in CD₂Cl₂
- **S8.** ¹³C NMR of **ZnL**^b in CD₂Cl₂

S9. Absorption (PSS) and emission (open form) spectra of $\mathbf{L}^{\mathbf{b}}$ in cyclohexane

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

Figure S1. ¹³C NMR of 6a in CDCl₃

Figure S2. ¹³C NMR of **6b** in CD₂Cl₂

Figure S3. ¹³C NMR of **6c** in CDCl₃

Figure S4. ¹³C NMR of **L**^a in CDCl₃

Figure S5. ¹³C NMR of L^b in CD₂Cl₂

Figure S6. ¹³C NMR of **L**^c in CDCl₃

Figure S7. ¹³C NMR of **ReL**^b in CD₂Cl₂

Figure S8. ¹³C NMR of ZnL^b in CD₂Cl₂

Figure S9. UV-vis absorption (PSS, dashed line) and emission (open form, solid line) spectra of L^{b} in cyclohexane at room temperature.

Additional equations^(a) used in calculating the Förster critical radius R_0 and efficiency *E* of energy transfer:

 $R_0^6 = 8.79 \times 10^{23} (\kappa^2 n^{-4} Q_{\rm D} J(\lambda))$ [equation S1]

where Q_D is the quantum yield of the donor (here we have used the value of the open-open form), n is the refractive index (1.42 for cyclohexane), and κ^2 is factor that takes into account the orientational dependence of the dipoles of donor and acceptor. For simplicity, we have assumed a value for κ^2 of 2/3, as found for random averaging in intermolecular energy transfer.

$$E = \frac{R_0^6}{R_0^6 + r^6} \qquad [equation S2]$$

(a) See, for example, chapter 13 of J. R. Lakowicz, *Principles of Fluorescence Spectroscopy*, 3rd edition, Springer, 2006.