Platinum-catalyzed *anti*-stereoselective ring opening of oxabicyclic alkenes with Grignard reagents

Dingqiao Yang* and Ni Liang

Guangzhou Key Laboratory of Materials for Energy Conversion and Storage; School

of Chemistry and Environment, South China Normal University, Guangzhou 510006,

People's Republic of China.

*Corresponding Author. E-mail: yangdq@scnu.edu.cn. Phone: +86 20 39310068. Fax: +86 20 31040403.

Supporting Information

Table of Contents	Page
1. General	S2
2. Crystal structure and data of 5i	S 3
3. Copies of ¹ H and ¹³ C NMR spectra of 2a-g, 2ff, 2gg, 3a-f, 4a, 4aa,	
4e, 4ee, 5a, 5d, 5e, 5i, 5f and 6a, 6e	S10

1. General

Reagents were obtained from commercial vendors and used without further purification. CH₃CN, 1,2-dichloroethane (DCE), CH₂Cl₂, and diethyl ether were distilled from calcium hydride. Toluene, DME, dioxane, THF, and tetrahydropyran (THP) were distilled from sodium benzophenone ketyl immediately prior to use. Oxabenzonorbornadienes **1a-e** were prepared according to the literature procedures.¹⁻⁵ All flasks were flame-dried under a stream of nitrogen and cooled to room temperature before use. Solvents and solutions were transferred with syringes and cannulae using standard inert atmosphere techniques. All ¹H and ¹³C NMR spectra were recorded at 400 and 100 M NMR, respectively, using CDCl₃ as solvent. The chemical shifts of all ¹H and ¹³C NMR spectra are referenced to the residual signal of CDCl₃ (δ 7.26 ppm) for the ¹H NMR spectra and (δ 77.16 ppm) for the ¹³C NMR spectra. Spectral features are tabulated in the following order: Chemical shift (δ , ppm); multiplicity (s-singlet, d-doublet, t-triplet, m-multiplet); coupling constants (J, Hz); number of protons. IR spectra were obtained using CH₂Cl₂ liquid film. MS were recorded using EI at 70 eV. High resolution mass spectra (HRMS) (ion trap) were obtained from (double focusing) mass spectrometer at 70 eV or mass spectrometer (APCI or ESI). The melting points are uncorrected. Crystal structure was determined by X-ray diffraction apparatus.

2. Crystal structure and data of (1S*,2R*)-6,7-dibromo-2-isopropyl -1,2-

⁽¹⁾ H. Hart, A. Bashir-Hashemi, J. Luo, M. A. Meador, Tetrahedron, 1986, 42, 1641-1654.

⁽²⁾ H. Hart, C. Y. Lai, G. C. Nwokogu, S. Shamouilian, *Tetrahedron*, 1987, 43, 5203–5224.

⁽³⁾ G. Stork, E. E. Van Tamelen, L. J. Friedman, A. W. Burgstahler, *J. Am. Chem. Soc.*, 1953, 75, 384–392.

⁽⁴⁾ M. Davoust, J. A. Kitching, M. J. Fleming, M. Lautens, Chem. Eur. J., 2010, 16, 50-54.

⁽⁵⁾ W. M. Best, P. A. Collins, R. K. McCulloch, D. Wege, Aust. J. Chem., 1982, 35, 843-848.

dihydronaphthalen-1-ol (5i) (CCDC 946820)

Table 1. Crystal data and structure refinement for 5i.

Identification code	5i	
Empirical formula	$C_{13}H_{14}Br_2O$	
Formula weight	346.04	
Temperature	293(2) K	
Wavelength	0.71073 A	
Crystal system, space group	Triclinic, P -1	
Unit cell dimensions	a = 12.698(9) A	alpha = 108.667(14) deg.
	b = 15.704(11) A	beta = 96.252(14) deg.
	c = 15.785(19) A	gamma = 111.779(10) deg.

Volume	2675(4) A^3
Z, Calculated density	8, 1.719 Mg/m^3
Absorption coefficient	6.038 mm^-1
F(000)	1360
Crystal size	0.2 x 0.1 x 0.1 mm
Theta range for data collection	1.41 to 24.00 deg.
Limiting indices	-14<=h<=14, -17<=k<=17, -18<=l<=18
Reflections collected / unique	12433 / 8383 [R(int) = 0.1037]

Completeness to theta $= 24.00$	98.7 %
Max. and min. transmission	0.547 and 0.489
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	8273 / 0 / 589
Goodness-of-fit on F ²	0.890
Final R indices [I>2 sigma (I)]	R1 = 0.0789, wR2 = 0.1502
R indices (all data)	R1 = 0.2821, wR2 = 0.2223
Largest diff. peak and hole	0.683 and -0.633 e.A^-3

Table 2. Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic displacement parameters (A² $x \ 10^{3}$) for 5i. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	Х	У	Ζ	U(eq)
Br(11)	-4041(2)	427(2)	6348(1)	96(1)
Br(14)	-4073(2)	-75(2)	8287(2)	124(1)
C(60)	1516(17)	2707(16)	9266(12)	92(7)
C(62)	-528(18)	1605(14)	8616(12)	60(5)
C(63)	-550(17)	1731(11)	7760(13)	52(4)
O(3)	625(10)	2522(9)	6844(7)	64(3)
C(66)	-1582(19)	1377(13)	7097(12)	69(5)
C(67)	-2648(16)	855(12)	7232(11)	61(5)
C(68)	-2674(16)	694(12)	8047(14)	65(5)
C(74)	-1650(20)	1056(14)	8711(12)	74(6)
C(75)	553(18)	2011(14)	9278(10)	69(6)
C(81)	666(15)	2283(13)	7653(10)	67(5)
C(100)	1509(19)	3048(15)	8466(12)	97(7)
C(103)	2806(15)	3637(14)	8431(12)	73(5)
C(111)	3356(15)	4619(13)	9294(11)	91(6)

Br(11)-C(67)	1.874(17)
Br(14)-C(68)	1.898(16)
C(60)-C(75)	1.31(2)
C(60)-C(100)	1.52(2)
C(60)-H(60)	0.9300
C(62)-C(75)	1.41(2)
C(62)-C(74)	1.42(2)
C(62)-C(63)	1.425(19)
C(63)-C(66)	1.38(2)
C(63)-C(81)	1.52(2)
O(3)-C(81)	1.443(15)
O(3)-H(3)	0.8200
C(66)-C(67)	1.38(2)
C(66)-H(66)	0.9300
C(67)-C(68)	1.389(19)
C(68)-C(74)	1.38(2)
C(74)-H(74)	0.9300
С(75)-Н(75)	0.9300
C(81)-C(100)	1.41(2)
C(81)-H(81)	0.9800
C(100)-C(103)	1.58(2)
С(100)-Н(100)	0.9800
C(103)-C(112)	1.49(2)
C(103)-C(111)	1.54(2)
С(103)-Н(103)	0.9800
C(111)-H(11D)	0.9600

Table 3. Bond lengths [A] and angles [deg] for 5i.

C(111)-H(11E)	0.9600
C(111)-H(11F)	0.9600
С(112)-Н(11М)	0.9600
C(112)-H(11N)	0.9600
С(112)-Н(11О)	0.9600
C(75)-C(60)-C(100)	119.2(17)
C(75)-C(60)-H(60)	120.4
С(100)-С(60)-Н(60)	120.4
C(75)-C(62)-C(74)	125.8(18)
C(75)-C(62)-C(63)	119.9(18)
C(74)-C(62)-C(63)	114.2(17)
C(66)-C(63)-C(62)	122.6(17)
C(66)-C(63)-C(81)	124.0(17)
C(62)-C(63)-C(81)	113.4(17)
C(81)-O(3)-H(3)	109.5
C(67)-C(66)-C(63)	120.5(16)
C(67)-C(66)-H(66)	119.7
C(63)-C(66)-H(66)	119.7
C(66)-C(67)-C(68)	119.2(16)
C(66)-C(67)-Br(11)	119.9(14)
C(68)-C(67)-Br(11)	120.8(15)
C(74)-C(68)-C(67)	120.2(17)
C(74)-C(68)-Br(14)	116.4(16)
C(67)-C(68)-Br(14)	123.3(16)
C(68)-C(74)-C(62)	123.2(17)
C(68)-C(74)-H(74)	118.4
C(62)-C(74)-H(74)	118.4
C(60)-C(75)-C(62)	123.1(18)
С(60)-С(75)-Н(75)	118.4
C(62)-C(75)-H(75)	118.4

O(3)-C(81)-C(63)	112.8(14)
С(100)-С(81)-Н(81)	103.3
O(3)-C(81)-H(81)	103.3
C(63)-C(81)-H(81)	103.3
C(81)-C(100)-C(60)	111.3(17)
C(81)-C(100)-C(103)	120.1(16)
C(60)-C(100)-C(103)	110.4(16)
С(81)-С(100)-Н(100)	104.5
С(60)-С(100)-Н(100)	104.5
С(103)-С(100)-Н(100)	104.5
C(112)-C(103)-C(111)	113.2(16)
C(112)-C(103)-C(100)	112.8(17)
C(111)-C(103)-C(100)	106.8(14)
С(112)-С(103)-Н(103)	107.9
С(111)-С(103)-Н(103)	107.9
С(100)-С(103)-Н(103)	107.9
С(103)-С(111)-Н(11D)	109.5
С(103)-С(111)-Н(11Е)	109.5
H(11D)-C(111)-H(11E)	109.5
C(103)-C(111)-H(11F)	109.5
H(11D)-C(111)-H(11F)	109.5
H(11E)-C(111)-H(11F)	109.5
С(103)-С(112)-Н(11М)	109.5
C(103)-C(112)-H(11N)	109.5
H(11M)-C(112)-H(11N)	109.5
С(103)-С(112)-Н(11О)	109.5
H(11M)-C(112)-H(11O)	109.5
H(11N)-C(112)-H(11O)	109.5

Table 4. Anisotropic displacement parameters (A² x 10³) for 5i. The

anisotropic displacement factor exponent takes the form: -2 pi^2 [h^2 a*^2 U11 + ... + 2 h k a* b* U12]

	U11	U22	U33	U23	U13	U12
 Br(11)	67(2)	99(2)	107(2)	39(1)	9(1)	23(1)
Br(14)	90(2)	141(2)	142(2)	73(2)	50(2)	30(2)
C(60)	30(14)	127(19)	85(15)	47(14)	-20(10)	2(13)
C(62)	73(16)	75(15)	56(12)	21(11)	31(12)	59(13)
C(63)	66(15)	20(10)	76(14)	22(9)	29(11)	21(10)
O(3)	60(9)	82(10)	64(7)	43(7)	19(6)	33(7)
C(66)	74(16)	68(14)	69(13)	27(11)	30(12)	32(12)
C(67)	72(16)	55(13)	58(12)	29(10)	20(10)	23(11)
C(68)	50(14)	68(14)	91(14)	37(12)	32(11)	32(11)
C(74)	93(18)	81(15)	87(15)	38(13)	43(14)	69(14)
C(75)	57(15)	86(16)	50(11)	9(11)	-5(11)	36(12)
C(81)	64(15)	76(14)	51(12)	34(11)	9(10)	15(11)
C(100)	110(20)	105(18)	47(12)	18(13)	-2(12)	34(15)
C(103)	45(13)	78(15)	83(14)	27(12)	9(10)	18(12)
C(111)	88(16)	87(16)	88(14)	33(13)	10(11)	32(13)
C(112)	130(20)	150(20)	111(16)	59(15)	52(14)	111(18)

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters $(A^2 x 10^3)$ for 5i.

	x	у	Z	U(eq)
H(60)	2195	2989	9741	111
H(3)	194	2802	6839	96

H(66)	-1557	1492	6556	82
H(74)	-1691	935	9249	88
H(75)	583	1773	9745	83
H(81)	966	1775	7500	80
H(100)	1207	3553	8644	116
H(103)	2765	3802	7883	88
H(11D)	3397	4476	9841	137
H(11E)	2881	4974	9299	137
H(11F)	4132	5019	9280	137
H(11M)	4270	3429	8318	166
H(11N)	3114	2444	7805	166
H(11O)	3559	2882	8887	166

3. Copies of ¹H and ¹³C NMR spectra of 2a-g, 2ff, 2gg, 3a-f, 4a, 4aa, 4e, 4ee, 5a, 5d, 5e, 5i, 5f, and 6a, 6e

