# Supporting information for

# Copper(II)-catalyzed enantioselective hydrosilylation of halosubstituted alkyl aryl and heteroaryl ketones: Asymmetric synthesis of (*R*)-fluoxetine and (*S*)-duloxetine<sup>†</sup>

Ji-Ning Zhou, Qiang Fang, Yi-Hu Hu, Li-Yao Yang, Fei-Fei Wu, Lin-Jie Xie, Jing Wu\* and Shijun Li \*

College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, People's Republic of China

Fax : (+86)-571-2886-8023; E-mail: jingwubc@hznu.edu.cn; l\_shijun@hznu.edu.cn

# **Table of Contents**

| HPLC spectra for chiral alcohol products | S2 |
|------------------------------------------|----|
| 1 1                                      |    |
| NMR spectra                              |    |
| r chile speedation                       |    |

#### HPLC spectra for chiral alcohol products





Chromatograms are illustrated below for a 96% ee sample of (–)-3-Chloro-1-(4-chlorophenyl)propan-1-ol (**6b**)





Chromatograms are illustrated below for a 96% ee sample of (–)-1-(4-Bromophenyl)-3-chloropropan-1-ol (**6c**)























| # | [min]  | 21 | [min]  | mAU  | *s     | 0/0     |
|---|--------|----|--------|------|--------|---------|
|   |        |    |        |      |        |         |
| 1 | 17.915 | BB | 0.5088 | 1915 | .07825 | 89.0278 |
| 2 | 20.488 | BV | 0.5194 | 236  | .02411 | 10.9722 |















Chromatograms are illustrated below for a 95% ee sample of (-)-2-Bromo-1-(thiophen-2-yl)ethanol (10a)





Chromatograms are illustrated below for a 96% ee sample of (*S*)-3-Chloro-1-(thiophen-2-yl)propan-1-ol (**10b**)









| Реак | RetTime | Type | wiath  | Area       | Area    |  |
|------|---------|------|--------|------------|---------|--|
| #    | [min]   |      | [min]  | mAU *s     | %       |  |
|      |         |      |        |            |         |  |
| 1    | 40.835  | BB   | 2.7873 | 5.46649e4  | 97.7043 |  |
| 2    | 62.848  | BB   | 1.4649 | 1284.44849 | 2.2957  |  |
|      |         |      |        |            |         |  |

#### NMR Spectra

#### (S)-3-Chloro-1-phenylpropan-1-ol (6a)



## (-)-3-Chloro-1-(4-chlorophenyl)propan-1-ol (6b)



#### (-)-1-(4-Bromophenyl)-3-chloropropan-1-ol (6c)



### (-)-3-Chloro-1-(2,4-dimethylphenyl)propan-1-ol (6d)









![](_page_21_Figure_1.jpeg)

![](_page_22_Figure_1.jpeg)

## (-)-6-Chloro-1-(3-methoxyphenyl)hexan-1-ol (8b)

![](_page_23_Figure_2.jpeg)

## (-)-1-(3-Bromophenyl)-6-chlorohexan-1-ol (8c)

![](_page_24_Figure_2.jpeg)

![](_page_25_Figure_1.jpeg)

*f*.01

-0.001

5/.05

![](_page_25_Figure_2.jpeg)

.00 2.02

![](_page_26_Figure_1.jpeg)

![](_page_26_Figure_2.jpeg)

![](_page_27_Figure_1.jpeg)

![](_page_27_Figure_2.jpeg)

![](_page_28_Figure_1.jpeg)

![](_page_28_Figure_2.jpeg)

![](_page_29_Figure_1.jpeg)

# (S)-Duloxetine (2)

![](_page_30_Figure_2.jpeg)