SUPPORTING INFORMATION

Unexpected Regio- and Chemoselectivity of Cationic Gold-Catalyzed Cycloisomerizations of Propargylureas: Access to Tetrasubstituted 3,4-Dihydropyrimidin-2(1*H*)-ones

Olga P. Pereshivko,^a Vsevolod A. Peshkov,^{*}†^a Anatoly A. Peshkov,^a Jeroen Jacobs,^b Luc Van Meervelt^b and Erik V. Van der Eycken^{*a}

^a Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001, Leuven, Belgium. *E-mails:* vapeshkov@gmail.com; erik.vandereycken@chem.kuleuven.be
^b Biomolecular Architecture, Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001, Leuven, Belgium
[†] Present address: Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States

TABLE OF CONTENTS

This page	1
Copies of ¹ H and ¹³ C NMR spectra for 5a-s	2-39
Copies of ¹ H and ¹³ C NMR spectra for 2l,m,q	40-45
Copies of ¹ H and ¹³ C NMR spectra for 9r,s	46-49
Copies of ¹ H and ¹³ C NMR spectra for 8d,h,k	50-55
Copy of ¹ H spectra for 9 q	56
Transformations of imidazolidin-2-ones 9q,s and 3,4-dihydropyrimidin-2(1H)-one 5s observed upon	
storage of their NMR samples	57-58
Copies of ¹ H and ¹³ C NMR spectra for 9t	59-60
Crystallographic data for 5a and 2a	61

14

17

18

31

35

57

Crystallographic data

X-ray intensity data for **5a** and **2a** were collected at respectively 100K and room temperature on an Agilent Supernova diffractometer, equipped with an Atlas CCD detector, using Mo K α radiation ($\lambda = 0.7107$ Å). The images were interpreted and integrated with the CrysAlisPro software from Agilent Technologies.¹ Using Olex2,² the structure was solved with the ShelxS³ structure solution program using Direct Methods and refined with the ShelxL³ refinement package using full-matrix least squares minimization on F^2 . In structure **5a**, C25 and C26 are modeled in two positions with occupancies of 0.5. Non hydrogen atoms were anisotropically refined and the hydrogen atoms in the riding mode with isotropic temperature factors were fixed at 1.2 times U_{eq} of the parent atoms (1.5 for methyl groups). CCDC-966797 and CCDC-966798 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

5a C₂₆H₂₆N₂O, M = 382.49 g mol⁻¹, monoclinic, P2₁/n (no. 14), a = 9.9630(9) Å, b = 10.2126(5) Å, c = 21.0844(18) Å, $\beta = 97.452(10)$, V = 2127.2(3) Å³, T = 100.5(9) K, Z = 4, $\rho_{calcd} = 1.194$ g cm⁻³, μ (Mo Kα) = 0.073 mm⁻¹, F(000) = 816.0, crystal size 0.2 x 0.2 x 0.2 mm³, 9185 reflections measured, 4353 unique ($R_{int} = 0.0253$) which were used in all calculations. The final wR_2 was 0.1122 (all data) and R_1 was 0.0458 (>2sigma(I)).

2a $C_{26}H_{26}N_2O$, M = 382.49 g mol⁻¹, triclinic, P-1 (no. 2), a = 7.8694(12) Å, b = 10.0748(12) Å, c = 13.8855(9) Å, $\alpha = 101.946(8)$ Å, $\beta = 92.094(8)$, $\gamma = 105.143(12)$ Å, V = 1034.8(2) Å³, T = 293(2) K, Z = 2, $\rho_{calcd} = 1.228$ g cm⁻³, μ (Mo K α) = 0.075 mm⁻¹, F(000) = 408.0, crystal size 0.6 x 0.4 x 0.2 mm³, 21448 reflections measured, 4251 unique ($R_{int} = 0.0164$) which were used in all calculations. The final wR_2 was 0.1156 (all data) and R_1 was 0.0427 (>2sigma(I)).

¹ CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, Oxfordshire, England, 2012.

² O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Cryst.*, 2009, **42**, 339-341.

³ G. M. Sheldrick, Acta Cryst., 2008, A64, 112-122.