Electronic Supplementary Information

Versatile C₃-symmetric scaffolds and their use for covalent stabilization of the foldon trimer

Arne Berthelmann^a, Johannes Lach^a, Melissa A. Gräwert^{b,c} Michael Groll^b and Jutta Eichler^{*a}

^aDepartment of Chemistry and Pharmacy, University of Erlangen-Nurnberg, Schuhstr. 19, 91052 Erlangen, Germany. ^bDepartment of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85747 Munich, Germany. ^cEuropean Molecular Biology Laboratory, Hamburg Unit, EMBL c/o DESY, Notkestraße 85, 22603 Hamburg, Germany.

Table of Contents

	page
Figures S1 through S12. NMR spectra of 3 through 8	1-7
Figures S13 through S21. LCMS data of 9 through 17	7-10
Figures S22 through S25. HPLC chromatograms and high resolution mass spectra	
of 18 and 19	11-13
Figure S26. Thermal unfolding of the non-covalent foldon trimer (15), as well	
as the covalently stabilized trimers 18 and 19, in buffer without detergent	14
Figure S27. Backbone superposition of wt foldon with the covalent	
conjugates 18 and 19	14
Table S1. X-ray data collection and refinement statistics of foldon-scaffold	
conjugates 18 and 19	15

Figure S1. ¹H-NMR spectrum of 3.

Figure S2. ¹³C-NMR spectrum of 3.

Figure S3. ¹H-NMR spectrum of 4.

Figure S4. ¹³C-NMR spectrum of 4.

Figure S5. ¹H-NMR spectrum of 5.

Figure S6. ¹³C-NMR spectrum of 5.

Figure S7. ¹H-NMR spectrum of 6.

Figure S8. ¹³C-NMR spectrum of 6.

Figure S9. ¹H-NMR spectrum of 7.

Figure S10. ¹³C-NMR spectrum of 7.

Figure S11. ¹H-NMR spectrum of 8.

Figure S12. ¹³C-NMR spectrum of 8.

LC-MS data of 9 through 17

Figure S13. HPLC chromatogram (A) and ion masses from the ESI-mass spectrum (B) of 9 (M = 1003.26 g/mol).

Figure S14. HPLC chromatogram (A) and ion masses from the ESI-mass spectrum (B) of 10 (M = 996.23 g/mol).

Figure S15. HPLC chromatogram (A) and ion masses from the ESI-mass spectrum (B) of 11 (M = 991.21 g/mol).

Figure S16.| HPLC chromatogram (A) and ion masses from the ESI-mass spectrum (B) of 12 ($M_{Calc} = 3733.61$ g/mol).

Figure S17. HPLC chromatogram (A) and ion masses from the ESI-mass spectrum (B) of 13 ($M_{Calc} = 3838.14 \text{ g/mol}$).

Figure S18. HPLC chromatogram (A) and ion masses from the ESI-mass spectrum (B) of **14** (M = 3740.16 g/mol).

Figure S19. HPLC chromatogram (A) and ion masses from the ESI-mass spectrum (B) of **15** (M = 3122.55 g/mol).

Figure S20. HPLC chromatogram (A) and ion masses from the ESI-mass spectrum (B) of **16** (M = 3330.81 g/mol).

Figure S21. HPLC chromatogram (A) and ion masses from the ESI-mass spectrum (B) of 17 (M = 3330.81 g/mol).

HPLC chromatograms and high resolution mass spectra of 18 and 19

Figure S22. HPLC chromatogram of 18.

Figure S23. High resolution ESI-mass spectrum of 18 (M = 10841.30 g/mol).

Figure S24. HPLC chromatogram of 19.

Figure S25. High resolution ESI-mass spectrum of **19** (M = 10841.30 g/mol).

Figure S26. Thermal unfolding of the non-covalent foldon (15), as well as the covalently stabilized trimers 18 and 19, in phosphate buffer without detergent.

Figure S27. Backbone superposition of *wt* foldon (red, PDB ID 4NCU) with the covalent conjugates 18 (cyan) and 19 (gold).

	10	19
<u>Crystal parameters</u>		
Space group	P21	C2
Cell constants	a=28.0 Å; b=47.9 Å,	a=48.7 Å; b=28.1 Å,
	c=27.9 Å; β=92.8 °	c=56.0 Å; β=106.8 °
CPs / AU ^a	3	3
Data collection		
Beam line	X06SA, SLS	X06DA, SLS
Wavelength (Å)	1.0	1.0
Resolution range (Å) ^b	30-1.2	30-1.3
	(1.3-1.2)	(1.4-1.3)
No. observations	62797	49197
No. unique reflections ^c	22182	17100
Completeness (%) ^b	95.8 (91.9)	94.4 (92.5)
R_{merge} (%) ^{b, d}	3.2 (49.5)	7.2 (38.9)
$I/\sigma (I)^{b}$	15.7 (2.3)	9.3 (3.6)
Refinement (REFMAC5)		
Resolution range (Å)	15-1.2	15-1.3
No. refl. working set	21062	16244
No. refl. test set	1109	855
No. non hydrogen	663	593
Solvent (H ₂ O, Na ⁺ , Cl)	126	143
Ligand (non hydrogen)	3	21
R_{work}/R_{free} (%) ^e	13.3 / 16.3	16.8 / 19.3
r.m.s.d. bond $(Å) / (°)^{f}$	0.007 / 1.233	0.014 / 1.771
Average B-factor ($Å^2$)	16.4	16.6
Ramachandran Plot (%) ^g	97.3 / 2.7 / 0	95.5 / 4.5 / 0.3
PDB accession code	4NCV	4NCW

10

Table S1. X-ray data collection and refinement statistics of foldon-scaffold conjugates 18 and 19.

10

^a Asymmetric unit.

- ^b The values in parentheses of resolution range, completeness, R_{merge} and I/σ (I) correspond to the last resolution shell.
- ^c Friedel pairs were treated as identical reflections.
- ^d $R_{merge}(I) = \Sigma_{hkl}\Sigma_j | I(hkl)_j I(hkl) |/[\Sigma_{hkl} I_{hkl}, where I(hkl)_j is the jth measurement of the intensity of reflection hkl and <I(hkl)> is the average intensity.$
- ^e $R = \Sigma_{hkl} | |F_{obs}| |F_{calc}| | / \Sigma_{hkl} | F_{obs}|$, where R_{free} is calculated for a randomly chosen 5% of reflections, which were not used for structure refinement, and R_{work} is calculated for the remaining reflections.
- ^f Deviations from ideal bond lengths/angles.
- ^g Number of residues in favored region/allowed region/outlier region.