Electronic Supplementary Information

Synthesis, photophysical and cytotoxicity evaluations of DNA targeting agents based on 3-amino-1,8-naphthalimide derived Tröger's bases

Samantha Murphy,^{*a*} Sandra A. Bright,^{*b*} Fergus E. Poynton,^{*a*} Thomas McCabe,^{*a*} Jonathan A. Kitchen,^{*a*} Emma B. Veale,^{*a*} D. Clive Williams^{*b*} and Thorfinnur Gunnlaugsson^{*a*}

Figure S1. Crystal Structures of 6-10.

Figure S3. Hydrogen bonding of 8.

Table S1. Crystal data and structure refinement for 6

Empirical formula	$C_{18}H_{19}N_3O_2$
Formula weight	309.36
Temperature	118(2) K
Wavelength	0.71075 Å
Crystal system	Monoclinic
Space group	P2(1)/c

Unit cell dimensions	a = 6.6599(17) Å	$\alpha = 90^{\circ}$.
	b = 21.310(5) Å	$\beta = 99.174(4)^{\circ}.$
	c = 11.054(3) Å	$\gamma = 90^{\circ}$.
Volume	1548.7(7) Å ³	
Z	4	
Density (calculated)	1.327 Mg/m ³	
Absorption coefficient	0.088 mm ⁻¹	
F(000)	656	
Crystal size	0.32 x 0.21 x 0.14 mm ³	
Theta range for data collection	1.91 to 25.00°.	
Index ranges	-7<=h<=7, -24<=k<=25, -12<=	=l<=13
Reflections collected	12422	
Independent reflections	2692 [R(int) = 0.0456]	
Completeness to theta = 25.00°	98.8 %	
Absorption correction	Semi-empirical from equivaler	nts
Max. and min. transmission	1.0000 and 0.7695	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	2692 / 0 / 208	
Goodness-of-fit on F ²	1.169	
Final R indices [I>2sigma(I)]	R1 = 0.0583, wR2 = 0.1641	
R indices (all data)	R1 = 0.0845, wR2 = 0.1973	
Largest diff. peak and hole	0.438 and -0.460 e.Å ⁻³	

Table S2. Crystal data and structure refinement for 8.

Empirical formula	$C_{18}H_{19}N_3O_3$	
Formula weight	325.36	
Temperature	108(2) K	
Wavelength	0.71075 Å	
Crystal system	Monoclinic	
Space group	P2(1)/c	
Unit cell dimensions	a = 5.5440(18) Å	α= 90°.
	b = 23.166(8) Å	$\beta = 102.769(4)^{\circ}.$
	c = 12.365(4) Å	$\gamma = 90^{\circ}$.
Volume	1548.8(9) Å ³	
Z	4	
Density (calculated)	1.395 Mg/m ³	
Absorption coefficient	0.097 mm ⁻¹	
F(000)	688	

Crystal size	0.39 x 0.31 x 0.24 mm ³
Theta range for data collection	2.44 to 25.00°.
Index ranges	-6<=h<=6, -27<=k<=27, -14<=l<=14
Reflections collected	7067
Independent reflections	2638 [R(int) = 0.0437]
Completeness to theta = 25.00°	96.5 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.0000 and 0.7933
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2638 / 0 / 217
Goodness-of-fit on F ²	1.123
Final R indices [I>2sigma(I)]	R1 = 0.0599, $wR2 = 0.1700$
R indices (all data)	R1 = 0.0907, wR2 = 0.2225
Largest diff. peak and hole	0.423 and -0.373 e.Å ⁻³

Table S3. Crystal data and structure refinement for 9

Empirical formula	$C_{19}H_{21}N_3O_2$	
Formula weight	323.39	
Temperature	108(2) K	
Wavelength	0.71075 Å	
Crystal system	Monoclinic	
Space group	P2(1)/c	
Unit cell dimensions	a = 6.962(2) Å	α= 90°.
	b = 14.046(5) Å	$\beta = 95.843(4)^{\circ}.$
	c = 16.346(6) Å	$\gamma = 90^{\circ}$.
Volume	1590.1(9) Å ³	
Z	4	
Density (calculated)	1.351 Mg/m ³	
Absorption coefficient	0.089 mm ⁻¹	
F(000)	688	
Crystal size	0.39 x 0.25 x 0.18 mm ³	
Theta range for data collection	2.51 to 24.99°.	
Index ranges	-7<=h<=8, -16<=k<=15, -19<=	=l<=19
Reflections collected	12869	
Independent reflections	2792 [R(int) = 0.0406]	
Completeness to theta = 24.99°	99.6 %	
Absorption correction	Semi-empirical from equivalent	its
Max. and min. transmission	1.0000 and 0.7695	

Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2792 / 0 / 217
Goodness-of-fit on F ²	1.202
Final R indices [I>2sigma(I)]	R1 = 0.0588, wR2 = 0.1139
R indices (all data)	R1 = 0.0697, wR2 = 0.1190
Largest diff. peak and hole	0.287 and -0.354 e.Å ⁻³

Figure S4. ¹H NMR spectrum (CDCl₃, 600 MHz) of 1

Figure S6. ¹H NMR spectrum (CDCl₃, 400 MHz) of 2

Figure S8. ¹H NMR spectrum (CDCl₃, 400 MHz) of 5

Figure S9. Absorption spectra of 2 in solvents of varying polarity.

Figure S10. Emission spectra of 2 in solvents of varying polarity (excitation at 347 nm)

Figure S11. Absorption spectra of 3 in solvents of varying polarity.

Figure S12. Emission spectra of 3 in solvents of varying polarity (excitation at 347 nm)

Figure S13. Absorption spectra of 5 in solvents of varying polarity.

Figure S14. Emission spectra of 5 in solvents of varying polarity (excitation at 347 nm).

Figure S15. Absorption spectra of 4 in solvents of varying polarity.

Figure S16. Emission spectra of 4 in solvents of varying polarity (excitation at 347 nm).

Figure S17. Emission spectra of 6 in solvents of varying polarity (excitation at 390 nm) in CH₂Cl₂ (-), CH₃OH (-), H₂O (-), CH₃CN (-), Acetone (-) and DMF (-) where $\lambda_{maxFLU} = 481, 555, 591, 505, 503$ and 530 nm, respectively.

Figure S18. Absorption spectra of 7 as a function of pH

Figure S19. The absorption spectra of 2 (5.3 μ M) in (a) 10 mM phosphate buffer and 50 mM NaCl and (b) 10 mM phosphate buffer and 160 mM NaCl upon titration with ct-DNA (0- 272 μ M)

Figure S20. Plot of the changes in the absorbance of 2 in 10 mM phosphate buffer (*) and along with 50 mM NaCL (*) and along with 160 mM NaCl (*) versus P/D @ 347 nm.

Figure S21. Plot of the changes in the absorbance of 5 in 10mM phosphate buffer as a function of P/D in the absence of NaCl (\blacklozenge), the presence of 50 mM NaCl (\blacklozenge) and the presence of 160 mM NaCl (\blacklozenge).

Figure S22. Plot of the changes in the absorbance of 4 in 10 mM phosphate buffer as a function of P/D in the absence of NaCl (\blacklozenge), the presence of 50 mM NaCl (\blacklozenge) and the presence of 160 mM NaCl (\blacklozenge).

Figure S23. Plot of the changes in the absorbance of 1 in 10 mM phosphate buffer as a function of P/D in the absence of NaCl (\blacklozenge), the presence of 50 mM NaCl (\blacklozenge) and the presence of 160 mM NaCl (\blacklozenge).

Table S4. Binding constants determined for 2 bound to ct-DNA in 10 mM phosphate buffer and competitive media using the Bard Model.²²

NaCl (mM)	Kb (10 ⁶ M ⁻¹)	n (bp)	\mathbf{R}^2
0	8.51 (± 5.34)	0.22 (±0.01)	0.99
50	2.24 (± 1.09)	0.21 (± 0.02)	0.98
160	0.41 (±0.12)	0.63 (± 0.10)	0.98

Figure S24. Plot of $(\epsilon_a - \epsilon_f)/(\epsilon_b - \epsilon_f)$ versus ct-[DNA] for 2 (a), 5 (b), 4 (c) and 1 (d) and the corresponding non-linear fits to Bard model

Figure S25. The absorption spectrum of 7 (9.3 μ M) in 10 mM phosphate buffer (pH 7.4) with increasing concentration of ct-DNA (0 – 228.2 μ M).

Figure S26. Fluorescence emission spectrum ($\lambda_{Ex} = 408$ nm) of 7 (9.3 μ M) in 10 mM phosphate buffer (pH 7.4) upon successive addition of ct-DNA (0 – 228.2 μ M). Inset: Plot of changes in emission spectrum of 7 as a function of P/D at 582 nm.

Table S5. Summary of emission properties observed for 6-10 upon the addition of ct-DNA in 10 mM phosphate buffer (pH 7.4). ^[a] λ_{maxF} is the wavelength of maximum intensity for the free compound. ^[c] λ_{maxB} is the wavelength of maximum intensity for the bound compound.

Property	7	8	10	9	6
λ_{maxF} (nm) ^[a]	582	587	581	583	585
$\lambda_{\max B} (nm)^{[b]}$	558	574	552	564	559
Hypochromism (%)	70	64	35	51	56
Hypsochromic Shift	24	13	29	19	26

Table S6. Binding constants K_b and binding site sizes n obtained from emission spectra determined using the McGhee and von Hippel binding model.

Compound	$K_b (\times 10^6 \text{ M}^{-1})$	n(bp)	\mathbf{R}^2
2	0.22 (± 0.01)	1.15 (± 0.04)	0.88
5	5.64 (± 0.24)	0.42 (± 0.01)	0.76
4	0.78 (± 0.02)	1.19 (± 0.03)	0.95

Table S7. Binding constants K_b and binding site sizes n obtained from emission spectra at different ionic strength determined using the McGhee and von Hippel Binding Model.

Compound	50 mM NaCl		ound 50 mM NaCl 160mM NaCl		NaCl
	$\mathbf{K}_{\mathbf{b}} (10^6 \mathrm{M}^{-1})$	n (bp)	$\mathbf{K}_{\mathbf{b}} (10^{6} \text{ M}^{-1})$	n (bp)	
2	0.15 (± 0.01)	2.50 (± 0.21)	0.12 (± 0.01)	1.23 (± 0.12)	
5			0.034 (±0.007)	0.70 (±0.03)	
4	0.67 (± 0.03)	1.79 (±0.05)	0.21 (± 0.004)	1.73 (± 0.04)	

Table S8. Binding constants K_b and binding site sizes n obtained from absorption spectra determined, where possible, for 6-10 bound to ct-DNA in 10 mM phosphate buffer at pH 7.4, using the Bard and Mc Ghee and von Hippel models. ^[a] An accurate K_b could not be determined.

Compound	Bard	McGhee and von Hippel		
	$K_b (\times 10^6 M^{-1})$	n(bp)	$K_b (\times 10^6 M^{-1})$	n(bp)
7	1.22 (± 0.30)	1.24 (±0.07)	0.37 (± 0.02)	1.82 (±0.06)
8	0.11 (± 0.05)	1.27 (± 0.09)	0.06 (±0.003)	2.69 (±0.08)
10	0.25 (±0.07)	0.90 (± 0.13)	0.14 (± 0.01)	2.21 (±0.01)
9	0.57 (±0.11)	0.78 (± 0. 05)	0.35 (± 0.01)	1.58 (±0.03)
6	[a]	[a]	0.30 (± 0.03)	$2.46 (\pm 0.08)$

Table S9. Binding constants K_b and binding site sizes n obtained from emission spectra determined for 6-10, where possible, using the McGhee-von Hippel binding model. ^[a] Using the data obtained no accurate binding constant could be determined.

Compound	$K_b (\times 10^5 M^{-1})$	n(bp)	\mathbf{R}^2
7	0.22 (± 0.01)	2.41 (± 0.01)	0.98
8	[a]	[a]	0.88
10	0.14 (± 0.01)	2.21 (± 0.10)	0.89
9	0.25 (± 0.01)	1.75 (± 0.05)	0.94
6	0.86 (± 0.03)	0.65 (± 0.01)	0.92

Figure S27. Thermal denaturation curves and T_m values of ct-DNA (150 μ M) in 10 mM phosphate buffer at pH 7.4 in the absence (-) and presence of 2 (-), 5 (-), 4 (-) and 1 (-), all at a P/D ratio of 10.

Figure S28. CD spectra of ct-DNA (150 μ M) (-) in the presence of 2 at P/D ratios of 2.5 (-), 5 (-), 10(-) and 20 (-).

Figure S29. CD spectra of ct-DNA (150 μ M) (-) in the presence of 4 at P/D ratios of 2.5 (-), 5 (-), 10(-) and 20 (-) in phosphate buffer (pH 7.4)

Figure S30. CD spectra of ct-DNA (150 μ M) (-) in the presence of 5 at P/D ratios of 2.5 (-), 5 (-), 10(-) and 20 (-).

Figure S31. LD spectra of ct-DNA (400 μ M) in 10 mM phosphate buffer in the absence (-) and presence of 1 at P/D ratios of 2.5 (-), 5 (-), 10 (-) and 20 (-).

Figure S32. LD spectra of ct-DNA (400 μ M) (\diamond) in the presence of 2 at P/D ratios of 2.5 (\diamond), 5 (\diamond), 10(\diamond) and 20 (\diamond) in phosphate buffer (pH 7.4).

