Supporting Information

Chiral Brønsted Acid-Catalyzed Enantioselective Addition of Indoles to Ketimine

Taichi Kano, Ryosuke Takechi, Ryohei Kobayashi and Keiji Maruoka*

Department of Chemistry, Graduate School of Science, Kyoto University Sakyo, Kyoto 606-8502, Japan

General Information: Infrared (IR) spectra were recorded on a Thermo SCIENTIFIC Nicolet iS5 spectrometer. ¹H NMR spectra were measured on JEOL JNM-FX400 (400 MHz) and JEOL JNM-ECA500 (500 MHz) spectrometers. Chemical shifts were reported in ppm from tetramethylsilane (in the case of $CDCl_3$) as an internal standard. Data were reported as follows: chemical shift, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad, and app = apparent), and coupling constants (Hz). ¹³C NMR spectra were recorded on JEOL JNM-FX400 (100 MHz) and JEOL JNM-ECA500 (125 MHz) spectrometes with complete proton decoupling. Chemical shifts were reported in ppm from the residual solvent as an internal standard. High performance liquid chromatography (HPLC) was performed on Shimadzu 20A instruments using Daicel CHIRALPAK IC 4.6 mm × 25 cm column. The high-resolution mass spectra (HRMS) were performed on Bruker microTOF. Optical rotations were measured on a JASCO DIP-1000 digital polarimeter. For thin layer chromatography (TLC) analysis throughout this work, Merck precoated TLC plates (silica gel 60 GF₂₅₄, 0.25 mm) were used. The products were purified by flash column chromatography on neutral silica gel 60N (Kanto Chemical Co. Inc., 40-50µm). For purification with preparative thin layer chromatography (PLC), Merck precoated PLC plates (silica gel 60 GF₂₅₄, 0.5 mm) were used. 1,4-Dioxane, methanol, ethanol, pyridine, acetonitrile and toluene were purchased from Wako Pure Chemistry Co. Inc. 1,4-Dioxane and acetonitrile were stored over molecular sieve 4A. Toluene was further purified by passing through neutral alumina under nitrogen atmosphere. Tetrahydrofuran was purchased from Kanto Chemical Co. Inc. as "Dehydrated". Ethyl 2-oxo-2H-benzo[b][1,4]oxazine-3-carboxylate (1),¹ bistriflamide (R)-4² and various phosphoric acids (S)-5³ were synthesized according to the literature procedures and used after purification by column chromatography. Molecular sieve 4A was purchased from Sigma-Aldrich Co. LLC. Other simple chemicals were purchased and used as such.

Synthesis of Ethyl 5-Methyl-2-oxo-3,4-dihydro-2H-benzo[b][1,4]oxazine-3-carboxylate (2)

To a stirred solution of 2-amino-3-methylphenol (370 mg, 3.0 mmol) in toluene (15 mL) were added MS 4A (2.5 g) and diethyl ketomalonate (310 μ L, 2.0 mmol) at room temperature. After stirring for 12 h under reflux with a Dean-Stark apparatus, the mixture was cooled to room temperature and then concentrated. The residue was purified by flash column chromatography on silica gel (eluting with hexane/ethyl acetate = 8/1)

to give ketimine **2** (406 mg, 1.7 mmol, 87% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.49 (1H, dd, J = 8.8, 8.0 Hz, Ar-H), 7.25 (1H, d, J = 8.0 Hz, Ar-H), 7.15 (1H, d, J = 8.8 Hz, Ar-H), 4.49 (2H, q, J = 7.2 Hz, OC<u>H</u>₂CH₃), 2.64 (3H, s, Ar-CH₃), 1.44 (3H, t, J = 7.2 Hz, OCH₂C<u>H</u>₃); ¹³C NMR (100 MHz, CDCl₃) δ 162.2, 149.9, 147.5, 143.7, 140.3, 133.3, 129.1, 127.1, 114.2, 62.8, 16.8, 14.0; IR (neat) 2984, 1759, 1739, 1481, 1309, 1269, 1247, 1180, 1031 cm⁻¹; HRMS (ESI-TOF) Calcd. for C₁₂H₁₁NNaO₄: 256.0580 ([M + Na]⁺), Found: 256.0575 ([M + Na]⁺).

General Procedure for the Asymmetric Addition of Indoles 6 to Ketimines

To a stirred solution of a ketimine (0.05 mmol) and catalyst (S)-5d (0.005 mmol) in toluene (1.0 mL) was added indole 6a (7.1 mg, 0.06 mmol) at -78 °C. After stirring for the time indicated in Table 1 and 2, the reaction mixture was directly purified by flash column chromatography on silica gel to afford the corresponding addition products 7a or 8.

Ethyl (*R*)-3-(1H-Indol-3-yl)-2-oxo-3,4-dihydro-2H-benzo[*b*][1,4]oxazine-3-carboxylate (7a) (Table 1, entry 6)

[α]³³_D 151.6 (*c* 1.0, CHCl₃; 93% ee); ¹H NMR (400 MHz, CDCl₃) δ 8.27 (1H, s, NH), 7.76 (1H, d, J = 8.0 Hz, Ar-H), 7.35 (1H, d, J = 8.4 Hz, Ar-H), 7.22 (1H, app t, J = 8.0 Hz, Ar-H), 7.16-7.10 (3H, m, Ar-H), 7.05 (1H, app td, J = 8.0, 1.2 Hz, Ar-H), 6.93 (1H, app td, J = 8.0, 1.2 Hz, Ar-H), 6.89 (1H, dd, J = 8.0, 1.2 Hz, Ar-H), 4.91 (1H, s, NH), 4.24 (2H, qd, J = 7.2, 1.6 Hz, OCH₂CH₃), 1.15 (3H, t, J = 7.2 Hz, OCH₂CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 163.1, 141.3, 136.6, 131.9, 125.1, 125.0, 124.0, 122.9, 121.4, 120.5, 120.4 (two peaks are overlapped), 116.9, 116.1, 111.6, 65.8, 62.9, 14.0; IR (neat) 3397, 2981, 1774, 1734, 1500, 1459, 1292, 1237, 1196 cm⁻¹; HRMS (ESI-TOF) Calcd. for C₁₉H₁₆N₂NaO₄: 359.1002 ([M + Na]⁺), Found: 359.1010 ([M + Na]⁺); Daicel Chiralpak IC, hexane/2-propanol = 3/1, flow rate 0.5 mL/min, λ = 212 nm, retention time: 20.6 min (major) and 24.1 min (minor).

Ethyl (*R*)-3-(1H-Indol-3-yl)-5-methyl-2-oxo-3,4-dihydro-2H-benzo[*b*][1,4]oxazine-3-carboxylate (8a) (Table 1, entry 8, Table 2, entry 1)

[α]³⁰ 71.6 (*c* 1.0, CHCl₃; 99% ee); ¹H NMR (400 MHz, CDCl₃) δ 8.37 (1H, s, NH), 7.80 (1H, d, J = 7.6 Hz, Ar-H), 7.31 (1H, d, J = 8.0 Hz, Ar-H), 7.21 (1H, app t, J = 8.0 Hz, Ar-H), 7.14 (1H, app t, J = 8.0 Hz, Ar-H), 7.02-6.99 (2H, m, Ar-H), 6.94 (1H, d, J = 7.6 Hz, Ar-H), 6.86 (1H, dd, J = 7.6 Hz, Ar-H), 4.83 (1H, s, NH), 4.22 (2H, q, J = 6.8 Hz, OCH₂CH₃), 2.25 (3H, s, Ar-CH₃), 1.14 (3H, t, J = 7.2 Hz, OCH₂CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 169.2, 163.8, 141.1, 136.6, 130.6, 126.3, 124.9, 124.5, 124.3, 122.7, 120.8, 120.3 (two peaks are overlapped), 114.7, 111.8, 109.9, 66.1, 62.9, 16.4, 13.9; IR (neat) 3393, 2981, 1774, 1743, 1481, 1459, 1287, 1249, 1192 cm⁻¹; HRMS (ESI-TOF) Calcd. for C₂₀H₁₈N₂NaO₄: 373.1159 ([M + Na]⁺), Found: 373.1152 ([M + Na]⁺); Daicel Chiralpak IC, hexane/2-propanol = 3/1, flow rate 0.5 mL/min, $\lambda = 213$ nm,

retention time: 20.9 min (major) and 29.6 min (minor).

Ethyl (*R*)-5-Methyl-3-(5-methyl-1H-indol-3-yl)-2-oxo-3,4-dihydro-2H-benzo[*b*][1,4]oxazine-3-carboxylate (8b) (Table 2, entry 3)

[α]³¹ 54.2 (*c* 1.0, CHCl₃; 99% ee); ¹H NMR (400 MHz, CDCl₃) δ 8.21 (1H, s, NH), 7.55 (1H, s, Ar-H), 7.21 (1H, d, J = 8.8 Hz, Ar-H), 7.10 (1H, d, J = 3.2 Hz, Ar-H), 7.04 (1H, d, J = 8.4 Hz, Ar-H), 6.99 (1H, d, J = 8.4 Hz, Ar-H), 6.94 (1H, d, J = 7.6 Hz, Ar-H), 6.85 (1H, dd, J = 8.4, 7.6 Hz, Ar-H), 4.81 (1H, s, NH), 4.23 (2H, q, J = 7.2 Hz, OCH₂CH₃), 2.43 (3H, s, Ar-CH₃), 2.26 (3H, s, Ar-CH₃), 1.15 (3H, t, J = 7.2 Hz, OCH₂CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 169.3, 163.5, 141.2, 134.9, 130.6, 129.7, 126.3, 125.2, 124.54, 124.51, 124.1, 120.7, 120.0, 114.7, 111.3, 109.9, 66.0, 62.8, 21.6, 16.5, 13.9; IR (neat) 3395, 1773, 1742, 1481, 1287, 1191, 731 cm⁻¹; HRMS (ESI-TOF) Calcd. for C₂₁H₂₁N₂O₄: 365.1496 ([M + H]⁺), Found: 365.1493 ([M + H]⁺); Daicel Chiralpak IC, hexane/2-propanol = 3/1, flow rate 0.5 mL/min, $\lambda = 213$ nm, retention time: 18.1 min (major) and 26.7 min (minor).

Ethyl (*R*)-3-(5-Methoxy-1H-indol-3-yl)-5-methyl-2-oxo-3,4-dihydro-2H-benzo[*b*][1,4]oxazine-3-carboxylate (8c) (Table 2, entry 4)

[α]³²_D 100.3 (*c* 0.9, CHCl₃; 99% ee); ¹H NMR (400 MHz, CDCl₃) δ 8.27 (1H, s, NH), 7.20 (1H, d, J = 2.4 Hz, Ar-H), 7.18 (1H, d, J = 8.8 Hz, Ar-H), 7.09 (1H, d, J = 2.0 Hz, Ar-H), 6.99 (1H, d, J = 8.0 Hz, Ar-H), 6.94 (1H, d, J = 6.8 Hz, Ar-H), 6.88-6.84 (2H, m, Ar-H), 4.83 (1H, s, NH), 4.22 (2H, q, J = 7.2 Hz, OCH₂CH₃), 3.81 (3H, s, Ar-OCH₃), 2.27 (3H, s, Ar-CH₃), 1.14 (3H, t, J = 7.2 Hz, OCH₂CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 169.2, 163.4, 154.4, 141.2, 131.7, 130.6, 126.3, 125.5, 124.7, 124.6, 120.9, 114.7, 113.3, 112.4, 109.8, 102.0, 66.0, 62.9, 55.9, 16.5, 13.9; IR (neat) 3392, 2935, 1772, 1742, 1585, 1482, 1286, 1213, 1190 cm⁻¹; HRMS (ESI-TOF) Calcd. for C₂₁H₂₀N₂NaO₅: 403.1264 ([M + Na]⁺), Found: 403.1263 ([M + Na]⁺); Daicel Chiralpak IC, hexane/2-propanol = 3/1, flow rate 0.5 mL/min, $\lambda = 211$ nm, retention time: 24.3 min (major) and 39.0 min (minor).

Ethyl (*R*)-3-(5-Bromo-1H-indol-3-yl)-5-methyl-2-oxo-3,4-dihydro-2H-benzo[*b*][1,4]oxazine-3-carbox-ylate (8d) (Table 2, entry 5)

[α]²⁸_D 94.4 (*c* 1.0, CHCl₃; 99% ee); ¹H NMR (400 MHz, CDCl₃) δ 8.43 (1H, s, NH), 7.91 (1H, d, J = 2.0 Hz, Ar-H), 7.25 (1H, dd, J = 8.8, 2.0 Hz, Ar-H), 7.09 (1H, d, J = 8.8 Hz, Ar-H), 7.06 (1H, d, J = 2.8 Hz, Ar-H), 7.00 (1H, d, J = 8.0 Hz, Ar-H), 6.95 (1H, d, J = 7.6 Hz, Ar-H), 6.87 (1H, dd, J = 8.0, 7.6 Hz, Ar-H), 4.78 (1H, s, NH), 4.23 (2H, q, J = 7.2 Hz, OCH₂CH₃), 2.27 (3H, s, Ar-CH₃), 1.15 (3H, t, J = 7.2 Hz, OCH₂CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 163.6, 141.2, 135.3, 130.3, 126.6, 126.5, 125.8, 125.2, 124.7, 122.9, 121.1, 114.8, 113.8, 113.1, 109.9, 65.9, 63.1, 16.5, 13.9; IR (neat) 3381, 2925, 1769, 1743, 1480, 1286, 1193, 1102 cm⁻¹; HRMS (ESI-TOF) Calcd. for C₂₀H₁₈BrN₂O₄: 429.0444 ([M + H]⁺), Found: 429.0434 ([M + H]⁺);

Daicel Chiralpak IC, hexane/2-propanol = 3/1, flow rate 0.5 mL/min, $\lambda = 280$ nm, retention time: 12.9 min (major) and 16.0 min (minor).

Ethyl (*R*)-5-Methyl-3-(6-methyl-1H-indol-3-yl)-2-oxo-3,4-dihydro-2H-benzo[*b*][1,4]oxazine-3-carbox-ylate (8e) (Table 2, entry 6)

[α]³¹_D 57.7 (*c* 0.6, CHCl₃; 99% ee); ¹H NMR (400 MHz, CDCl₃) δ 8.22 (1H, s, NH), 7.66 (1H, d, J = 8.4 Hz, Ar-H), 7.08 (1H, s, Ar-H), 7.02-6.97 (3H, m, Ar-H), 6.93 (1H, d, J = 7.6 Hz, Ar-H), 6.84 (1H, dd, J = 8.0, 7.6 Hz, Ar-H), 4.82 (1H, s, NH), 4.21 (2H, q, J = 7.2 Hz, OCH₂CH₃), 2.43 (3H, s, Ar-CH₃), 2.25 (3H, s, Ar-CH₃), 1.13 (3H, t, J = 7.2 Hz, OCH₂CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 169.2, 163.5, 141.2, 137.1, 132.7, 130.6, 126.3, 124.5, 123.5, 122.8, 122.2, 120.7, 119.9, 114.7, 111.6, 110.0, 66.0, 62.8, 21.6, 16.4, 13.9; IR (neat) 3395, 1772, 1742, 1480, 1287, 1191, 730 cm⁻¹; HRMS (ESI-TOF) Calcd. for C₂₁H₂₀N₂NaO₄: 387.1315 ([M + Na]⁺), Found: 387.1304 ([M + Na]⁺); Daicel Chiralpak IC, hexane/2-propanol = 3/1, flow rate 0.5 mL/min, $\lambda = 216$ nm, retention time: 29.7 min (major) and 34.1 min (minor).

Ethyl (*R*)-3-(6-Methoxy-1H-indol-3-yl)-5-methyl-2-oxo-3,4-dihydro-2H-benzo[*b*][1,4]oxazine-3-carbox-ylate (8f) (Table 2, entry 7)

[α]³⁰ 66.0 (*c* 1.0, CHCl₃; 99% ee); ¹H NMR (400 MHz, CDCl₃) δ 8.26 (1H, s, NH), 7.63 (1H, d, J = 8.8 Hz, Ar-H), 6.99 (1H, d, J = 8.0 Hz, Ar-H), 6.95-6.92 (2H, m, Ar-H), 6.85 (1H, dd, J = 8.0, 8.0 Hz, Ar-H), 6.78 (1H, dd, J = 8.8, 2.0 Hz, Ar-H), 6.65-6.63 (1H, m, Ar-H), 4.81 (1H, s, NH), 4.22 (2H, qd, J = 7.2, 1.2 Hz, OC<u>H</u>₂CH₃), 3.77 (3H, s, Ar-OCH₃), 2.25 (3H, s, Ar-CH₃), 1.14 (3H, t, J = 7.2 Hz, OCH₂C<u>H</u>₃); ¹³C NMR (100 MHz, CDCl₃) δ 169.2, 163.8, 156.8, 141.1, 137.6, 130.6, 126.3, 124.5, 123.1, 120.9, 120.83, 120.78, 119.1, 114.7, 110.6, 94.6, 66.1, 62.8, 55.4, 16.4, 13.9; IR (neat) 3395, 2930, 1772, 1743, 1631, 1481, 1456, 1287, 1245, 1197 cm⁻¹; HRMS (ESI-TOF) Calcd. for C₂₁H₂₀N₂NaO₅: 403.1264 ([M + Na]⁺), Found: 403.1250 ([M + Na]⁺); Daicel Chiralpak IC, hexane/2-propanol = 3/1, flow rate 0.5 mL/min, $\lambda = 200$ nm, retention time: 33.3 min (major) and 43.1 min (minor).

Ethyl (*R*)-3-(6-Bromo-1H-indol-3-yl)-5-methyl-2-oxo-3,4-dihydro-2H-benzo[*b*][1,4]oxazine-3-carbox-ylate (8g) (Table 2, entry 8)

[α]_D²⁹ 95.3 (*c* 0.8, CHCl₃; 94% ee); ¹H NMR (400 MHz, CDCl₃) δ 8.40 (1H, s, NH), 7.64 (1H, d, J = 8.8 Hz, Ar-H), 7.39-7.38 (1H, br, Ar-H), 7.24 (1H, dd, J = 8.4, 1.6 Hz, Ar-H), 7.09-7.06 (1H, br, Ar-H), 6.99 (1H, d, J = 8.0 Hz, Ar-H), 6.94 (1H, d, J = 7.6 Hz, Ar-H), 6.86 (1H, dd, J = 8.0, 7.6 Hz, Ar-H), 4.79 (1H, s, NH), 4.23 (2H, q, J = 7.2 Hz, OCH₂CH₃), 2.26 (3H, s, Ar-CH₃), 1.13 (3H, t, J = 7.2 Hz, OCH₂CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 163.5, 141.2, 137.4, 130.3, 126.4, 124.7, 124.6, 123.9, 123.8, 121.6, 121.0, 116.6, 114.7, 114.5, 110.6, 65.8, 63.1, 16.5, 13.9; IR (neat) 3382, 2925, 2854, 1770, 1743, 1481, 1287, 1246, 1194 cm⁻¹; HRMS (ESI-TOF) Calcd. for C₂₀H₁₇BrN₂NaO₄: 451.0264 ([M + Na]⁺), Found: 451.0260 ([M + Na]⁺); Daicel Chiralpak IC, hexane/2-propanol = 3/1, flow rate 0.5 mL/min, λ = 219 nm, retention time: 14.4 min (major) and 16.3 min (minor).

Ethyl (*R*)-5-Methyl-3-(7-methyl-1H-indol-3-yl)-2-oxo-3,4-dihydro-2H-benzo[*b*][1,4]oxazine-3-carboxylate (8h) (Table 2, entry 9)

[α]_D³⁴ 57.4 (*c* 1.0, CHCl₃; 94% ee); ¹H NMR (400 MHz, CDCl₃) δ 8.30 (1H, s, NH), 7.63 (1H, d, J = 7.6 Hz, Ar-H), 7.15 (1H, d, J = 2.8 Hz, Ar-H), 7.06 (1H, dd, J = 7.6, 7.6 Hz, Ar-H), 6.98-6.99 (2H, m, Ar-H), 6.93 (1H, d, J = 7.2 Hz, Ar-H), 6.85 (1H, dd, J = 8.4, 7.2 Hz, Ar-H), 4.84 (1H, s, NH), 4.23 (2H, q, J = 7.2 Hz, OCH₂CH₃), 2.30 (3H, s, Ar-CH₃), 2.25 (3H, s, Ar-CH₃), 1.14 (3H, t, J = 7.2 Hz, OCH₂CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 169.2, 163.6, 141.2, 136.2, 130.6, 126.3, 124.52, 124.50, 124.1, 123.3, 121.0, 120.8, 120.6, 118.0, 114.7, 110.6, 66.1, 62.8, 16.4, 16.3, 13.9; IR (neat) 3388, 2980, 1772, 1743, 1481, 1444, 1286, 1245, 1191 cm⁻¹; HRMS (ESI-TOF) Calcd. for C₂₁H₂₁N₂O₄: 365.1496 ([M + H]⁺), Found: 365.1483 ([M + H]⁺); Daicel Chiralpak IC, hexane/2-propanol = 3/1, flow rate 0.5 mL/min, $\lambda = 254$ nm, retention time: 22.6 min (major) and 25.7 min (minor).

Crystal Structure Analysis of 8g

Single crystals of **8g** for X-ray diffraction experiments were grown from CHCl₃ and hexane at room temperature. The data were collected at -150 °C on a Rigaku R-AXIS RAPID IP diffractometer with graphite-monochromated Cu K α radiation ($\lambda = 1.5419$ Å). The crystal structure was solved by direct methods using SIR97⁴ and refined in SHELXL-97⁵ by full matrix least-squares using anisotropic thermal displacement parameters for all non-hydrogen atoms. Crystallographic data for **8g**: C₂₀H₁₇BrN₂O₄, colorless prisms, $0.2 \times 0.1 \times 0.03$ mm³, monoclinic, *P*1 2₁ 1, *a* = 9.24936(19), *b* = 10.4306(2), *c* = 9.62893(18) Å, *V* = 916.59(4) Å³, $\rho_{calcd} = 1.555$ gcm⁻³, *Z* = 2, $2\theta_{max} = 68.34^\circ$, $\mu = 3.314$ mm⁻¹. A total of 8128 reflections were measured. *R* = 0.0535, and *Rw* = 0.1429 for 3005 observed reflections with *I* > 2.0 σ (*I*). Flack parameter = -0.01(3). CCDC-933242 (**8g**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

ORTEP diagram of 8g

Asymmetric Addition of Pyrrole to Ketimine 2

To a stirred solution of ketimine **2** (11 mg, 0.05 mmol) and (*S*)-**5d** (3 mg, 0.005 mmol) in toluene (1.0 mL) was added pyrrole (7 μ L, 0.1 mmol) at -78 °C. After stirring for 1 h, the reaction mixture was directly purified by flash column chromatography on silica gel to afford the corresponding addition product **9** (14 mg, 99% yield); $[\alpha]_{p}^{31}$ -60.6 (*c* 1.0, CHCl₃; 75% ee); ¹H NMR (400 MHz, CDCl₃) δ 9.05 (1H, s, NH), 6.94 (1H, d, *J* = 7.6 Hz, Ar-H), 6.93 (1H, d, *J* = 8.0 Hz, Ar-H), 6.91-6.89 (1H, m, Ar-H), 6.84 (1H, dd, *J* = 8.0, 7.6 Hz, Ar-H), 6.34-6.32 (1H, m, Ar-H), 6.24 (1H, dd, *J* = 6.4, 2.4 Hz, Ar-H), 4.81 (1H, s, NH), 4.24-4.12 (2H, m, OCH₂CH₃), 2.32 (3H, s, Ar-CH₃), 1.14 (3H, t, *J* = 7.2 Hz, OCH₂CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 162.7, 140.7, 130.0, 126.5, 124.6, 124.1, 121.1, 119.9, 114.7, 108.7, 108.1, 64.9, 63.3, 16.4, 13.8; IR (neat) 3388, 2982, 1777, 1743, 1482, 1447, 1283, 1241, 1191 cm⁻¹; HRMS (ESI-TOF) Calcd. for C₁₆H₁₆N₂NaO₄: 323.1002 ([M + Na]⁺), Found: 323.0994 ([M + Na]⁺); Daicel Chiralpak IC, hexane/2-propanol = 3/1, flow rate 0.5 mL/min, λ = 210 nm, retention time: 18.0 min (minor) and 22.6 min (major).

Protection of 8a by Tosylation

To a solution of 8a (560 mg, 1.6 mmol) in 1,4-dioxane (10 mL) were added triethylamine (1.1 mL, 8.0 mmol), 4-dimethylaminopyridine (40 mg, 0.32 mmol) and p-toluenesulfonyl chloride (920 mg, 4.8 mmol) at room temperature. After stirring for 12 h at 95 °C, the mixture was cooled to room temperature. The reaction mixture was quenched with aq. NH_4Cl (10 mL) and extracted with ethyl acetate twice. The combined organic layers were washed with brine, dried over Na₂SO₄ and then concentrated. The residue was purified by flash column chromatography on silica gel (eluting with hexane/ethyl acetate = 4/1) to give 10 (789 mg, 1.6 mmol, 99% yield); $[\alpha]_{D}^{33}$ 48.2 (c 0.9, CHCl₃; 99% ee); ¹H NMR (500 MHz, CDCl₃) δ 7.94 (1H, d, J = 8.5 Hz, Ar-H), 7.72 (2H, d, J = 8.5 Hz, Ar-H), 7.73-7.70 (1H, m, Ar-H), 7.65 (1H, s, Ar-H), 7.33 (1H, app t, J = 8.0 Hz, Ar-H), 7.24 (2H, d, J = 8.0 Hz, Ar-H), 7.22-7.25 (1H, m, Ar-H), 6.954 (1H, d, J = 8.0 Hz, Ar-H), 6.949 (1H, d, J = 8.0 Hz, Ar-H), 6.87 (1H, dd, J = 8.0 Hz, Ar-H), 4.79 (1H, s, NH), 4.26 (2H, qd, J = 7.0, 1.0 Hz, OCH₂CH₃), 2.36 (3H, s, Ar-CH₃), 2.28 (3H, s, Ar-CH₃), 1.15 (3H, t, *J* = 7.0 Hz, OCH₂CH₃); ¹³C NMR (125 MHz, CDCl₃) δ 168.2, 161.9, 145.4, 141.4, 135.3, 134.8, 130.1, 129.4, 128.0, 127.0, 126.5, 125.6, 125.2, 125.1, 123.6, 121.5, 121.4, 116.6, 114.7, 113.5, 65.2, 63.4, 21.6, 16.5, 13.9; IR (neat) 3363, 2981, 1780, 1743, 1482, 1447, 1372, 1285, 1189, 1175 cm⁻¹; HRMS (ESI-TOF) Calcd. for C₂₇H₂₄N₂NaO₆S: 527.1247 ([M + Na]⁺), Found: 527.1248 ([M + Na]⁺); Daicel Chiralpak IC, hexane/2-propanol = 3/1, flow rate 0.5 mL/min, λ = 254 nm, retention time: 23.5 min (major) and 33.5 min (minor).

Synthesis of Lactol 11 by Chemoselective Reduction

To a solution of **10** (30 mg, 0.06 mmol) in THF (0.5 mL) were added MS 4A (150 mg) and DIBAL (1.0 M in CH₂Cl₂, 360 μ L, 0.36 mmol) at 0 °C. After stirring for 1 h at room temperature, the mixture was cooled to 0 °C. The reaction mixture was then quenched with aq. NH₄Cl (2 mL) and insoluble materials were filtrated. The filtrate was extracted with ethyl acetate twice. The combined organic layers were washed with brine,

dried over Na₂SO₄ and then concentrated. The residue was purified by flash column chromatography on silica gel (eluting with hexane/ethyl acetate = 2/1) to give 11 as diastereometric mixtures (17 mg, 0.036 mmol, 60%) yield); ¹H NMR (500 MHz, CD₃CN) major isomer: δ 7.88 (1H, d, J = 8.0 Hz, Ar-H), 7.83 (1H, d, J = 8.0 Hz, Ar-H), 7.39 (2H, d, J = 9.0 Hz, Ar-H), 7.34 (1H, s, Ar-H), 7.28 (1H, app t, J = 7.5 Hz, Ar-H), 7.22 (1H, app t, J = 7.5 Hz, Ar-H), 7.18 (2H, d, J = 8.0 Hz, Ar-H), 6.75 (1H, d, J = 7.5 Hz, Ar-H), 6.65 (1H, app t, J = 8.0 Hz, Ar-H), 6.51 (1H, d, J = 8.0 Hz, Ar-H), 5.90 (1H, d, J = 7.5 Hz, Ar-OCH(OH)), 4.93 (1H, d, J = 7.5 Hz, Ar-OCH(OH)), 4.59 (1H, s, NH), 4.04 (1H, dd, J = 11.5, 6.5 Hz, CH2OH), 3.96 (1H, dd, J = 11.5, 6.5 Hz, CH₂OH), 3.13 (1H, app t, J = 6.5 Hz, CH₂OH), 2.29 (3H, s, Ar-CH₃), 2.27 (3H, s, Ar-CH₃); minor isomer: δ 7.95 (1H, d, J = 8.0 Hz, Ar-H), 7.92 (1H, d, J = 9.0 Hz, Ar-H), 7.699 (2H, d, J = 8.5 Hz, Ar-H), 7.695 (1H, s, Ar-H), 7.31-7.20 (4H, m, Ar-H), 6.76-6.73 (1H, m, Ar-H), 6.66-6.63 (2H, m, Ar-H), 5.59 (1H, d, J = 6.5 Hz, Ar-OCH(OH)), 4.83 (1H, d, J = 6.5 Hz, Ar-OCH(OH)), 4.50 (1H, s, NH), 3.98-3.95 (1H, m, CH₂OH), 3.82 (1H, dd, J = 11.5, 7.0 Hz, CH₂OH), 3.04 (1H, app t, J = 6.5 Hz, CH₂OH), 2.32 (3H, s, Ar-CH₃), 2.23 (3H, s, Ar-CH₃); ¹³C NMR (100 MHz, CD₃CN) major isomer: δ 146.6, 141.4, 136.6, 135.0, 131.0, 130.4, 129.8, 127.52, 127.48, 125.6, 125.5, 124.4, 123.9, 123.8, 122.5, 119.9, 115.7, 114.7, 91.2, 65.5, 59.9, 21.5, 17.1; minor isomer: δ 146.8, 142.0, 136.2, 135.5, 131.0, 130.8, 130.4, 127.8, 127.3, 125.7, 125.5, 124.12, 124.06, 123.6, 122.7, 119.8, 115.6, 114.3, 92.6, 64.6, 60.7, 21.5, 17.2; IR (neat) 3359, 1595, 1479, 1446, 1370, 1275, 1175, 1139, 1102 cm⁻¹; HRMS (ESI-TOF) Calcd. for $C_{25}H_{25}N_2O_5S$: 465.1479 ([M + H]⁺), Found: 465.1471 $([M + H]^{+}).$

Synthesis of Diol 12 by MOM-protection and Reductive Ring Open

To a stirred solution of **11** (45 mg, 0.097 mmol) in THF (0.5 mL) and MeOH (0.5 mL) was added NaBH₄ (15 mg, 0.39 mmol) at 0 °C. The reaction mixture was stirred at room temperature for 1 h. The mixture was then quenched with aq. NH₄Cl (3 mL) and extracted with ethyl acetate twice. The combined organic layers were washed with brine, and dried over Na₂SO₄ and then concentrated. The residue was dissolved in THF (1 mL) and added DBU (22 μ L, 0.15 mmol) and MOMCl (9 μ L, 0.12 mmol) at room temperature. After stirring for 1 h at room temperature, the mixture was cooled to 0 °C. The reaction mixture was then quenched with aq. NH₄Cl (1 mL) and extracted with ethyl acetate twice. The combined organic layers dried over Na₂SO₄ and then concentrated. The residue was then quenched with aq. NH₄Cl (1 mL) and extracted with ethyl acetate twice. The combined organic layers were washed with brine, dried over Na₂SO₄ and then concentrated. The residue was roughly purified by flash column chromatography on silica gel (eluting with hexane/ethyl acetate = 3/1) to afford the MOM protected lactol (30 mg), which was used for next step without further purification

To a solution of the MOM protected lactol (30 mg) in EtOH (0.6 mL) was added NaBH₄ (22 mg, 0.58 mmol) at room temperature. After stirring for 2 h under reflux, the mixture was cooled to 0 °C. The reaction mixture was then quenched with aq. NH₄Cl (3 mL) and extracted with ethyl acetate twice. The combined organic layers were washed with brine, dried over Na₂SO₄ and then concentrated. The residue was purified by preparative TLC (CHCl₃/MeOH = 10/1) to afford **12** (21 mg, 0.041 mmol, 42% yield); $[\alpha]_D^{30}$ 4.5 (*c* 1.0, CHCl₃, 99% ee); ¹H NMR (500 MHz, CDCl₃) δ 7.98 (1H, d, *J* = 8.5 Hz, Ar-H), 7.74 (2H, d, *J* = 8.5 Hz, Ar-H), 7.67 (1H, s, Ar-H), 7.59 (1H, d, *J* = 8.5 Hz), 7.28 (1H, app t, *J* = 7.5 Hz, Ar-H), 7.24 (2H, d, *J* = 8.0

Hz, Ar-H), 7.14 (1H, app t, J = 7.5 Hz, Ar-H), 6.86 (1H, dd, J = 8.0, 7.5 Hz, Ar-H), 6.66 (1H, d, J = 8.0 Hz, Ar-H), 6.48 (1H, d, J = 7.5 Hz, Ar-H), 4.66 (1H, d, J = 6.5 Hz, OC<u>H</u>HOCH₃), 4.60 (1H, d, J = 6.5 Hz, OCH<u>H</u>OCH₃), 4.15 (1H, d, J = 11.5 Hz, C<u>H</u>HO), 4.05 (1H, d, J = 10.5 Hz, C<u>H</u>HO), 3.99 (1H, d, J = 11.5 Hz, CH<u>H</u>O), 3.93 (1H, d, J = 10.0 Hz, CH<u>H</u>O), 3.34 (3H, s, OCH₃), 2.37 (3H, s, Ar-CH₃), 1.73 (3H, s, Ar-CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 154.0, 145.0, 135.6, 135.4, 135.2, 129.9, 129.2, 128.6, 126.8, 125.7, 124.8, 124.7, 123.2, 122.9, 121.7, 121.6, 113.9, 113.2, 97.2, 71.0, 65.8, 62.2, 56.0, 21.6, 18.2; IR (neat) 3348, 2945, 1595, 1473, 1446, 1368, 1280, 1173 cm⁻¹; HRMS (ESI-TOF) Calcd. for C₂₇H₃₀N₂NaO₆S: 533.1717 ([M + Na]⁺), Found: 533.1700 ([M + Na]⁺); Daicel Chiralpak IC, hexane/2-propanol = 3/1, flow rate 0.5 mL/min, λ = 254 nm, retention time: 40.1 min (minor) and 59.1 min (major).

Synthesis of Amino Alcohol 13 by Oxidative Carbon-nitrogen Bond Clevage

To a stirred solution of **12** (8.8 mg, 0.017 mmol) in pyridine (100 μ L) was added acetic anhydride (100 μ L) at room temperature. After stirring for 1 h at room temperature, the mixture was quenched with H₂O (1 mL) and extracted with ethyl acetate twice. The combined organic layers were washed with 0.5 M aq. HCl, aq. NaHCO₃ and brine, dried over Na₂SO₄ and then concentrated to afford crude diacetate, which was used for next step without further purification.

To a solution of crude diacetate (10 mg) in CH₃CN (200 µL) and H₂O (70 µL) was added CAN (28 mg, 0.051 mmol) at -15 °C. After stirring for 15 min at -15 °C, the reaction mixture was added 5 M aq. KOH (100 µL) and stirred at 80 °C for 2 h. The mixture was then cooled to 0 °C, quenched with aq. NH₄Cl (1 mL) and extracted with ethyl acetate twice. The combined organic layers were washed with brine, dried over Na_2SO_4 and then concentrated. The residue was purified by preparative TLC (eluting with CHCl₃/MeOH = 10/1) to afford **13** (4.3 mg, 0.011 mmol, 63% yield); $[\alpha]_{p}^{32}$ 7.4 (*c* 0.4, CHCl₃, 99% ee); ¹H NMR (500 MHz, CDCl₃) δ 7.98 (1H, d, J = 8.5 Hz, Ar-H), 7.81 (1H, d, J = 8.0 Hz, Ar-H), 7.76 (2H, d, J = 8.5 Hz, Ar-H), 7.60 (1H, s, Ar-H), 7.30 (1H, app t, J = 8.5 Hz, Ar-H), 7.21 (2H, d, J = 8.0 Hz, Ar-H), 7.20-7.23 (1H, m, Ar-H), 4.61 (1H, d, *J* = 7.0 Hz, OCHHOCH₃), 4.60 (1H, d, *J* = 6.5 Hz, OCHHOCH₃), 3.94 (1H, d, *J* = 11.0 Hz, CHHO), 3.93 (1H, d, J = 9.5 Hz, CHHO), 3.822 (1H, d, J = 9.0 Hz, CHHO), 3.820 (1H, d, J = 11.5 Hz, CHHO), 3.24 (3H, s, Ar-CH₃), 2.34 (1H, s, Ar-CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 145.0, 135.7, 135.2, 129.9, 128.6, 126.9, 124.6, 124.1 (two peaks are overlapped), 123.0, 121.7, 113.8, 96.8, 72.7, 67.4, 57.2, 55.4, 21.5; IR (neat) 3357, 2924, 2852, 1597, 1447, 1369, 1271, 1174, 1042 cm⁻¹; HRMS (ESI-TOF) Calcd. for $C_{20}H_{25}N_2O_5S$: 405.1479 ([M + H]⁺), Found: 405.1464 ([M + H]⁺); Daicel Chiralpak IC, hexane/2-propanol = 1/1, flow rate 0.5 mL/min, $\lambda = 254$ nm, retention time: 39.6 min (minor) and 47.0 min (major).

References

- a) H. Miyabe, Y. Yamaoka, Y. Takemoto, J. Org. Chem. 2006, 71, 2099; b) T. Kano, S. Song, Y. Kubota, K. Maruoka, Angew. Chem. Int. Ed. 2012, 51, 1191.
- 2. T. Kano, Y. Tanaka, K. Osawa, T. Yurino, K. Maruoka, J. Org. Chem. 2008, 73, 7387.
- a) M. Hatano, T. Ikeno, T. Matsumura, S. Torii, K. Ishihara, *Adv. Synth. Catal.* 2008, 350, 1776; b) M. Terada, S. Yokoyama, K. Sorimachi, D. Uraguchi, *Adv. Synth. Catal.* 2007, 349, 1863; c) S. E. Larson, J. C. Baso, G. Li, J. C. Antilla, *Org. Lett.* 2009, *11*, 5186; d) M. Yamanaka, J. Itoh, K. Fuchibe, T. Akiyama, *J. Am. Chem. Soc.* 2007, *129*, 6756; e) M. Sickert, F. Abels, M. Lang, J. Sieler, C. Birkemeyer, C. Schneider, *Chem. Eur. J.* 2010, *16*, 2806.
- 4. SIR97, Program for the solution of crystal structures: A. Altomare, M. C. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R. Spagna, *J. Appl. Crystallogr.* **1999**, *32*, 115.
- 5. G. M. Sheldrick, *SHELXL-97*, Program for Crystal Structure Refinement; University of Göttingen: Göttingen, Germany, **1997**.

Τ

100

150

125

175

200

75

Т

50

25

PPM

Ó

Т

75

50

25

Τ

100

175

2 þ0

150

125

PPM

0

