Cationic lipophosphoramidates with two different lipid chains: synthesis and evaluation as gene carriers.

Stéphanie S. Le Corre, Mathieu Berchel, Nawal Belmadi, Caroline Denis, Jean-Pierre Haelters, Tony Le Gall, Pierre Lehn, Tristan Montier, Paul-Alain Jaffrès*

Summary

S1	NMR spectra (non-symmetric phosphite – method 1 and 2)	2
S2	NMR spectra (POCl ₃ method).	4
S3	NMR spectra	5
S4	Size, Zeta	
S5	DNA binding ability of cationic lipids	
S6	In vitro transfection assays	
S7	Evaluation of toxicity	

S1 NMR spectra (non-symmetric phosphite – method 1 and 2)

Figure S1-1: Attempts to produce non-symmetric dialkylphosphite from diphenylphosphite. i) pyridine (0.9 eq); $C_{12}H_{25}OH(0.9 \text{ eq})$, $20^{\circ}C$, 2h; ii) pyridine (1 eq); Oleyl-OH (1 eq) 3h, $20^{\circ}C$.

Figure S1-2 : ³¹P NMR of alkylarylphosphite synthesised by method **1**.

Figure S1-3 : Synthesis of non-symmetric dialkylphosphite from symmetric dialkylphosphite.

Figure S1-4 : ³¹P NMR of non-symmetric dialkylphosphite synthesised by method 2.

S2 NMR spectra (POCI₃ method)

Figure S2-1 : One-pot procedure for the synthesis of non-symmetric lipophosphoramide ($R1 \neq R2$).

Figure S2-2 : ³¹P NMR (CDCl₃) spectrum of POCl₃ method

S3 NMR spectra

Figure S3-2: ³¹P NMR (CDCl₃) spectrum of compound **1**.

Figure S3-4: ³¹P NMR (CDCl₃) spectrum of compound **2**.

Figure S3-6: ¹H NMR (CDCl₃) spectrum of compound 3.

Figure S3-7: 31 P NMR (CDCl₃) spectrum of compound 3.

Figure S3-8: ¹H NMR (CDCl₃) spectrum of compound 4.

Figure S3-9: ³¹P NMR (CDCl₃) spectrum of compound 4.

Figure S3-10: ¹³C jmod (CDCl₃) spectrum of compound 4.

Figure S3-11: ¹H NMR (CDCl₃) spectrum of compound 5.

Figure S3-14: ³¹P NMR (CDCl₃) spectrum of compound 6.

Figure S3-16: ¹H NMR (CDCl₃) spectrum of compound **7**.

Figure S3-17: ³¹P NMR (CDCl₃) spectrum of compound 7.

Figure S3-18: ¹H NMR (CDCl₃) spectrum of compound 8.

Figure S3-20: ¹³C jmod (CDCl₃) spectrum of compound 8.

Figure S3-21: 1 H NMR (CDCl₃) spectrum of compound 9.

Figure S3-22: ³¹P NMR (CDCl₃) spectrum of compound 9.

Figure S3-23: ¹H NMR (CDCl₃) spectrum of compound 10.

Figure S3-24: ³¹P NMR (CDCl₃) spectrum of compound 10.

Figure S3-26: ¹H NMR (CDCl₃) spectrum of compound 11.

PL1 SF01

ANNEL £1 ======= 1H 7.25 usec 1.00 dB 400.0454999 MHz £1

Figure S3-27: ³¹P NMR (CDCl₃) spectrum of compound 11.

Figure S3-28: ¹H NMR (CDCl₃) spectrum of compound 12.

Supporting materials

Figure S3-30: ¹³C jmod (CDCl₃) spectrum of compound 12.

Figure S3-31: ¹H NMR (CDCl₃) spectrum of compound 13.

Figure S3-32: ³¹P NMR (CDCl₃) spectrum of compound 13.

Figure S3-33: ¹H NMR (CDCl₃) spectrum of compound 14.

Figure S3-34: ³¹P NMR (CDCl₃) spectrum of compound 14.

Figure S3-36: ¹H NMR (CDCl₃) spectrum of compound 15.

Figure S3-37: ³¹P NMR (CDCl₃) spectrum of compound 15.

Figure S3-38: ¹H NMR (CDCl₃) spectrum of compound 16.

Figure S3-39: ³¹P NMR (CDCl₃) spectrum of compound 16.

Figure S3-40: ¹³C jmod (CDCl₃) spectrum of compound 16.

Figure S3-41: ¹H NMR (CDCl₃) spectrum of compound 17.

Figure S3-42: ³¹P NMR (CDCl₃) spectrum of compound 17.

Dirrent Data Farameters NAME #1190213.4mg3 EXEND 11 584.6 -----PROBRED \oplus C₁₈H₃₅O C₁₈H₃₅O N HEIC] F1 F1 F1 SF01 1.10 da 101.9481880 Mile CF016 SUC2 F0955 FL2 F0955 F09 18181. fl = 100.0415020 44.45 ning parameters 161-5432351 mm 20 5.01 Ma 1.03 Yuk AW. he remotion hand have Marinan 14 13 12 11 10 9 8 7 6 5 3 2 0 -2 -3 -5 -7 ppm 4 1 -1 -4 -6 -8

Figure S3-44: ³¹P NMR (CDCl₃) spectrum of compound 18.

Figure S3-46: ¹H NMR (CDCl₃) spectrum of compound 19.

Figure S3-48: ¹H NMR (CDCl₃) spectrum of compound 20.

Supporting materials

Figure S3-49: ³¹P NMR (CDCl₃) spectrum of compound 20.

Supporting materials

Figure S3-51: ¹H NMR (CDCl₃) spectrum of compound 21.

Figure S3-52: ³¹P NMR (CDCl₃) spectrum of compound 21.

Supporting materials

Figure S3-53: ¹H NMR (CDCl₃) spectrum of compound 22.

31

Figure S3-56: ¹H NMR (CDCl₃) spectrum of compound 23.

Figure S3-58: ¹H NMR (CDCl₃) spectrum of compound 24.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

33

Figure S3-59: ³¹P NMR (CDCl₃) spectrum of compound 24.

S4 Size, Zeta

Series	Compound ^a	Size (nm)	Index Poly	Zeta (mV)
1	Non-symmetric $C_{12:0}/C_{18:1}$ (2)	112.8	0.563	49.3
	Symmetric C _{12:0} (16)	162.8	0.742	63.5
	Symmetric $C_{18:1}$ (18)	66.7	0.352	37.3
	Mixture of 16 and 18 (1/1 ratio)	183.7	0.504	50.8
	Non-symmetric $C_{20:0}/C_{18:1}$ (4)	131.5	0.311	9.1
	Symmetric $C_{18:1}$ (18)	63.9	0.393	70.2
2	Symmetric C _{20:0} (20)	194.7	0.304	45.1
	Mixture of 18 and 20 (1/1 ratio)	204.0	0.269	53.7
	Non-symmetric $C_{12:0}/C_{20:0}$ (6)	170.0	0.242	39.1
	Symmetric C _{12:0} (16)	120.8	0.362	51.7
3	Symmetric C _{20:0} (20)	178.4	0.315	31.2
	Mixture of 16 and 20 (1/1 ratio)	266.7	0.488	46.0
	Non-symmetric $C_{14:0}/C_{18:1}$ (8)	154.8	0.204	52.3
	Symmetric $C_{18:1}$ (18)	125.0	0.273	50.1
4	Symmetric $C_{14:0}$ (22)	242.3	0.376	66.9
	Mixture of 18 and 22 (1/1 ratio)	107.3	0.390	49.1
	Non-symmetric $C_{14:0}/C_{20:0}$ (10)	262.1	0.387	46.7
	Symmetric C _{20:0} (20)	156.4	0.193	33.5
5	Symmetric $C_{14:0}$ (22)	242.3	0.376	66.9
	Mixture of 20 and 22 (1/1 ratio)	173.6	0.255	49.1
	Non-symmetric $C_{14:0}/C_{18:0}$ (12)	169.9	0.277	44.4
	Symmetric $C_{18:0}$ (24)	172.7	0.349	44.3
6	Symmetric $C_{14:0}$ (22)	213.4	0.302	40.6
	Mixture of 24 and 22 (1/1 ratio)	179.9	0.409	53.1
	Non-symmetric C _{holest} /C _{18:1} (14)	210.3	0.406	38.3
7	Symmetric $C_{18:1}$ (18)	208.7	0.372	40.5

 Compound 6
 DNA
 Compound 20
 Compound 16
 DNA
 Compound 16+20

 CR1
 CR2
 CR4
 CR3
 CR4
 CR4
 CR4
 CR4
 CR4
 CR4

 Compound 8
 Compound 18
 Compound 22
 Compound 18+22
 DNA

 CR1
 CR2
 CR4
 CR3
 CR4
 CR4

 Compound 10
 Compound 22
 DNA
 Compound 20
 Compound 20+22

 CR1
 CR2
 CR4
 CR8
 CR1
 CR2
 CR4
 CR3
 CR1
 CR2
 CR4
 CR4<

Compound 12DNACompound 22Compound 24DNACompound 22+24CR1CR2CR4CR8CR1CR2CR4CR8CR1CR2CR4CR8

S6 In vitro transfection assays

For details see the experimental procedure.

S7 Evaluation of toxicity

The toxicity of the different lipid/DNA complexes was determined by using a chemiluminescent assay (Toxilight - Cambrex, Liège, Belgium). For details see experimental procedure.

40

41