Supporting information

The Synthesis and Biological Evaluation of Mycobacterial *p*-Hydroxybenzoic Acid Derivatives (*p*-HBADs)

Jean Bourke^[a], Corinna F. Brereton^[b], Stephen V. Gordon^[c], Ed C. Lavelle^{*[b]} and

^aEoin M. Scanlan^{*[a]}

e-mail: <u>eoin.scanlan@tcd.ie</u>

Contents:

Figure 3	53
¹ H and ¹³ C NMR Spectra of Compound 2 S	34
¹ H and ¹³ C NMR Spectra of Compound 3 S	5
¹ H and ¹³ C NMR Spectra of Compound 4 S	6
¹ H and ¹³ C NMR Spectra of Compound 5 S	7
¹ H and ¹³ C NMR Spectra of Compound 6 S	8
¹ H and ¹³ C NMR Spectra of Compound 7S	9
¹ H and ¹³ C NMR Spectra of Compound 8S	510
¹ H and ¹³ C NMR Spectra of Compound 9 S	511
¹ H and ¹³ C NMR Spectra of Compound 10 S	512
¹ H and ¹³ C NMR Spectra of Compound 11 S	13
¹ H and ¹³ C NMR Spectra of Compound 12 S	514
¹ H and ¹³ C NMR Spectra of Compound 13 S	15
¹ H and ¹³ C NMR Spectra of Compound 14 S	516
¹ H and ¹³ C NMR Spectra of Compound 15 S	517
¹ H and ¹³ C NMR Spectra of Compound 16 S	518

¹ H and ¹³ C NMR Spectra of Compound 17	.S19
¹ H and ¹³ C NMR Spectra of Compound 18	.S20
¹ H and ¹³ C NMR Spectra of Compound 20	.S21
¹ H and ¹³ C NMR Spectra of Compound 21	.S22
¹ H and ¹³ C NMR Spectra of Compound 22	.S23
¹ H and ¹³ C NMR Spectra of Compound 23	S24

Figure 3. Flow cytometry data. *p*-HBADs suppress IFN- γ production by CD4+ T cells. Splenocytes were incubated with medium, *p*-HBADs alone or in the presence of anti-CD3e. Cells were incubated for 72 h and T cell proliferation and IFN- γ production was assessed.

¹H of compound 2

¹H of compound 3

13 C of compound 3

¹H of compound 4

 $^{1}\mathrm{H}$ of compound 6

¹H of compound 7

 13 C of compound 7

¹H of compound 8

¹H of compound 10

¹H of compound 15

 13 C of compound 18

 13 C of compound 19

 $^{13}\mathrm{C}$ of compound 20

