Probing the substrate specificity of Trypanosoma brucei GlcNAc-PI de-N-acetylase with synthetic substrate analogues.

Amy S. Capes, ${ }^{\dagger}$ Arthur Crossman, ${ }^{\dagger}$ Michael D. Urbaniak, Sophie H. Gilbert, Michael A. J. Ferguson,* Ian H. Gilbert*

Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
\dagger These authors contributed equally to the work.
*Co-corresponding authors. Phone +44 (0) 1382 386240, Email
m.a.j.ferguson@dundee.ac.uk and i.h.gilbert@dundee.ac.uk

Contents:

The following is a description of the analytical data for the β-anomers $\mathbf{8}$ and $\mathbf{1 0}$ and their respective intermediates.

Triethylammonium 1R,2R-1-O-(2-azido-3,4,6-tri-O-acetyl-2-deoxy- β-D-glucopyranosyl)-

 cyclohexanediol 2-(n-octadecylphosphate) S1This phosphoric diester was obtained from the pseudodisaccharide derivative 17 (72 $\mathrm{mg}, 0.17 \mathrm{mmol})$ and the H -phosphonate $\mathbf{1 8}^{15}(202 \mathrm{mg}, 0.46 \mathrm{mmol})$ essentially as described in the preparation of the 2-(n-octadecyl phosphate) $\mathbf{1 9}$; yield ($60 \mathrm{mg}, 41 \%$); $[\alpha]_{\mathbf{D}}^{25}-10.0^{\circ}(c$ $\left.1.58, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}\right.$ and $\left.4^{\prime}\right), 4.50\left(\mathrm{~d}, 1 \mathrm{H}, J_{1^{\prime}, 2^{\prime}}=8.0 \mathrm{~Hz}, \mathrm{H}-\right.$ $\left.1^{\prime}\right), 4.28(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1$ or 2$), 4.20\left(\mathrm{dd}, 1 \mathrm{H}, J_{5^{\prime}, 6^{\prime} \mathrm{a}}=3.7, J_{6^{\prime}, 6^{\prime} \mathrm{b}}=12.2 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{a}\right), 4.05(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{H}-6^{\prime} \mathrm{b}\right), 3.84\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{OCH}_{2}\right.$ and $\mathrm{H}-1$ or 2$), 3.63\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 3.40\left(\mathrm{dd}, 1 \mathrm{H}, J_{2^{\prime}, 3^{\prime}}=9.8 \mathrm{~Hz}\right.$, $\left.\mathrm{H}-2^{\prime}\right), 2.83\left(\mathrm{q}, 6 \mathrm{H}, J=7.3 \mathrm{~Hz}, 3 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.04-1.80\left(\mathrm{~m}, 11 \mathrm{H}, 3 \times \mathrm{COCH}_{3}\right.$ and $2 \mathrm{H}-$
cyclitol), $1.65-1.50\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right.$ and 4 H -cyclitol $), 1.35-1.15\left(41 \mathrm{H},\left[\mathrm{CH}_{2}\right]_{15}, 3 \mathrm{x}\right.$ $\mathrm{CH}_{2} \mathrm{CH}_{3}$ and 2 H -cyclitol), $0.80\left(\mathrm{t}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 169.8-$ $168.6\left(3 \times \mathrm{COCH}_{3}\right), 99.4\left(\mathrm{C}-1^{\prime}\right), 77.0(\mathrm{C}-1$ or $\mathrm{C}-2), 73.1(\mathrm{C}-1$ or $\mathrm{C}-2), 71.6,71.0\left(\mathrm{C}-5^{\prime}\right), 67.4$, $65.3\left(\mathrm{OCH}_{2}\right), 63.1\left(\mathrm{C}-2^{\prime}\right), 60.9\left(\mathrm{C}-6^{\prime}\right), 44.4\left[\mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right], 30.9,29.7,28.7$ - $28.4,27.4,25.6$, 24.8, 19.9 - 19.6, $13.1\left[\mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{3}\right], 7.5\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{P}}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-1.5$ (with heteronuclear decoupling); HRMS (ESI) calcd. for $\mathrm{C}_{36} \mathrm{H}_{63} \mathrm{~N}_{3} \mathrm{O}_{12} \mathrm{P}\left[\mathrm{M}-\mathrm{NEt}_{3}-\mathrm{H}\right]^{-} 760.4155$, found 760.4124 .

1R,2R-1-O-(2-Amino-2-deoxy- β-D-glucopyranosyl)-cyclohexanediol 2-(n-

 octadecylphosphate) 8To a solution of the TEA salt $\mathbf{S 1}(55 \mathrm{mg}, 0.06 \mathrm{mmol})$ in $1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(10 \mathrm{~mL})$ was added 5.4 M NaOMe in $\mathrm{MeOH}(0.10 \mathrm{~mL})$. The mixture was kept for 3 h at rt and was then neutralised with Amberlite IR-120 $\left(\mathrm{H}^{+}\right)$ion-exchange resin, filtered and the filtrate concentrated under reduced pressure. This crude product was directly used in the next step. A solution of the crude azide in 1:1 stabilised THF - n-propanol (5 mL) containing 10-20\% $\mathrm{Pd}(\mathrm{OH})_{2}$ on carbon (5 mg) was stirred under a hydrogen atmosphere at rt for 1 h . Afterwads, it was percolated through a short column of Chelex 100 on a bed of Celite (further elution with 1:1 THF - n-propanol). The eluent was concentrated under reduced pressure and the ensuing residue was dissolved in 10:10:3 $\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(2.3 \mathrm{~mL})$, plus 3 drops of TEA, and then purified by Iatrobead SiO_{2} column chromatography (elution with $4: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $-\mathrm{MeOH})$ to furnish the amino compound $\mathbf{8}(4 \mathrm{mg}, 10 \%) ;[\alpha]_{\mathrm{D}}^{25}+28.0^{\circ}\left(c 0.4,10: 10: 3 \mathrm{CHCl}_{3}\right.$ $\left.-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, 10: 10: 3 \mathrm{CDCl}_{3}-\mathrm{MeOH}-\mathrm{d}_{4}-\mathrm{D}_{2} \mathrm{O}\right), 4.58$ (H-1' and HOD), $4.16-3.26\left(8 \mathrm{H}, \mathrm{OCH}_{2}, \mathrm{H}-1,2,3^{\prime}, 4^{\prime}, 6^{\prime} \mathrm{a}, \mathrm{b}\right), 3.03\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 3.05\left(\mathrm{dd}, 1 \mathrm{H}, J_{1^{\prime}, 2^{\prime}}=8.5, J_{2^{\prime}, 3^{\prime}}\right.$ $\left.=9.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 2.20-1.55\left(6 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2}\right.$ and 4 H -cyclitol $), 1.44-1.21\left(34 \mathrm{H},\left[\mathrm{CH}_{2}\right]_{15}\right.$ and 4 H -cyclitol), $0.90\left(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$); $\delta_{\mathrm{C}}\left(\mathrm{HSQC} 125 \mathrm{MHz}, 10: 10: 3 \mathrm{CDCl}_{3}-\right.$ $\left.\mathrm{MeOH}-\mathrm{d}_{4}-\mathrm{D}_{2} \mathrm{O}\right) 94.5\left(\mathrm{C}-1^{\prime}\right), 80.5(\mathrm{C}-1$ or $\mathrm{C}-2), 75.4$ (C-1 or C-2), 72.7 (C-3'), 70.2, 65.2
$\left(\mathrm{OCH}_{2}\right), 60.8$ (C-6'), 54.3 (C-5'), 55.7 (C-2'), 32.1, 31.8, 30.4, 29.3, 27.6, 25.5, 23.4, 22.2, $13.3\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{P}}\left(202 \mathrm{MHz}, 10: 10: 3 \mathrm{CDCl}_{3}-\mathrm{MeOH}-\mathrm{d}_{4}-\mathrm{D}_{2} \mathrm{O}\right)-0.6$ (with heteronuclear decoupling); HRMS (ESI) calcd. for $\mathrm{C}_{30} \mathrm{H}_{59} \mathrm{NO}_{9} \mathrm{P}[\mathrm{M}-\mathrm{H}]^{-} 608.3933$, found 608.3921.

1R,2R-1-O-(2-Azido-3,4,6-tri-O-acetyl-2-deoxy- β-d-glucopyranosyl)-2-O-(tert-

butyldimethylsilyl)-cyclohexanediol S2

This compound was obtained from the alcohol $\mathbf{1 7}(100 \mathrm{mg}, 0.23 \mathrm{mmol}), 2,6$-lutidine $(53.6 \mu \mathrm{~L}, 0.46 \mathrm{mmol})$ and tert-butyldimethylsilyl trifluoromethane sulfonate $(80.2 \mu \mathrm{~L}, 0.35$ mmol) essentially as described for the α-anomer 22, yield ($100 \mathrm{mg}, 80 \%$) as a white solid; mp $109-11{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}-23.5^{\circ}\left(c 1.48, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.02\left(\mathrm{t}, 1 \mathrm{H}, J_{4^{\prime}, 5^{\prime}}=9.7 \mathrm{~Hz}\right.$, $\left.\mathrm{H}-4^{\prime}\right), 4.95\left(\mathrm{t}, 1 \mathrm{H}, J_{3^{\prime}, 4^{\prime}}=9.8 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 4.49\left(\mathrm{~d}, 1 \mathrm{H}, J_{1^{\prime}, 2^{\prime}}=8.1 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 4.24\left(\mathrm{dd}, 1 \mathrm{H}, J_{5^{\prime}, 6^{\prime} \mathrm{a}}=\right.$ $\left.4.4, J_{6^{\prime}, 6^{\prime} \mathrm{b}}=12.2 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{a}\right), 4.09\left(\mathrm{dd}, 1 \mathrm{H}, J_{5^{\prime}, 6^{\prime} \mathrm{b}}=2.5, J_{6^{\prime} \mathrm{a}, 6^{\mathrm{b}}}=12.2 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{b}\right), 3.61(\mathrm{~m}, 3 \mathrm{H}$, H-5', 1 and 2), $3.46\left(\mathrm{dd}, 1 \mathrm{H}, J_{2^{\prime}, 3^{\prime}}=10.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 2.10-2.01\left(3 \mathrm{x} \mathrm{s}, 9 \mathrm{H}, 3 \times \mathrm{COCH}_{3}\right), 1.97$ (m, 1H, cyclitol), $1.84(\mathrm{~m}, 1 \mathrm{H}$, cyclitol $), 1.65(\mathrm{~m}, 2 \mathrm{H}$, cyclitol), $1.40(\mathrm{~m}, 2 \mathrm{H}$, cyclitol), 1.28 (m, 2H, cyclitol), $0.89\left(\mathrm{~s}, 9 \mathrm{H}, 3 \times \mathrm{CH}_{3}\right), 0.12-0.08\left(2 \mathrm{x} \mathrm{s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 170.7$ - $169.7\left(3 \times \mathrm{COCH}_{3}\right), 99.4\left(\mathrm{C}-1^{\prime}\right), 80.0,72.4\left(\mathrm{C}-3^{\prime}\right), 71.6,71.5,68.5\left(\mathrm{C}-4^{\prime}\right)$, 63.9 (C-2'), 62.0 (C-6'), 32.1, 27.4, 25.8, 22.3, 22.1, $20.7\left(\mathrm{COCH}_{3}\right), 20.6\left(\mathrm{COCH}_{3}\right), 18.2$, 4.6, -4.8; HRMS (ESI) calcd. for $\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 544.2685$, found 544.2684.

1R,2R-1-O-(2-Azido-2-deoxy- β-D-glucopyranosyl)-2-O-(tert-butyldimethylsilyl)cyclohexanediol S3

To a solution of the triacetate $\mathbf{S} \mathbf{2}(147 \mathrm{mg}, 0.27 \mathrm{mmol})$ in 1:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(72$ $\mathrm{mL})$ was added 5.4 M NaOMe in $\mathrm{MeOH}(180 \mu \mathrm{~L})$. The mixture was kept for 30 min at rt and was then neutralised with Amberlite IR-120 $\left(\mathrm{H}^{+}\right)$ion-exchange resin, filtered and the filtrate concentrated under reduced pressure. Processing as described for the α-anomer 23 gave the β-anomer S3 (107 mg, 95%) as a waxy solid; $[\alpha]_{\mathbf{D}}^{25}-8.2^{\circ}\left(c 1.09, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 4.46\left(\mathrm{~d}, 1 \mathrm{H}, J_{1^{\prime}, 2^{\prime}}=7.7 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 3.88\left(\mathrm{dd}, 1 \mathrm{H}, J_{5^{\prime}, \mathrm{G}^{\prime} \mathrm{a}}=3.1, J_{6^{\prime}, 6^{\prime} \mathrm{b}}=12.0 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{a}\right)$,
$3.79\left(\mathrm{dd}, 1 \mathrm{H}, J_{5^{\prime}, 6^{\prime} \mathrm{b}}=4.3, J_{6^{\prime}, 6^{\prime} \mathrm{b}}=12.0 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{b}\right), 3.58\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-4^{\prime}, 1\right.$ and 2$), 3.36(\mathrm{t}, 1 \mathrm{H}$, $\left.J_{3^{\prime}, 4^{\prime}}=9.9 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 3.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}\right.$ and $\left.5^{\prime}\right), 2.00(\mathrm{~m}, 1 \mathrm{H}$, cyclitol $), 1.85(\mathrm{~m}, 1 \mathrm{H}$, cyclitol $)$, $1.66\left(\mathrm{~m}, 2 \mathrm{H}\right.$, cyclitol), $1.41\left(\mathrm{~m}, 2 \mathrm{H}\right.$, cyclitol), $1.28\left(\mathrm{~m}, 2 \mathrm{H}\right.$, cyclitol), $0.89\left(\mathrm{~s}, 9 \mathrm{H}, 3 \times \mathrm{XH}_{3}\right)$, $0.07\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 99.4\left(\mathrm{C}-1^{\prime}\right), 79.7,75.1,74.7\left(\mathrm{C}-4{ }^{\prime}\right), 72.2,70.4$, 66.2, 62.1 (C-6'), 32.3, 27.7, 25.8, 22.4, 21.7, 18.2, -4.5, -4.8; HRMS (ESI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 418.2368$, found 418.2358 .

1R,2R-1-O-(2-Azido-3,4,6-tri-O-benzyl-2-deoxy- β-D-glucopyranosyl)-2-O-(tert-butyldimethylsilyl)-cyclohexanediol S4

This compound was obtained from the triol $\mathbf{S 3}$ ($174 \mathrm{mg}, 0.42 \mathrm{mmol}$), $\mathrm{NaH}(46 \mathrm{mg}$, $1.93 \mathrm{mmol})$ and benzyl bromide ($230 \mu \mathrm{~L}, 1.93 \mathrm{mmol}$) essentially as described for the $\alpha-$ anomer 24, yield (234 mg, 81\%); $[\alpha]_{\mathbf{D}}^{25}-29.1^{\circ}\left(c 1.48, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.35-$ $7.10(15 \mathrm{H}, 3 \times \mathrm{Ph}), 4.85-4.46\left(6 \mathrm{H}, 3 \times \mathrm{CH} \mathrm{Z}_{2} \mathrm{Ar}\right), 4.31\left(\mathrm{~d}, 1 \mathrm{H}, J_{1^{\prime}, 2^{\prime}}=7.6 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 3.70-$ $3.54\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-1,2,3^{\prime}\right.$ and $\left.6^{\prime} \mathrm{a}, \mathrm{b}\right), 3.39-3.30\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2^{\prime}, 4^{\prime}\right.$ and $\left.5^{\prime}\right), 1.90(\mathrm{~m}, 1 \mathrm{H}$, cyclitol), $1.80(\mathrm{~m}, 1 \mathrm{H}$, cyclitol $), 1.60(\mathrm{~m}, 2 \mathrm{H}$, cyclitol $), 1.40(\mathrm{~m}, 2 \mathrm{H}$, cyclitol $), 1.25(\mathrm{~m}, 2 \mathrm{H}$, cyclitol), $0.82\left(\mathrm{~s}, 9 \mathrm{H}, 3 \times \mathrm{CH}_{3}\right), 0.02\left(2 \mathrm{x} \mathrm{s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 138.2-138.0(\mathrm{Ph})$, 128.5 - 127.6 (Ph), $99.4\left(\mathrm{C}^{\prime} 1^{\prime}\right), 83.1,78.8,77.9,75.6,75.1,73.6,71.3,68.8\left(\mathrm{C}-6^{\prime}\right), 66.6$, 31.6, 26.9, 25.9, 21.9, 21.8, 18.2, -4.5, -4.8; HRMS (ESI) calcd. for $\mathrm{C}_{39} \mathrm{H}_{54} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$ 688.3776, found 688.3754.

1R,2R-1-O-(2-Amino-3,4,6-tri-O-benzyl-2-deoxy- β-D-glucopyranosyl)-2-O-(tert-

 butyldimethylsilyl)-cyclohexanediol S5To a stirred solution of $\mathbf{S 4}(234 \mathrm{mg}, 0.34 \mathrm{mmol})$ in $10: 1 \mathrm{THF}$ - water $(5 \mathrm{~mL})$ at $60^{\circ} \mathrm{C}$ was added $\mathrm{Ph}_{3} \mathrm{P}$ ($268 \mathrm{mg}, 1.02 \mathrm{mmol}$). After 3 h , TLC showed the complete disappearance of the starting material. Processing as described for the α-anomer $\mathbf{2 5}$ gave the β-anomer $\mathbf{S 5}$ (90 $\mathrm{mg}, 40 \%) ;[\alpha]_{\mathbf{D}}^{25}-15.2^{\circ}\left(c 1.06, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.34-7.14(15 \mathrm{H}, 3 \times \mathrm{Ph})$, $4.97-4.49\left(6 \mathrm{H}, 3 \times \mathrm{CH}_{2} \mathrm{Ar}\right), 4.24\left(\mathrm{~d}, 1 \mathrm{H}, J_{1^{\prime}, 2^{\prime}}=7.8 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 3.72-3.39\left(7 \mathrm{H}, \mathrm{H}-1,2,3^{\prime}, 4^{\prime}\right.$,
5^{\prime} and $\left.6^{\prime} \mathrm{a}, \mathrm{b}\right), 2.85\left(\mathrm{t}, 1 \mathrm{H} J_{2^{\prime}, 3^{\prime}}=9.8 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 1.92-1.19(8 \mathrm{H}$, cyclitol $), 0.84\left(\mathrm{~s}, 9 \mathrm{H}, 3 \times \mathrm{CH}_{3}\right)$, $0.01\left(2 \mathrm{x} \mathrm{s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 138.5-138.1(\mathrm{Ph}), 128.6-127.5(\mathrm{Ph})$, 101.1 ($\mathrm{C}-1^{\prime}$) , 85.5, $78.8,77.8,75.5,75.4,74.8,74.5,73.6,71.2,69.0,57.0$ (C-2'), 31.4, 26.9, 25.9, 22.0, 21.6, 18.2, -4.6, -4.8; HRMS (ESI) calcd. for $\mathrm{C}_{39} \mathrm{H}_{56} \mathrm{NO}_{6} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$662.3871, found 662.3877 .

1R,2R-1-O-[2-N-(tert-Butoxycarbonyl)amino-3,4,6-tri-O-benzyl-2-deoxy- β-D-glucopyranosyl]-2-O-(tert-butyldimethylsilyl)-cyclohexanediol S6

The amine $\mathbf{S 5}(89 \mathrm{mg}, 0.13 \mathrm{mmol})$ was dissolved in EtOAc $(10 \mathrm{~mL})$ at rt. Di-tertbutyldicarbonate ($35 \mathrm{mg}, 0.16 \mathrm{mmol}$) was then added and the mixture was stirred overnight at rt. Processing as described for the α-anomer 26 gave the β-anomer $\mathbf{S 6}(89 \mathrm{mg}, 90 \%)$ as a white solid, mp $114-116^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}-7.3^{\circ}\left(c 3.13, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.32-7.15$ (15H, $3 \times \mathrm{Ph}$), $4.81-4.47$ ($7 \mathrm{H}, \mathrm{H}-1$ ' and $3 \times \mathrm{CH}_{2} \mathrm{Ar}$), 4.06 (brs, $1 \mathrm{H}, \mathrm{H}-3$ '), 3.68 (m, $3 \mathrm{H}, \mathrm{H}-$ $6^{\prime} \mathrm{a}, \mathrm{b}$ and $\mathrm{H}-1$ or 2), 3.55 (brt, $2 \mathrm{H}, J=8.9 \mathrm{~Hz}, \mathrm{H}-4$ ' and $\mathrm{H}-1$ or 2), 3.44 (brs, $1 \mathrm{H}, \mathrm{H}-5^{\prime}$), 3.10 (brs, $1 \mathrm{H}, \mathrm{H}-2^{\prime}$), $1.83-1.30\left(15 \mathrm{H}, 6 \mathrm{H}-\mathrm{cyc} \mathrm{litol}\right.$ and $\left.3 \times \mathrm{BocCH}_{3}\right), 1.23(\mathrm{~m}, 2 \mathrm{H}$, cyclitol), 0.83 (s, $\left.9 \mathrm{H}, 3 \times \mathrm{CH}_{3}\right), 0.00\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 155.2(\mathrm{C}=\mathrm{O}), 138.4(\mathrm{Ph})$, 128.4 - 127.5 (Ph), 97.8 (C-1'), 81.1 (C-3'), 79.3, 78.9, 77.9, 75.0, 74.9 (C-5'), 74.7, 73.5, 70.8, 69.1 (C-6'), 58.3 (C-2'), 30.8, 28.4, 26.4, 25.9, 21.5, 21.3, 18.2, -4.6, -4.8; HRMS (ESI) calcd. for $\mathrm{C}_{44} \mathrm{H}_{64} \mathrm{NO}_{8} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 762.4396$, found 762.4432.

1R,2R-1-O-[2-N-(tert-Butoxycarbonyl)amino-3,4,6-tri-O-benzyl-2-deoxy- β-D-

 glucopyranosyl]-cyclohexanediol S7To a stirred solution of the silyl derivative $\mathbf{S 6}(89 \mathrm{mg}, 0.12 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added $\sim 70 \%$ HF-pyridine ($150 \mu \mathrm{~L}$). The solution was stirred overnight at rt whereafter TLC revealed the complete disappearance of the starting material. Processing as described for the α-anomer 27 gave the β-anomer $\mathbf{S 7}(46 \mathrm{mg}, 60 \%)$ as a white solid, mp 168 $170{ }^{\circ} \mathrm{C} ; ;[\alpha]_{\mathrm{D}}^{25}+10.5^{\circ}\left(c 0.82, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.34-7.15(15 \mathrm{H}, 3 \times \mathrm{Ph}), 4.85$
-4.43 ($8 \mathrm{H}, \mathrm{H}-\mathrm{l}^{\prime}, \mathrm{NH}$ and $3 \mathrm{x} \mathrm{CH}_{2} \mathrm{Ar}$), 4.04 (brs, $1 \mathrm{H}, \mathrm{H}-3^{\prime}$), $3.73-3.50$ ($4 \mathrm{H}, \mathrm{H}-4^{\prime}, 5^{\prime}$ and $\left.6^{\prime} \mathrm{a}, \mathrm{b}\right), 3.42(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1$ or 2$), 3.27(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1$ or 2$), 3.15$ (brs, $\left.1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 2.05(\mathrm{~m}, 1 \mathrm{H}$, cyclitol), $1.91\left(\mathrm{~m}, 1 \mathrm{H}\right.$, cyclitol), $1.67\left(\mathrm{~m}, 2 \mathrm{H}\right.$, cyclitol), $1.45\left(\mathrm{~s}, 9 \mathrm{H}, 3 \times \mathrm{CH}_{3}\right), 1.36-1.13$ (4 H , cyclitol); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $154.5(\mathrm{C}=\mathrm{O}), 136.9(\mathrm{Ph}), 127.4-126.6(\mathrm{Ph}), 100.2(\mathrm{C}-$ 1^{\prime}), 86.3 (C-1 or 2), 80.0 (C-3'), 78.5, 77.4, 74.1, 73.7, 72.5, 72.2 (C-1 or 2), 67.7 (C-6'), 57.0 (C-2'), 31.2, 30.0, 27.3, 23.3, 22.8; HRMS (ESI) calcd. for $\mathrm{C}_{38} \mathrm{H}_{50} \mathrm{NO}_{8}[\mathrm{M}+\mathrm{H}]^{+}$648.3531, found 648.3546 .

Triethylammonium 1R,2R-1-O-[2-N-(tert-butoxycarbonyl)amino-3,4,6-tri-O-benzyl-2-deoxy- β-D-glucopyranosyl]-cyclohexanediol 2-(1,2-di-O-hexadecanoyl-sn-glycerol 3phosphate) S8

This compound was obtained from the alcohol $\mathbf{S} 7(62 \mathrm{mg}, 0.096 \mathrm{mmol})$ and 1,2-di-O-hexadecanoyl-sn-glycerol 3-hydrogenphosphonate TEA salt $28{ }^{19}$ ($141 \mathrm{mg}, 0.19 \mathrm{mmol}$) in the presence of pivaloyl chloride ($77 \mu \mathrm{~L}, 0.62 \mathrm{mmol}$) essentially as described for the 2-(n octadecyl phosphate) 19. After the oxidation with iodine ($316 \mathrm{mg}, 1.24 \mathrm{mmol}$) in 9:1 pyridine - water followed by the same aqueous workup as described for 19, RBC (elution first with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and then with $\left.20: 1 \rightarrow 15: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}\right)$ afforded the TEA phosphate derivative $\mathbf{S 8}(118 \mathrm{mg}, 89 \%)$ as an opaque paste; $[\alpha]_{\mathbf{D}}^{25}+4.4^{\circ}\left(c 1.25, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 7.29-7.10(15 \mathrm{H}, 3 \times \mathrm{Ph}), 5.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NH}\right.$ and $\mathrm{H}-2$ glycerol), 4.81 (brs, $\left.1 \mathrm{H}, \mathrm{H}-\mathrm{l}^{\prime}\right)$, $4.78-4.42\left(6 \mathrm{H}, 3 \times \mathrm{CH}_{2} \mathrm{Ar}\right), 4.35(\mathrm{dd}, 1 \mathrm{H}, J=3.0, J=12.0,1-$ or $3-\mathrm{CHa}$ glycerol), $4.05(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{H}-3^{\prime}, 1$ or 2 cyclitol and 1 - or 3-CHb glycerol), $4.00(\mathrm{~m}, 1 \mathrm{H}, 1$ - or 3-CHc glycerol), 3.90 $(\mathrm{m}, 1 \mathrm{H}, 1-$ or $3-\mathrm{CHd}$ glycerol $), 3.70\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-6^{\prime} \mathrm{a}, \mathrm{b}\right.$ and 1 or 2 cyclitol $), 3.52\left(\mathrm{t}, 1 \mathrm{H}, J_{3^{\prime}, 4^{\prime}}=\right.$ $\left.J_{4^{\prime}, 5^{\prime}}=9.3 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 3.42$ (brd, $\left.1 \mathrm{H}, J=9.5 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 3.00$ (brs, $\left.1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 2.63$ (q, 6H, $J=$ $\left.7.0 \mathrm{~Hz}, 3 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.19\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{COCH}_{2}\right), 2.06(\mathrm{~m}, 1 \mathrm{H}$, cyclitol), $1.87(\mathrm{~m}, 1 \mathrm{H}$, cyclitol), $1.50\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{COCH}_{2} \mathrm{CH}_{2}\right.$ and 2 H cyclitol), $1.36\left(\mathrm{~s}, 9 \mathrm{H}, 3 \times \mathrm{CH}_{3}\right), 1.26-1.14$ $\left(52 \mathrm{H}, 2 \times\left[\mathrm{CH}_{2}\right]_{12}\right.$ and 4 H cyclitol $), 1.04\left(\mathrm{t}, 9 \mathrm{H}, J=7.3 \mathrm{~Hz}, 3 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.81(\mathrm{t}, 6 \mathrm{H}, J=7.1$
$\left.\mathrm{Hz}, 2 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 172.5(\mathrm{C}=\mathrm{O}), 172.1(\mathrm{C}=\mathrm{O}), 154.4(\mathrm{C}=\mathrm{O}), 137.7-$ $137.5(\mathrm{Ph}), 127.3-126.4(\mathrm{Ph}), 96.5\left(\mathrm{C}-1^{\prime}\right), 80.0,77.7\left(\mathrm{C}-4^{\prime}\right), 75.8,74.0,73.8,73.6,72.3$, 69.7, 62.6, 62.4, 62.0, 61.7, 57.2 (C-2'), 44.9, 33.3, 33.1, 30.9, 28.7 - 28.2, 27.4, 26.6, 24.0, 21.7, 21.0 13.1, $9.40 ; \delta_{\mathrm{P}}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)-0.84$ (with heteronuclear decoupling); HRMS (ESI) calcd. for $\mathrm{C}_{73} \mathrm{H}_{115} \mathrm{NO}_{15} \mathrm{P}\left[\mathrm{M}-\mathrm{NEt}_{3}-\mathrm{H}\right]^{-}$1276.8010, found 1276.7946.

1R,2R-1-O-[2-N-(tert-Butoxycarbonyl)amino-2-deoxy- β-d-glucopyranosyl]-

 cyclohexanediol 2-(1,2-di-O-hexadecanoyl-sn-glycerol 3-phosphate) S9A solution of the benzylated compound $\mathbf{S 8}(50 \mathrm{mg}, 0.036 \mathrm{mmol})$ in 1:1 THF $-n-$ propanol (10 mL) containing $10-20 \% \mathrm{Pd}(\mathrm{OH})_{2}$ on carbon $(15 \mathrm{mg})$ was stirred under 3 atm of hydrogen for 2.5 h before it was percolated through a short column of Chelex 100 on a bed of Celite (further elution with 1:1 THF - n-propanol). The eluent was concentrated under reduced pressure and the ensuing residue was purified by column chromatography (elution gradient 4:1 $\left.\rightarrow 1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}\right)$ to give the Boc protected derivative $\mathbf{S 9}(30 \mathrm{mg}, 83 \%)$; $[\alpha]_{\mathrm{D}}^{25}+1.9^{\circ}\left(\right.$ c $\left.2.30,1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, 1: 1 \mathrm{CDCl}_{3}-\mathrm{MeOH}-\mathrm{d}_{4}\right) 5.25(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-2$ glycerol $), 4.49\left(\mathrm{~d}, 1 \mathrm{H}, J_{1^{\prime}, 2^{\prime}}=8.2, \mathrm{H}-1^{\prime}\right), 4.43(\mathrm{dd}, 1 \mathrm{H}, J=2.4, J=12.0 \mathrm{~Hz}, 1-$ or 3CHa glycerol), 4.20 (dd, 1H, 1- or 3-CHb glycerol), 4.05 (m, 1H, 1- or 3-CHc glycerol), 3.95 (m, 1H, 1- or 3-CHd glycerol), 3.88 (m, 1H, H-6'a), 3.75 (m, 1H, H-6'b), 3.60 (m, 2H, H-1 and 2), $3.50-3.20\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-2^{\prime}, 4^{\prime}, 3^{\prime}\right.$ and $\left.5^{\prime}\right), 2.33\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{COCH}_{2}\right), 2.08(\mathrm{~m}, 1 \mathrm{H}$, cyclitol), $1.98\left(\mathrm{~m}, 1 \mathrm{H}\right.$, cyclitol), $1.73-1.57\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{COCH}_{2} \mathrm{CH}_{2}\right.$ and 2 H cyclitol), 1.46 (s, $\left.9 \mathrm{H}, 3 \times \mathrm{CH}_{3}\right), 1.40-1.20\left(52 \mathrm{H}, 2 \times\left[\mathrm{CH}_{2}\right]_{12}\right.$ and 4 H cyclitol), $0.89(\mathrm{t}, 6 \mathrm{H}, J=7.1 \mathrm{~Hz}, 2 \times$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, 1: 1 \mathrm{CDCl}_{3}-\mathrm{MeOH}-\mathrm{d}_{4}\right) 174.5(\mathrm{C}=\mathrm{O}), 174.2(\mathrm{C}=\mathrm{O}), 157.9(\mathrm{C}=\mathrm{O})$, 101.6 (C-1'), 80.9, 76.7, 74.5, 71.1, 70.8, 64.0, 63.2, 61.1 (C-6'), 57.7, 34.7, 34.6, 32.4, 31.4, 30.2 - 29.6, 28.6, 25.4, 23.2, 14.3; $\delta_{\mathrm{P}}\left(202 \mathrm{MHz}, 1: 1 \mathrm{CDCl}_{3}-\mathrm{MeOH}-\mathrm{d}_{4}\right)-0.60($ with heteronuclear decoupling); HRMS (ESI) calcd. for $\mathrm{C}_{52} \mathrm{H}_{97} \mathrm{NO}_{15} \mathrm{P}[\mathrm{M}-\mathrm{H}]^{-} 1006.6601$, found 1006.6585.

1R,2R-1-O-(2-Amino-2-deoxy- β-d-glucopyranosyl)-cyclohexanediol 2-(1,2-di-O-hexadecanoyl-sn-glycerol 3-phosphate) 10

To a solution of the tert-butoxycarbonyl protected compound $\mathbf{S 9}(23 \mathrm{mg}, 0.023 \mathrm{mmol})$ in 1:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(1 \mathrm{~mL})$ was added 9:1 trifluoroacetic acid (TFA) - water (5 mL). After stirring 4 h at rt , toluene (5 mL) was added and the solvents were removed under reduced pressure. Toluene ($2 \times 5 \mathrm{~mL}$) was evaporated off twice from the residue (to remove traces of TFA and water) to give the crude pseudodisaccharide phosphate derivative 10. A short column of Iatrobeads was conditioned with $4: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ before the crude residue of $\mathbf{1 0}$ (solubilised in 2 mL of $10: 10: 3 \mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ plus 3 drops of TEA) was applied to the column. Elution with $4: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ afforded pure $\mathbf{1 0}$ ($15 \mathrm{mg}, 71 \%$) after the requisite fractions were combined and the solvents evaporated to dryness under reduced pressure; $[\alpha]_{\mathbf{D}}^{25}-5.4^{\circ}\left(\right.$ c $\left.1.50,1: 1 \mathrm{CHCl}_{3}-\mathrm{MeOH}\right) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, 1: 1 \mathrm{CDCl}_{3}-\right.$ $\left.\mathrm{MeOH}-\mathrm{d}_{4}\right) 5.23$ (brs, $1 \mathrm{H}, \mathrm{H}-2$ glycerol), $4.45(\mathrm{~d}, 1 \mathrm{H}, J=12.1 \mathrm{~Hz}, 1-$ or 3-CHa glycerol), 4.38 (d, $\left.1 \mathrm{H}, J_{1^{\prime}, 2^{\prime}}=7.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 4.21(\mathrm{dd}, 1 \mathrm{H}, J=8.4, J=12.1 \mathrm{~Hz}, 1-$ or $3-\mathrm{CHb}$ glycerol), 4.12 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-1$ or 2), $4.05(\mathrm{~m}, 1 \mathrm{H}, 1$ - or 3-CHc glycerol), $3.95(\mathrm{~m}, 1 \mathrm{H}, 1$ - or 3-CHd glycerol), $3.85\left(\mathrm{~d}, 1 \mathrm{H}, J_{6^{\prime} \mathrm{a}, 6^{\prime} \mathrm{b}}=12.2 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{a}\right), 3.75(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1$ or 2$), 3.68\left(\mathrm{~d}, 1 \mathrm{H}, J_{6^{\prime} \mathrm{a}, 6^{\prime} \mathrm{b}}=12.2 \mathrm{~Hz}, \mathrm{H}-\right.$ $\left.6^{\prime} \mathrm{b}\right), 3.33\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3^{\prime}, 4^{\prime}\right.$ and $\left.5^{\prime}\right), 2.65\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{z}^{\prime}\right), 2.34\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{COCH}_{2}\right), 2.10(\mathrm{~m}$, 1 H , cyclitol), 2.01 (m, 1H, cyclitol) $1.70-1.56\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{COCH}_{2} \mathrm{CH}_{2}\right.$ and 2 H cyclitol), $1.53-1.24\left(52 \mathrm{H}, 2 \times\left[\mathrm{CH}_{2}\right]_{12}\right.$ and 4 H cyclitol $), 0.89\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(125$ $\left.\mathrm{MHz}, 1: 1 \mathrm{CDCl}_{3}-\mathrm{MeOH}-\mathrm{d}_{4}\right) 174.7(\mathrm{C}=\mathrm{O}), 174.2(\mathrm{C}=\mathrm{O}), 102.2\left(\mathrm{C}-1^{\prime}\right), 79.1(\mathrm{C}-1$ or 2), 78.0, $77.4,77.0,72.0,71.6,64.7\left(\mathrm{CH}_{2}\right.$ glycerol $), 64.3\left(\mathrm{CH}_{2}\right.$ glycerol $), 62.6\left(\mathrm{C}-6^{\prime}\right), 58.0\left(\mathrm{C}-2^{\prime}\right), 35.6$, $35.4,33.3,31.0-30.5,26.3,24.0,23.7,15.2 ; \delta_{\mathrm{P}}\left(202 \mathrm{MHz}, 1: 1 \mathrm{CDCl}_{3}-\mathrm{MeOH}-\mathrm{d}_{4}\right)-0.19$ (with heteronuclear decoupling); HRMS (ESI) calcd. for $\mathrm{C}_{52} \mathrm{H}_{97} \mathrm{NO}_{15} \mathrm{P}[\mathrm{M}-\mathrm{H}]^{-}$906.6077, found 906.6057.

