SUPPORTING INFORMATION

Microwave-Assisted One-Pot Synthesis and Anti-Biofilm Activity of 2-Amino-1*H*-imidazole/Triazole Conjugates

Hans Steenackers,^{b*} Denis Ermolat'ev,^{a*} Tran Thi Thu Trang,^a Bharat Savalia,^{a,c} Upendra K. Sharma,^a Ami De Weerdt,^b Anamik Shah,^c Jozef Vanderleyden,^{b**} Erik Van der Eycken^{a**}

^a Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.

^b Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg 20, box 2460, B-3001 Leuven, Belgium.

^c Department of Chemistry, Saurashtra University, 361 005 Rajkot, India.

^{*}Equal contribution

** Corresponding author:

Erik.VanderEycken@chem.kuleuven.be, Jozef.Vanderleyden@biw.kuleuven.be

Contents	Page
This page	S 1
Materials and methods	S2
Experimental procedures and compound characterization	S 3
Synthesis and characterization 3-azidoalkylpyrimidin-2-amines	S 3
Synthesis and characterization of hydroxy salts 3a-l	S 4
Synthesis and characterization of 2-AI/T 5a-y, 5aa-5aj	S 9
Synthesis and characterization of 2-AI 6a-h	S23
Copies of ¹ H NMR and ¹³ C NMR spectra of new compounds	S26-S82

Materials and Methods

General Information

Reactions were carried out under ambient temperature unless otherwise specified. All chemicals were used without purification. Yields refer to purified and spectroscopic pure compounds. Solvents for column chromatography and TLC were laboratory grade and distilled before use. For thin-layer chromatography (TLC), analytical TLC plates (Alugram SIL G/UV₂₅₄ (E. M. Merk) were used. Column chromatography was performed with flash silica gel (100-200 mesh). ¹H and ¹³C NMR spectra were recorded on a Bruker Avance 300 (300 MHz) or a Bruker AMX-400 (400 MHz) spectrometers. NMR samples were run in the indicated solvents and were referenced internally. Chemical shift values were quoted in ppm and coupling constants were quoted in Hz. Chemical shift multiplicities were reported as s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet and br = broad. High-resolution mass spectra (EI) were recorded on a KRATOS MS50TC instrument.

Microwave Irradiation Experiments

Microwave irradiation experiments were carried out in a dedicated CEM-Discover monomode microwave apparatus or Milestone MicroSYNTH multi-mode microwave reactor (Laboratory Microwave Systems). Microwave apparatuses were used in the standard configuration as delivered, operating at a frequency 2.45 GHz with continuous irradiation power from 0 to 400 W. The reactions were carried out in 10, 20, 30 and 50 mL glass tubes. The temperature was measured with an IR sensor on the outer surface of the process vial or fibre optic sensor inside the process vial. After the irradiation period, the reaction vessel was cooled rapidly (2-5 min) to ambient temperature by air jet cooling.

Experimental procedures and compound characterization

General Procedure for the Preparation of N-(3-azidopropyl)pyrimidin-2-amines 1.

$$\begin{array}{c|c} & & \\ &$$

In a 50 mL microwave vial were successively dissolved in EtOH (20 mL) 2-chloropyrimidine (3.43 g, 30 mmol), azidoamine (48 mmol, 1.6 equiv) and triethylamine (6.2 mL, 45 mmol, 1.5 equiv). The reaction tube was sealed, and irradiated in the cavity of a Milestone MicroSYNTH microwave reactor at a ceiling temperature of 120 °C at 100 W maximum power for 30 min. After the reaction mixture was cooled with an air flow for 15 min, it was diluted with water (100 mL), extracted with DCM (2×150 mL) and dried over Na₂SO₄. The solvent was evaporated *in vaccuo*, and the crude mixture was purified by silica gel flash chromatography using 0-5% MeOH–DCM as the eluent.

N-(2-Azidoethyl)pyrimidin-2-amine (1a)

Yield: 67 %. ¹H NMR (300 MHz, CDCl₃): δ = 8.30 (d, *J* = 4.74 Hz, 2H), 6.58 (t, *J* = 4.74 Hz, 1H), 5.44 (brs, 1H), 3.64 (m, 2H), 3.54 (t, *J* = 5.58 Hz, 2H). ¹³C NMR (75.5 MHz, CDCl₃): δ = 162.0, 158.1, 111.1, 50.8, 40.7. HRMS (EI) C₆H₈N₆, calcd 164.0810, found: 164.0825.

N-(3-Azidopropyl)pyrimidin-2-amine (1b)

Yield: 69 %. ¹H NMR (300 MHz, CDCl₃): δ = 8.28 (d, *J* = 4.80 Hz, 2H), 6.54 (t, *J* = 4.80 Hz, 1H), 5.30 (brs, 1H), 3.52 (m, 2H), 3.42 (t, *J* = 6.57 Hz, 2H), 1.90 (m, 2H). ¹³C NMR (75.5 MHz, CDCl₃): δ = 162.5, 158.0 (×2), 110.6, 49.2, 38.6, 28.8. HRMS (EI) C₇H₁₀N₆, calcd 178.0967, found: 178.0974.

General Procedure for the Preparation of Hydroxy Salts 3a-l.

To a solution of *N*-(azidoalkyl)pyrimidin-2-amine **1** (6 mmol) and α -bromoacetophenone **2** (7.2 mmol, 1.2 equiv) in acetonitrile (12 mL) was added 4-dimethylaminopyridine (6 mg, 0.05 mmol). After being stirred at 75 °C for 3 h, the reaction mixture was diluted with ether (20 mL) and the precipitate was filtered off and washed with acetone (2×20 mL), ether (2×20 mL) and dried over P₂O₅ to give salt **3** as a white solid.

1-(3-Azidopropyl)-2-hydroxy-2-phenyl-2,3-dihydro-1*H*-imidazo[1,2-*a*]pyrimidin-4-ium bromide (3a)

Yield: 86 %. ¹H NMR (300 MHz, DMSO- d_6): $\delta = 9.05$ (m, 2H), 7.93 (s, 1H), 7.80 (m, 2H), 7.48 (m, 3H), 7.37 (t, J = 4.86 Hz, 1H), 4.95 (m, 2H), 3.41 (m, 4H), 1.64 (m, 2H). ¹³C NMR (75.5 MHz, DMSO- d_6): $\delta = 167.4$, 154.6, 148.2, 138.1, 129.3, 128.4 (×2), 126.9 (×2), 111.4, 90.6, 62.7, 47.9, 38.2, 27.0. MS (m/z) 297 [(M – Br)]⁺.

1-(2-Azidoethyl)-2-(4-bromophenyl)-2-hydroxy-2,3-dihydro-1*H*-imidazo[1,2*a*]pyrimidin-4-ium bromide (3b)

Yield: 90 %. ¹H NMR (300 MHz, DMSO- d_6): $\delta = 9.11$ (m, 1H), 8.07 (s, 1H), 7.74 (d, J = 9.1 Hz, 2H), 7.72 (d, J = 9.1 Hz, 2H), 7.42 (m, 1H), 4.92 (dd, J = 14.3/26.4 Hz, 2H), 3.56-3.30 (m, 4H). ¹³C NMR (75.5 MHz, DMSO- d_6): $\delta = 167.6$, 154.8, 148.4, 137.4, 131.4, 129.4, 123.0, 112.0, 90.4, 62.6, 48.1. MS (m/z) 362 [(M – Br)]⁺.

1-(2-Azidoethyl)-2-hydroxy-2-phenyl-2,3-dihydro-1*H*-imidazo[1,2-*a*]pyrimidin-4-ium bromide (3c)

Yield: 89 %. ¹H NMR (300 MHz, DMSO- d_6): $\delta = 9.02$ (m, 2H), 7.99 (s, 1H), 7.80 (m, 2H), 7.49 (m, 3H), 7.41 (t, J = 4.92 Hz, 1H), 4.95 (m, 2H), 3.38 (m, 4H). ¹³C NMR (75.5 MHz, DMSO- d_6): $\delta = 167.5$, 154.7, 148.4, 137.8, 129.4, 128.4 (×2), 126.9 (×2), 111.8, 90.6, 62.8, 48.1 (×2). MS (m/z) 283 [(M – Br)]⁺.

1-(2-Azidoethyl)-2-hydroxy-2-(naphthalen-1-yl)-2,3-dihydro-1*H*-imidazo[1,2*a*]pyrimidin-4-ium bromide (3d)

Yield: 69 %. ¹H NMR (300 MHz, DMSO- d_6): $\delta = 9.10$ (m, 2H), 8.38 (s, 1H), 8.16 (s, 1H), 8.02 (m, 3H), 7.88 (m, 1H), 7.59 (m, 2H), 7.44 (m, 1H), 5.05 (s, 2H), 3.42 (m, 4H). ¹³C NMR (75.5 MHz, DMSO- d_6): $\delta = 167.5$, 154.9, 148.5, 135.0, 132.9, 132.1, 128.4, 128.2, 127.5, 127.1, 126.7 (×2), 124.1, 111.9, 90.8, 62.6, 48.2 (×2). MS (m/z) 333 [(M – Br)]⁺.

1-(3-Azidopropyl)-2-(4-bromophenyl)-2-hydroxy-2,3-dihydro-1*H*-imidazo[1,2*a*]pyrimidin-4-ium bromide (3e)

Yield: 83 %. ¹H NMR (300 MHz, DMSO- d_6): $\delta = 9.06$ (dd, J = 1.62, 4.60 Hz, 1H), 8.98 (dd, J = 1.62, 6.24 Hz,1H) 8.00 (s, 1H), 7.72 (m, 4H), 7.37 (m, 1H), 4.85 (m, 2H), 3.37 (m, 4H),

1.66 (m, 2H). ¹³C NMR (75.5 MHz, DMSO- d_6): $\delta = 167.5$, 154.7, 148.2, 137.6, 131.4(×2), 129.3 (×2), 122.9, 111.5, 90.3, 62.5, 47.9, 38.2, 27.0. MS (m/z) 375 [(M – Br)]⁺.

1-(2-Azidoethyl)-2-(3,4-dichlorophenyl)-2-hydroxy-2,3-dihydro-1*H*-imidazo[1,2*a*]pyrimidin-4-ium bromide (3f)

Yield: 75 %. ¹H NMR (300 MHz, DMSO-*d*₆): δ = 9.12 (m, 2H), 8.20 (s, 1H), 8.09 (s, 1H), 7.79 (m, 2H), 7.43 (m, 1H), 4.93 (m, 2H), 3.42 (m, 4H). ¹³C NMR (75.5 MHz, DMSO-*d*₆): δ = 167.5, 154.9, 148.3, 139.0, 132.2, 131.3, 130.5, 129.5, 127.4, 112.1, 89.8, 62.5, 48.0 (×2). MS (*m*/*z*) 351 [(M – Br)]⁺.

1-(3-Azidopropyl)-2-(3,4-dichlorophenyl)-2-hydroxy-2,3-dihydro-1*H*-imidazo[1,2*a*]pyrimidin-4-ium bromide (3g)

Yield: 77 %. ¹H NMR (300 MHz, DMSO-*d*₆): $\delta = 9.07$ (m, 1H), 8.97 (m,1H), 8.12 (s, 1H), 8.08 (brs, 1H), 7.97 (m, 2H), 7.38 (t, *J* = 4.92 Hz, 1H), 4.86 (m, 2H), 3.37 (m, 4H), 1.68 (m, 2H). ¹³C NMR (75.5 MHz, DMSO-*d*₆): $\delta = 167.5$, 154.7, 148.1, 139.2, 132.2, 131.3, 130.6, 129.3, 127.4, 111.6, 89.8, 62.4, 47.8, 38.3, 26.9. MS (*m*/*z*) 365 [(M – Br)]⁺.

1-(3-Azidopropyl)-2-hydroxy-2-(morpholine-4-carbonyl)-2,3-dihydro-1*H*-imidazo[1,2*a*]pyrimidin-4-ium bromide (3h)

Yield: 65 %. ¹H NMR (300 MHz, DMSO- d_6): δ = 9.01 (m, 1H), 8.82 (m,1H), 7.28 (t, *J* = 6.0 Hz, 1H), 5.05 (dd, *J* = 14.3/45.6 Hz, 2H), 3.66 (m, 12H), 2.07 (m, 2H). ¹³C NMR (75.5 MHz, DMSO- d_6): δ = 167.9, 164.7, 154.4, 148.3, 111.2, 91.5, 65.7, 57.4, 48.4, 46.5, 43.0, 27.0. MS (*m*/*z*) 334 [(M – Br)]⁺.

1-(2-Azidoethyl)-2-hydroxy-2-(morpholine-4-carbonyl)-2,3-dihydro-1*H*-imidazo[1,2*a*]pyrimidin-4-ium bromide (3i)

Yield: 76 %. ¹H NMR (300 MHz, DMSO-*d*₆): δ = 9.06 (m, 1H), 8.90 (m, 1H), 8.50 (brs, 1H), 7.35 (t, *J* = 6.0 Hz, 1H), 5.07 (dd, 14.3/48.2 Hz, 2H), 3.70 (m, 12 H). ¹³C NMR (75.5 MHz, DMSO-*d*₆): δ = 168.0, 164.7, 154.5, 148.4, 111.7, 91.4, 65.7, 48.4, 46.4, 43.0, 41.5, 30.7. MS (*m*/*z*) 320 [(M – Br)]⁺.

1-(2-Azidoethyl)-2-(4-fluorophenyl)-2-hydroxy-2,3-dihydro-1*H*-imidazo[1,2*a*]pyrimidin-4-ium bromide (3j)

Yield: 69 %. ¹H NMR (300 MHz, DMSO- d_6): $\delta = 9.09$ (d, J = 4.53 Hz, 1H), 9.01 (d, J = 6.00 Hz, 1H), 8.04 (s, 1H), 7.85 (m, 2H), 7.37 (m, 3H), 4.92 (m, 2H), 3.38 (m, 4H). ¹³C NMR

(75.5 MHz, DMSO- d_6): $\delta = 167.5$, 164.1, 160.9, 154.7, 148.4, 134.0 (d), 129.4 (d), 115.4, 115.1, 111.9, 90.3, 62.7, 48.1 (×2). MS (m/z) 301 [(M – Br)]⁺.

1-(2-Azidoethyl)-2-(4-chlorophenyl)-2-hydroxy-3-*p*-tolyl-2,3-dihydro-1*H*-imidazo[1,2*a*]pyrimidin-4-ium bromide (3k)

Yield: 72 %. ¹H NMR (300 MHz, DMSO-*d*₆): $\delta = 9.19$ (d, *J* = 3.06 Hz, 1H), 8.55 (d, *J* = 5.43 Hz, 1H), 7.71 (d, *J* = 8.52 Hz, 2H), 7.70 (s, 1H), 7.55 (d, *J* = 8.49 Hz, 2H), 7.38 (m, 1H), 7.42 (d, *J* = 7.80 Hz, 2H), 7.08 (d, *J* = 7.80 Hz, 2H), 6.10 (s, 1H), 3.36 (m, 4H), 2.33 (s, 3H). ¹³C NMR (75.5 MHz, DMSO-*d*₆): $\delta = 168.2$, 156.1, 146.9, 139.5, 135.9, 134.4, 129.4 (×6), 128.4 (×2), 124.4, 112.8, 93.5, 74.9, 47.9, 41.0, 20.7. MS (*m*/*z*) 407 [(M – Br)]⁺.

1-(3-Azidopropyl)-2-hydroxy-2,3-diphenyl-2,3-dihydro-1*H*-imidazo[1,2-*a*]pyrimidin-4ium bromide (3l)

Yield: 75 %. ¹H NMR (300 MHz, DMSO-*d*₆): $\delta = 9.17$ (d, J = 3.0 Hz, 1H), 8.57 (d, J = 6.0 Hz, 1H), 7.71 (m, 2H), 7.49 (m, 6H), 7.34 (m, 1H), 7.14 (m, 3H), 6.09 (s, 1H), 3.47 (m, 2H), 3.36 (m, 1H), 1.73 (m, 2H). ¹³C NMR (75.5 MHz, DMSO-*d*₆): $\delta = 168.3$, 157.0, 147.0, 137.0, 129.8, 129.5, 128.8, 128.5, 127.8, 127.4, 112.3, 96.6, 93.8, 75.2, 48.1, 39.4, 27.0. MS (*m*/*z*) 373 [(M – Br)]⁺.

General Procedure for the Preparation of 2-AIT 5a-y, 5aa-5aj.

To the cooled solution of hydrazine hydride (2 equiv) in ethanol (0.8 mL) were added $Cu(OAc)_2$ (5 mol %) in water (0.2 mL) and stirred for 2 min at 0 °C. To suspension were added acetylene (1.5 equiv) and hydroxyl salt **3** (1 equiv). The reaction mixture was irradiated at 100 °C at the maximum power 35 W for 2 min. After completion of the reaction, the solvent was removed under reduce pressure. The crude product was purified by column chromatography over silica gel using DCM/methanol/7N methanolic NH₃ (96:3:1) as the eluent.

5-phenyl-*N*-(3-(4-phenyl-1*H*-1,2,3-triazol-1-yl)propyl)-1*H*-imidazol-2-amine (5a)

Yield: 90 %. ¹H NMR (300 MHz, DMSO-*d*₆): δ = 11.09 (brs, 1H), 8.63 (s, 1H), 7.85 (d, *J* = 7.2 Hz, 2H), 7.62 (d, *J* = 7.5, 2H), 7.45 (t, *J* = 7.9 Hz, 2H), 7.33 (m, 3H), 7.12 (t, *J* = 6.9 Hz, 2H), 6.30 (brs, 1H), 4.51 (t, *J* = 7.2 Hz, 2H), 3.23 (m, 2H), 2.17 (m, 2H). ¹³C NMR (75.5 MHz, DMSO-*d*₆): δ = 150.3, 146.3, 133.0, 130.8, 128.9, 128.4, 127.8, 125.7, 125.1, 123.7, 121.4, 104.2, 47.4, 29.9. HRMS (EI) C₂₀H₂₀N₆, calcd 344.1749, found: 344.1754.

5-(4-Bromophenyl)-*N*-(2-(4-(4-methoxyphenyl)-1*H*-1,2,3-triazol-1-yl)ethyl)-1*H*imidazol-2-amine (5b)

Yield: 66 %. ¹H NMR (300 MHz, DMSO-*d*₆): δ = 10.62 (brs, 1H), 8.45 (s, 1H), 7.43 (d, *J* = 8.8 Hz, 2H), 7.57 (d, *J* = 7.9 Hz, 2H), 7.43 (d, *J* = 8.8 Hz, 2H), 7.10 (s, 1H), 6.98 (d, *J* = 8.8 Hz, 2H), 6.02 (m, 1H), 4.60 (t, *J* = 5.90 Hz, 2H), 3.78 (s, 3H), 3.68 (m, 2H). ¹³C NMR (75.5 MHz, DMSO-*d*₆): δ = 158.8, 150.0, 146.0, 131.0, 126.4 (×4), 125.5 (×2), 123.4, 120.7, 117.5, 114.2 (×4), 55.0, 49.2. 42.8. HRMS (EI) C₂₀H₁₉BrN₆O, calcd 438.0804, found: 438.0811.

5-Phenyl-*N*-(2-(4-phenyl-1*H*-1,2,3-triazol-1-yl)ethyl)-1*H*-imidazol-2-amine (5c)

Yield: 84 %. ¹H NMR (300 MHz, DMSO- d_6): $\delta = 10.68$ (brs, 1H), 8.57 (s, 1H), 7.82 (d, J = 7.3 Hz, 2H), 7.61 (m, 2H), 7.43 (t, J = 7.6 Hz, 2H), 7.28 (m, 3H), 7.06 (m, 2H), 6.01 (brs, 1H), 4.63 (t, J = 6.1 Hz, 2H), 3.70 (m, 2H). ¹³C NMR (75.5 MHz, DMSO- d_6): $\delta = 150.3$, 146.1, 130.4, 128.8 (×4), 128.2, 127.7, 125.1, 125.0 (×4), 123.4, 121.7, 104.1, 49.3. 42.9. HRMS (EI) C₁₉H₁₈N₆, calcd 330.1593, found: 330.1582.

5-(4-Bromophenyl)-*N*-(2-(4-p-tolyl-1*H*-1,2,3-triazol-1-yl)ethyl)-1*H*-imidazol-2-amine (5d)

Yield: 73 %. ¹H NMR (300 MHz, DMSO- d_6): $\delta = 10.66$ (brs, 1H), 8.50 (s, 1H), 7.70 (d, J = 8.07 Hz, 2H), 7.57 (d, J = 8.31 Hz, 2H), 7.43 (d, J = 8.56 Hz, 2H), 7.22 (d, J = 8.07 Hz, 2H), 7.13 (s, 1H), 6.03 (br s, 1H), 4.61 (t, J = 5.80 Hz, 2H), 3.68 (m, 2H), 2.32 (s, 3H). ¹³C NMR (75.5 MHz, DMSO- d_6): $\delta = 150.4$, 146.1, 136.9 (×2), 130.9 (×2), 129.3 (×4), 128.0, 125.3, 124.9 (×3), 121.2, 117.4, 49.2, 42,8, 20.7. HRMS (EI) C₂₀H₁₉BrN₆, calcd 422.0855, found: 422.0863.

N-(2-(4-(4-Butylphenyl)-1*H*-1,2,3-triazol-1-yl)ethyl)-5-(naphthalen-1-yl)-1*H*-imidazol-2amine (5e)

Yield: 64 %. ¹H NMR (300 MHz, DMSO-*d*₆): δ = 10.9 (brs, 1H), 8.54 (s, 1H), 8.14 (s, 1H), 7.73 (m, 6H), 7.37 (m, 2H), 7.23 (m, 3H), 6.01 (m, 1H), 4.68 (m, 2H), 3.74 (m, 2H), 2.58 (t, *J* = 7.4 Hz, 2H), 1.56 (m, 2H), 1.32 (m, 2H), 0.89 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (75.5 MHz, DMSO-*d*₆): δ = 150.7, 146.2, 141.8, 133.5, 131.3, 128.7 (×3), 128.3, 127.5, 127.3 (×3), 126.0, 125.0 (×3), 124.6, 123.2, 121.3, 120.2, 49.3, 42.9, 34.5, 32.9, 21.7, 13.7. HRMS (EI) C₂₇H₂₈N₆, calcd 436.2375, found: 436. 2349.

5-(4-Bromophenyl)-N-(2-(4-heptyl-1H-1,2,3-triazol-1-yl)ethyl)-1H-imidazol-2-amine (5f)

Yield: 73 %. ¹H NMR (300 MHz, DMSO- d_6): $\delta = 10.56$ (brs, 1H), 7.82 (s, 1H), 7.59 (d, J = 8.2 Hz, 2H), 7.42 (d, J = 7.9 Hz, 2H), 7.13 (s, 1H), 5.93 (brs, 1H), 4.51 (t, J = 5.90 Hz, 2H), 3.60 (m, 2H), 2.57 (d, J = 7.7 Hz, 2H), 1.57 (m, 2H), 1.25 (m, 8H), 0.85 (t, J = 6.9 Hz, 3H). ¹³C NMR (75.5 MHz, DMSO- d_6): $\delta = 150.5$, 146.7 (×2), 131.0 (×3), 125.3, 121.9 (×2), 117.4, 104.1, 48.9, 42.9, 31.1, 28.9, 28.5, 28.4, 25.0, 22.0, 13.9. HRMS (EI) C₂₀H₂₇BrN₆, calcd 430.1481, found: 430.1488.

5-(4-Bromophenyl)-*N*-(3-(4-(4-pentylphenyl)-1*H*-1,2,3-triazol-1-yl)propyl)-1*H*-imidazol-2-amine (5g)

Yield: 80 %. ¹H NMR (300 MHz, DMSO-*d*₆): $\delta = 10.58$ (brs, 1H), 8.55 (s, 1H), 7.72 (d, J = 8.06 Hz, 2H), 7.53 (d, J = 8.06 Hz, 2H), 7.38 (d, J = 8.27 Hz, 2H), 7.23 (d, J = 8.06 Hz, 2H), 7.11 (s, 1H), 5.96 (m, 1H), 4.47 (t, J = 6.57 Hz, 2H), 3.19 (m, 2H), 2.59 (t, J = 7.63 Hz, 2H), 2.14 (m, 2H), 1.59 (m, 2H), 1.30 (m, 4H), 0.86 (t, J = 6.78 Hz, 3H). ¹³C NMR (75.5 MHz, DMSO-*d*₆): $\delta = 146.3$, 142.9, 131.0 (×2), 128.7 (×4), 128.3, 125.4, 124.0 (×4), 121.0, 117.3 (×2), 47.3, 39.9, 34.8, 30.8, 30.5, 30.6, 21.9, 13.8. HRMS (EI) C₂₅H₂₉BrN₆ calcd.492.1637, found: 492. 1621.

5-(3,4-Dichlorophenyl)-*N*-(2-(4-(4-heptylphenyl)-1*H*-1,2,3-triazol-1-yl)ethyl)-1*H*imidazol-2-amine (5h)

Yield: 84 %. ¹H NMR (300 MHz, DMSO- d_6): $\delta = 10.66$ (brs, 1H), 8.50 (s, 1H), 7.86 (s, 1H), 7.71 (d, J = 8.3 Hz, 2H), 7.62 (m, 1H), 7.48 (d, J = 8.3 Hz, 1H), 7.22 (d, J = 8.3 Hz, 3H), 6.06

(m, 1H), 4.61 (t, J = 5.77 Hz, 2H), 3.69 (m, 2H), 2.58 (t, J = 7.58Hz, 2H), 1.57 (m, 2H), 1.28 (m, 8H), 0.86 (m, 3H). ¹³C NMR (75.5 MHz, DMSO- d_6): $\delta = 146.1$, 141.8, 130.9 (×2), 130.3, 128.6 (×3), 128.2 (×2), 126.5,124.9 (×3), 124.8, 124.7, 121.2, 49.2, 42.8, 34.8, 31.1, 30.7, 28.5, 28.4, 22.0, 13.8. HRMS (EI) C₂₆H₃₀Cl₂N₆, calcd 496.1909, found: 496.1919.

5-(3,4-Dichlorophenyl)-*N*-(3-(4-((methylamino)methyl)-1*H*-1,2,3-triazol-1-yl)propyl)-1*H*-imidazol-2-amine (5i)

Yield: 81 %. ¹H NMR (300 MHz, DMSO- d_6): $\delta = 10.70$ (brs, 1H), 7.99 (s, 1H), 7.82 (s, 1H), 7.58 (d, J = 8.7 Hz, 1H), 7.48 (d, J = 8.2 Hz, 1H), 7.23 (s, 1H), 6.01 (m, 1H), 4.41 (t, J = 6.95 Hz, 2H), 3.67 (m, 2H), 3.14 (m, 2H), 2.26 (s, 3H), 2.07 (t, J = 6.5 Hz, 2H), 1.86 (s,1H) ¹³C NMR (75.5 MHz, DMSO- d_6): $\delta = 151.4$, 145.9, 135.9, 130.9 (×2), 130.3, 126.4 (×2), 124.6, 123.4, 122.6, 47.0 (×2), 41.0, 35.4, 30.3. HRMS (EI) C₁₆H₁₉Cl₂N₇, calcd 389.1079, found: 389.1064.

N-(3-(4-(2-aminopropan-2-yl)-1*H*-1,2,3-triazol-1-yl)propyl)-5-(4-bromophenyl)-1*H*imidazol-2-amine (5j)

Yield: 75 %. ¹H NMR (300 MHz, DMSO- d_6): $\delta = 10.57$ (brs, 1H), 7.92 (s, 1H), 7.55 (d, J = 8.3 Hz, 2H), 7.42 (d, J = 8.3 Hz, 2H), 7.11 (s, 1H), 5.94 (t, J = 5.6 Hz, 1H), 4.38 (t, J = 7.0 Hz, 2H), 4.10 (m, 2H), 3.16 (m, 2H), 2.07 (m, 2H), 1.37 (s, 6H). ¹³C NMR (75.5 MHz, DMSO- d_6): $\delta = 156.0$, 151.3, 134.0, 131.0 (×3), 125.3 (×2), 120.1 (×2), 117.3, 54.8, 48.5, 47.1, 30.8 (×2), 30.1. HRMS (EI) C₁₇H₂₂BrN₇, calcd 403.1120, found: 403.1131.

5-(3,4-Dichlorophenyl)-*N*-(2-(4-cyclohexyl-1*H*-1,2,3-triazol-1-yl)ethyl)-1*H*-imidazol-2amine (5k)

Yield: 89 %. ¹H NMR (300 MHz, DMSO- d_6): $\delta = 10.64$ (brs, 1H), 7.58 (s, 1H), 7.80 (s, 1H), 7.60 (m, 1H), 7.48 (d, J = 8.3 Hz, 1H), 7.24 (s, 1H), 6.00 (m, 1H), 4.50 (t, J = 5.76 Hz, 2H), 3.61 (m, 2H), 2.61 (m, 1H), 1.91 (m, 2H), 1.69 (m, 3H), 1.32 (m,5H). ¹³C NMR (75.5 MHz, DMSO- d_6): $\delta = 151.9$, 150.6, 131.0 (×2), 130.3, 126.6 (×2), 124.7, 123.4, 120.7, 104.1, 54.8, 49.0, 42.8, 34.5, 32.4 (×2), 25.5 (×2). HRMS (EI) C₁₉H₂₂Cl₂N₆, calcd 404.1283, found: 404.1278.

5-(3,4-Dichlorophenyl)-*N*-(2-(4-propyl-1*H*-1,2,3-triazol-1-yl)ethyl)-1*H*-imidazol-2-amine (5l)

Yield: 85 %. ¹H NMR (300 MHz, DMSO-*d*₆): δ = 10.80 (brs, 1H), 7.84 (d, *J* = 1.7 Hz, 1H), 7.82 (s, 1H), 7.59 (dd, *J* = 8.4, 1.7 Hz, 1H), 7.53 (d, *J* = 8.4 Hz, 1H), 7.26 (s, 1H), 6.14 (br s, 1H), 4.51 (t, *J* = 6.04 Hz, 2H), 3.62(m, 2H), 2.56 (t, *J* = 7.49 Hz, 2H), 1.57 (m, 2H), 0.89 (t, *J* = 7.25 Hz, 3H). ¹³C NMR (75.5 MHz, DMSO-*d*₆): δ = 150.4, 146.5, 135.0, 131.0 (×2), 130.4 126.8 (×2), 124.8, 123.5, 122.0, 48.8, 42.8, 27.0, 22.0, 13.6. HRMS (EI) C₁₆H₁₈Cl₂N₆, calcd 364.0970, found: 364.0980.

5-(3,4-Dichlorophenyl)-*N*-(3-(4-propyl-1*H*-1,2,3-triazol-1-yl)propyl)-1*H*-imidazol-2amine (5m)

Yield: 91 %. ¹H NMR (300 MHz, DMSO- d_6): $\delta = 10.80$ (brs, 1H), 7.88 (s, 1H), 7.83 (d, J = 1.7 Hz 1H), 7.58 (dd, J = 8.3, 1.7 Hz, 1H), 7.52 (s, 1H), 7.49 (s, 1H), 6.13 (br s, 1H), 4.38 (t, J = 6.98 Hz, 2H), 3.15 (m, 2H), 2.57 (t, J = 7.51 Hz, 2H), 2.06 (m, 2H), 1.58 (m, 2H), 0.89 (t, J = 7.51 Hz, 3H). ¹³C NMR (75.5 MHz, DMSO- d_6): $\delta = 150.0$, 146.6, 135.1, 131.0 (×2), 130.3 126.8 (×2), 124.8, 123.5, 121.7, 54.8, 46.9, 30.0, 27.0, 22.2, 13.5. HRMS (EI) C₁₇H₂₀Cl₂N₆, calcd 378.1127, found: 378.1114.

5-(4-Bromophenyl)-*N*-(2-(4-propyl-1*H*-1,2,3-triazol-1-yl)ethyl)-1*H*-imidazol-2-amine (5n)

Yield: 94 %. ¹H NMR (300 MHz, DMSO-*d*₆): δ = 10.63 (brs, 1H), 7.87(s, 1H), 7.62 (m, 2H), 7.48 (d, *J* = 8.6 Hz, 2H), 7.17 (s, 1H), 5.98 (t, *J* = 5.3 Hz, 1H), 4.59 (t, *J* = 6.04 Hz, 2H), 3.66 (m, 2H), 2.61 (t, *J* = 7.44 Hz, 2H), 1.62 (m, 2H), 0.94 (t, *J* = 7.21 Hz, 3H). ¹³C NMR (75.5 MHz, DMSO-*d*₆): δ = 150.5, 146.5, 134.6, 131.0 (×3), 125.4 (×2), 122.0 (×2), 117.4, 48.9, 42.9, 27.0, 22.2, 13.6. HRMS (EI) C₁₆H₁₉BrN₆, calcd 374.0855, found: 374.0844.

5-(4-Bromophenyl)-*N*-(3-(4-propyl-1*H*-1,2,3-triazol-1-yl)propyl)-1*H*-imidazol-2-amine (50)

Yield: 75 %. ¹H NMR (300 MHz, DMSO- d_6): $\delta = 10.59$ (brs, 1H), 7.89 (s, 1H), 7.55 (d , J = 8.1 Hz, 2H), 7.42 (d, J = 8.4 Hz, 2H), 7.11 (s, 1H), 5.93 (t, J = 5.25 Hz, 1H), 4.38 (t, J = 6.83 Hz, 2H), 3.14 (m, 2H), 2.48 (t, J = 7.62 Hz, 2H), 2.06 (m, 2H), 1.58 (m, 2H), 0.90 (t, J = 7.35 Hz, 3H). ¹³C NMR (75.5 MHz, DMSO- d_6): $\delta = 151.1$, 146.6, 134.6, 131.0 (×3), 125.4 (×2), 121.7 (×2), 117.4, 47.9, 30.0, 27.0 (×2), 22.2, 13.5. HRMS (EI) C₁₇H₂₁BrN₆, calcd 388.1011, found: 388.1023.

(2-(3-(4-Propyl-1*H*-1,2,3-triazol-1-yl)propylamino)-1*H*-imidazol-5-yl)(morpholino)methanone (5p)

Yield: 45 %. ¹H NMR (300 MHz, DMSO-*d*₆): δ = 10.02 (brs, 1H), 7.85 (s, 1H), 7.10 (s, 1H), 6.05 (m, 1H), 4.35 (t, *J* = 6.8 Hz, 2H), 3.75 (m, 4H), 3.57 (t, *J* = 4.31 Hz, 4H), 3.10 (m, 2H), 2.57 (t, *J* = 7.42 Hz, 2H), 2.05 (m, 2H), 1.60 (m, 2H), 0.90 (t, *J* = 7.42 Hz, 3H). ¹³C NMR (75.5 MHz, DMSO-*d*₆): δ = 161.2, 150.1, 146.6, 122.8, 121.7 (×2), 66.3 (×2), 54.8 (×2), 46.9, 44.4, 29.9, 27.0, 22.2, 13.5. HRMS (EI) C₁₆H₂₅N₇O₂, calcd 347.2070, found: 347.2085.

(2-(2-(4-Propyl-1*H*-1,2,3-triazol-1-yl)ethylamino)-1*H*-imidazol-5-yl)(morpholino)methanone (5q)

Yield: 39 %. ¹H NMR (300 MHz, DMSO- d_6): $\delta = 10.89$ (brs, 1H), 7.78 (s, 1H), 7.08 (s, 1H), 5.98 (m, 1H), 4.45 (m, 2H), 3.74 (m, 3H), 3.58 (m, 6H), 3.16 (m, 1H), 2.56 (m, 2H), 1.57 (m, 2H), 0.89 (t, J = 7.25 Hz, 3H). ¹³C NMR (75.5 MHz, DMSO- d_6): $\delta = 161.4$, 149.7, 146.5 (×2), 121.9 (×2), 66.3 (×2), 48.7 (×2), 44.4, 44.7, 27.0, 22.2, 13.6. HRMS (EI) C₁₅H₂₃N₇O₂, calcd 333.1913, found: 333.1920.

N-(2-(4-(Cyclopentylmethyl)-1*H*-1,2,3-triazol-1-yl)ethyl)-5-(4-fluorophenyl)-1*H*imidazol-2-amine (5r)

Yield: 68 %. ¹H NMR (300 MHz, DMSO- d_6): $\delta = 10.63$ (brs, 1H), 7.82 (s, 1H), 7.63 (q, J = 2.9, 5.7 Hz, 2H), 7.11 (t, J = 8.7 Hz, 2H), 7.03 (s, 1H), 5.96 (t, J = 5.4 Hz, 1H), 4.51 (t, J = 5.99 Hz, 2H), 3.61 (m, 2H), 2.59 (d, J = 7.08 Hz, 2H), 2.07 (m, 1H), 1.66 (m, 6H), 1.70 (m, 2H). ¹³C NMR (75.5 MHz, DMSO- d_6): $\delta = 161.8, 158.6, 150.3, 146.2, 146.1, 130.9, 125.2, 125.1, 122.2, 115.1, 114.8, 48.9, 42.9, 31.8 (×3), 31.0, 24.5 (×2). HRMS (EI) C₁₉H₂₃FN₆, calcd 354.1968, found: 354.1974.$

N-(2-(4-Cyclopropyl-1*H*-1,2,3-triazol-1-yl)ethyl)-5-(4-fluorophenyl)-1*H*-imidazol-2amine (5s)

Yield: 80 %. ¹H NMR (300 MHz, DMSO- d_6): $\delta = 10.55$ (brs, 1H), 7.79 (s, 1H), 7.64 (m, 2H), 7.10 (t, J = 8.7 Hz, 2H), 7.02 (s, 1H), 5.90 (m, 1H), 4.99 (t, J = 5.85 Hz, 2H), 3.61 (m, 2H), 1.91 (m, 1H), 0.85 (m, 2H), 0.69 (m, 2H). ¹³C NMR (75.5 MHz, DMSO- d_6): $\delta = 161.8$, 158.6, 150.4, 148.6 (×2), 131.1, 125.1, 125.0, 120.9, 115.1, 114.8, 48.9, 42.9, 7.6(×2), 6.5. HRMS (EI) C₁₆H₁₇FN₆, calcd 312.1499, found: 312.1487.

5-(4-Chlorophenyl)-*N*-(2-(4-cyclopentyl-1*H*-1,2,3-triazol-1-yl)ethyl)-4-*p*-tolyl-1*H*imidazol-2-amine (5t)

Yield: 56 %. ¹H NMR (300 MHz, DMSO- d_6): $\delta = 10.89$ (brs, 1H), 7.84 (s, 1H), 7.40 (m, 2H), 7.29 (m, 4H), 7.14 (m, 2H), 5.87 (m, 1H), 4.52 (t, J = 5.87 Hz, 2H), 3.64 (m, 2H), 3.06 (m, 1H), 2.29 (s, 3H), 1.95 (m, 2H), 1.60 (m, 6H). ¹³C NMR (75.5 MHz, DMSO- d_6): $\delta = 150.9$, 150.1, 135.7, 130.0, 128.9 (×3), 128.1 (×3), 128.0 (×2), 127.2 (×3), 121.1, 104.1, 49.0, 42.7, 36.1, 32.7 (×2), 24.6 (×2), 20.7. HRMS (EI) C₂₅H₂₇ClN₆ calcd.446.1986, found: 446.1990.

N-(3-(4-(4-*tert*-Butylphenyl)-1*H*-1,2,3-triazol-1-yl)propyl)-5-(3,4-dichlorophenyl)-1*H*imidazol-2-amine (5u)

Yield: 85 %. ¹H NMR (300 MHz, DMSO- d_6): $\delta = 10.68$ (brs, 1H), 8.53 (s, 1H), 7.82 (s, 1H), 7.73 (d, J = 7.9 Hz, 2H), 7.57 (m, 1H), 7.43 (m, 3H), 7.25 (s, 1H) 6.02 (m, 1H), 4.48 (t, J =

6.73 Hz, 2H), 3.20 (m, 2H), 2.14 (m, 2H), 1.30 (s, 9H). ¹³C NMR (75.5 MHz, DMSO- d_6): $\delta = 150.2$, 146.2, 131.0, 130.3, 128.0, 126.6, 125.5 (×3), 124.8 (×3), 124.7, 123.4, 121.0 (×2), 104.1, 47.3, 39.6, 34.2, 31.0 (×3), 29.9. HRMS (EI) C₂₄H₂₆Cl₂N₆, calcd 468.1596, found: 468.1602.

5-(3,4-Dichlorophenyl)-*N*-(3-(4-(thiophen-3-yl)-1*H*-1,2,3-triazol-1-yl)propyl)-1*H*imidazol-2-amine (5v)

Yield: 91 %. ¹H NMR (300 MHz, DMSO- d_6): $\delta = 10.67$ (brs, 1H), 8.46 (s, 1H), 7.82 (m, 2H), 7.63 (m, 1H), 7.58 (m, 1H), 7.51 (m, 2H), 7.26 (s, 1H) 6.02 (m, 1H), 4.47 (t, J = 6.8 Hz, 2H), 3.19 (m, 2H), 2.14 (m, 2H). ¹³C NMR (75.5 MHz, DMSO- d_6): $\delta = 151.3$, 142.8, 132.1 (×2), 131.0, 130.0, 127.0, 126.5, 125.7, 124.7, 123.4, 121.1, 120.6 (×2), 104.1, 47.3, 39.5, 29.9. HRMS (EI) C₁₈H₁₆Cl₂N₆S, calcd 418.0534, found: 418.0522.

5-(4-Bromophenyl)-*N*-(2-(4-cyclopropyl-1*H*-1,2,3-triazol-1-yl)ethyl)-1*H*-imidazol-2amine (5w)

Yield: 80 %. ¹H NMR (300 MHz, DMSO-*d*₆): δ = 10.56 (brs, 1H), 7.80 (s, 1H), 7.60 (d, *J* = 7.3 Hz, 2H), 7.43 (d, *J* = 7.3 Hz, 2H), 7.14 (s, 1H), 5.93 (m, 1H), 4.49 (t, *J* = 5.48 Hz, 2H), 3.59 (m, 2H), 3.16 (dd, *J* = 5.2, 1.4 Hz, 1H), 0.87 (m, 2H), 0.69 (m, 2H). ¹³C NMR (75.5 MHz, DMSO-*d*₆): δ = 150.4, 148.7 (×3), 131.0, 130.9, 125.3, 120.9 (×3), 117.4, 48.9, 42.8, 7.5 (×2), 6.5. HRMS (EI) C₁₆H₁₇BrN₆, calcd 372.0698, found: 372.0689.

5-(4-Bromophenyl)-*N*-(2-(4-cyclohexyl-1*H*-1,2,3-triazol-1-yl)ethyl)-1*H*-imidazol-2-amine (5x)

Yield: 71 %. ¹H NMR (300 MHz, DMSO- d_6): $\delta = 10.61$ (brs, 1H), 7.81 (s, 1H), 7.57 (m, 2H), 7.45 (d, J = 8.3 Hz), 7.13 (s, 1H), 5.96 (brs, 1H), 4.49 (m, 2H), 3.62 (m, 2H), 2.62 (m, 1H), 1.91 (m, 2H), 1.71 (m, 3H), 1.37-1.17 (m, 5H). ¹³C NMR (75.5 MHz, DMSO- d_6): $\delta = 152.0$, 131.1 (×2), 125.5, 120.8, 117.5, 49.0, 43.0, 34.6, 32.5 (×2), 25.6 (×2). HRMS (EI) C₁₉H₂₃BrN₆, calcd 414.1168, found: 414.1175.

5-benzhydryl-*N*-(2-(4-tert-butyl-1*H*-1,2,3-triazol-1-yl)ethyl)-1*H*-imidazol-2-amine (5y)

¹H NMR (300 MHz, DMSO-*d*₆): δ = 7.77 (s, 1H), 7.28-7.21 (m, 10H), 6.25 (s, 1H), 5.98 (brs, 1H), 5.17 (s, 1H), 4.43 (m, 2H), 3.53 (m, 2H), 1.25 (s, 9H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 144.4 (x2), 129.1 (x4), 128.5(x4), 126.4 , 120.4 , 117.2, 113.2, 110.9, 109.0, 104.6, 50.2, 49.4, 47.4, 43.4, 30.8 (x3). HRMS (EI) C₂₄H₂₈N₆, calcd 400.2375, found: 400.2369.

5-benzhydryl-*N*-(2-(4-cyclopentyl-1*H*-1,2,3-triazol-1-yl)ethyl)-1*H*-imidazol-2-amine (5z):

¹H NMR (300 MHz, DMSO- d_6): $\delta = 7.78$ (s, 1H), 7.29-7.14 (m, 10H), 5.98 (s,1H), 5.17 (s, 1H), 4.43 (m, 2H), 3.52 (m, 2H), 3.09 (m, 1H), 1.66 (m, 2H), 1.63 (m, 6H); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 151.5$, 150.5, 144.5 (x2), 129.1 (x4), 128.5(x4) , 126.4 (x2), 1221.5, 50.3, 49.5, 43.5, 38.7, 33.3 (x2), 25.2 (x2). HRMS (EI) C₂₅H₂₈N₆, calcd 412.2375, found: 412.2380.

Yield: 84 %. ¹H NMR (300 MHz, DMSO-*d*₆): δ = 9.54 (brs, 1H), 8.13-6.97 (m, 11H), 6.26 (brs, 1H), 4.45 (m, 2H), 3.65 (m, 2H), 2.57 (m,2H), 2.24 (m, 2H), 1.53 (m, 4H), 1.24 (m, 6H), 0.85 (m, 3H). ¹³C NMR (75.5 MHz, DMSO-*d*₆): δ = 177.2, 166.8, 156.3, 137.3, 135.5, 133.7, 132.0, 129.6, 129.1, 128.1, 127.4, 126.7, 121.8, 47.1, 31.2, 29.4, 28.9, 28.6, 28.4, 25.1, 22.1, 13.9. HRMS (EI) C₂₇H₃₄N₆, calcd 442.2845, found: 442.2833.

5-(4-chlorophenyl)-*N*-(2-(4-cyclopentyl-1*H*-1,2,3-triazol-1-yl)ethyl)-4-*p*-tolyl-1*H*imidazol-2-amine (5ab)

¹H NMR (300 MHz, DMSO- d_6): $\delta = 10.92$ (brs, 1H), 7.85 (s, 1H), 7.40 (m, 2H), 7.30 (m, 4H), 7.13 (m, 2H), 6.25 (s, 1H), 4.52 (m, 2H), 3.67 (m, 2H), 3.07 (m, 1H), 1.93 (m, 2H), 1.62 (m, 6H); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 151.5$, 150.6, 136.3, 130.6, 129.5 (x2), 128.7 (x5), 127.7 (x4), 121.6, 104.6, 49.6, 43.3, 36.7, 33.3 (x2), 25.2 (x2), 21.3. HRMS (EI) C₂₅H₂₇N₆Cl, calcd 446.1986, found: 446.1974.

N-(3-(4-butyl-1*H*-1,2,3-triazol-1-yl)propyl)-5-(4-chlorophenyl)-1*H*-imidazol-2-amine (5ac):

¹H NMR (300 MHz, DMSO-*d*6) δ = 7.89 (s, 1H), 7.63 (d, *J* = 8.7 Hz, 2H) , 7.34 (d, *J* = 8.7 Hz, 2H), 7.16 (s, 1H), 6.17 (br s, 1H), 4.38 (t, 2H), 3.17 (m, 2H), 2.60 (t, 2H), 2.08 (m, 2H), 1.57 (m, 2H), 1.32 (m, 2H), 0.89 (t, 3H). ¹³C NMR (75,5 MHz, DMSO-*d*6) δ = 159.0, 149.5,

146.9 (x2), 130.6, 128.5(x2), 125.6 (x2), 121.7, 110.6, 46.8, 31.1, 29.7, 24.7, 21.7, 17.6, 13.7. HRMS (EI) C₁₈H₂₃N₆Cl, calcd 358.1673, found: 358.1647.

N-(3-(4-butyl-1*H*-1,2,3-triazol-1-yl)propyl)-5-(4-fluorophenyl)-1*H*-imidazol-2-amine (5ad):

¹H NMR (300 MHz, DMSO *d*6) δ7.89 (s,1H), 7.64 (m, 2H), 7.12 (m, 3H), 6.25 (br s, 1H), 4.39 (m, 2H), 3.17 (m, 2H), 2.60 (t, 2H), 2.09 (m, 2H), 1.57 (m, 2H), 1.32 (m, 2H), 0.89 (t, 3H). ¹³C NMR (75,5 MHz, DMSO-*d*6) δ 159.7, 148.4, 146.9, 128.1 (x2), 126.4 (x2), 121.8, 115.8, 115.5, 109.7, 46.7, 31.1 (x2) , 29.5, 24.7, 21.7, 13.7. HRMS (EI) $C_{18}H_{23}N_6F$, calcd 342.1968, found: 342.1966.

N-(3-(4-butyl-1*H*-1,2,3-triazol-1-yl)propyl)-5-(4-methoxyphenyl)-1*H*-imidazol-2-amine (5ae):

¹H NMR (300 MHz, DMSO *d*6) 7.63 (s, 1H), 7.15 (d, *J*=9.0, 1H), 6.90 (d, *J*=9.0, 1H), 6.43 (s, 1H), 4.20 (m, 2H), 3.77 (s, 3H), 3.74 (m, 2H), 2.58 (m, 2H), 2.06 (m, 2H), 1.53 (m, 2H), 1.31 (m, 2H), 0.88 (m, 3H), ¹³C NMR (75,5 MHz, DMSO-*d*6) δ 158.1 (x2), 150.2, 146.9, 128.8 (x2), 126.9, 123.2, 121.5, 114.1 (x2), 55.0, 46.5, 31.0 (x2), 29.5, 24.7, 21.7, 13.6. HRMS (EI) $C_{19}H_{26}N_6O$, calcd 354.2168, found: 354.2164.

N-(2-(4-butyl-1H-1,2,3-triazol-1-yl)ethyl)-5-(3,4-dichlorophenyl)-1H-imidazol-2-amine (5af):

¹H NMR (75,5 MHz, DMSO-D6) δ 7.84 (m, 2H), 7.62 (m, 1H), 7.50 (m, 1H), 7.26 (s, 1H), 6.25 (m, 1H), 6.00 (m, 1H), 4.51(t, 2H), 3.62 (m, 2H), 2.59 (t, 2H), 1.53 (m, 2H), 1.30 (m, 2H), 0.87 (t, 3H); ¹³C NMR (75,5 MHz, DMSO-*d*6) δ 150.7, 146.7 (x2), 131.1, 130.4, 126.6, 124.7, 122.2, 121.9(x2), 104.1, 49.0, 42.9, 31.1, 24.7, 21.7, 13.7. HRMS (EI) $C_{17}H_{20}N_6Cl_2$, calcd 378.1127, found: 378.1127.

N-(3-(4-butyl-1*H*-1,2,3-triazol-1-yl)propyl)-5-(3,4-dichlorophenyl)-1*H*-imidazol-2-amine (5ag):

¹H NMR (300 MHz, DMSO-*d*6) δ 10.69 (br s, 1H), 7.88 (s, 1H), 7.83 (d, *J*=1.7, 1H), 7.60 (d, *J*=8.3, 1.7, 1H), 7.50 (d, *J*=8.3, 1H), 7.25 (s, 1H), 6.01 (brs, 1H), 4.38 (m, 2H), 3.12 (m, 2H), 2.61 (m, 2H), 2.07 (m, 2H), 1.56 (m, 2H), 1.31 (m, 2H), 0.88 (m, 3H). ¹³C NMR (75,5 MHz, DMSO-*d*6) δ 156.9, 146.8 (x2), 139.7, 130.9, 130.6, 130.1 (x2), 129.2, 121.7 (x2), 46.8, 31.1, 30.1, 29.2, 24.7, 21.7, 13.7. HRMS (EI) $C_{18}H_{22}N_6Cl_2$, calcd 392.1283, found: 392.1281.

N-(2-(4-butyl-1H-1,2,3-triazol-1-yl)ethyl)-5-(naphthalen-2-yl)-1H-imidazol-2-amine (5ah):

¹H NMR (75,5 MHz, DMSO-*d*6) δ 8.11 (s, 1H), 7.87-7.80 (m, 5H), 7.52-7.40 (m, 2H), 7.3 (s, 1H), 6.38 (br s, 1H), 4.58 (m, 2H), 3.70 (m, 2H), 2.61 (m, 2H), 1.57 (m, 2H), 1.30 (m, 2H), 0.88 (m, 3H). ¹³C NMR (75,5 MHz, DMSO-*d*6) δ 149.9, 146.8, 133.3, 131.9, 131.7, 127.9, 127.6, 127.5, 127.0, 126.3, 125.2, 123.2, 122.1, 120.9, 104.2, 48.9, 49.2, 31.1, 24.7, 21.7, 13.7. HRMS (EI) $C_{21}H_{24}N_6$, calcd 360.2062, found: 360.2038.

5-(naphthalen-2-yl)-*N*-(2-(4-pentyl-1*H*-1,2,3-triazol-1-yl)ethyl)-1*H*-imidazol-2-amine (5ai):

¹H NMR (75,5 MHz, DMSO-D6) δ 8.10 (m, 1H), 7.87-7.83 (m, 5H), 7.50-7.39 (m, 2H), 7.26 (s, 1H), 6.20 (brs, 1H), 4.57 (m, 2H), 3.72 (m, 2H), 2.60 (m, 2H), 1.59 (m, 2H), 1.30 (m, 4H), 0.86 (m, 3H); ¹³C NMR (75,5 MHz, DMSO-*d*6) δ 150.8, 146.8 (x2), 133.5 (x2), 131.4 (x3), 127.5, 126.1, 124.7, 123.3, 122.0, 120.3, 104.2, 49.0, 43.0, 28.7, 25.0, 21.9, 18.5, 13.9. HRMS (EI) $C_{22}H_{26}N_6$, calcd 374.2219, found: 374.2220.

5-benzhydryl-*N*-(3-(4-heptyl-1*H*-1,2,3-triazol-1-yl)propyl)-1*H*-imidazol-2-amine (5aj):

¹H NMR (300 MHz, DMSO-*d*6) δ 7.77 (s, 1H), 7.27 (m, 10H), 6.06 (s, 1H), 5.22 (m, 1H), 4.46 (m, 2H), 3.56 (m, 2H), 3.44 (m, 2H), 2.58 (m, 2H), 1.27 (m, 6H), 0.87 (m, 3H). ¹³C NMR (75,5 MHz, DMSO-*d*6) δ 150.5, 147.2(x2), 129.1(x4), 128.5(x4), 126.4, 122.4, 104.6 (x2), 49.4, 43.5, 31.7, 29.5, 29.1, 28.9, 25.5, 22.5, 14.4. HRMS (EI) $C_{27}H_{34}N_6$, calcd 442.2845, found: 442.2829.

General Procedure for the Preparation of 2-AIT 6a-h.

To the suspension of hydroxyl salt (1 equiv) were added hydrazine hydride (5 equiv). The reaction mixture was irradiated at 100 °C at the maximum power 35 W for 2 min. After completion of the reaction, the solvent was removed under reduce pressure. The crude product was purified by column chromatography over silica gel using DCM/methanol/7N methanolic NH_3 (96:3:1) as the eluent.

5-(4-chlorophenyl)-*N*-decyl-1*H*-imidazol-2-amine (6a)

¹H NMR (300 MHz, DMSO-*d*6) δ 10.53 (br s, 1H), 7.62 (d, J = 8.67, 2H), 7.31 (d, J = 8.67, 2H), 7.07 (s, 1H), 5.72 (m, 1H), 3.11 (m, 2H), 1.50 (m, 2H), 1.25 (m, 14H), 0.85 (m, 3H). ¹³C NMR (75,5 MHz, DMSO-*d*6) δ 140.1, 133.4, 131.0, 130.2, 128.1, 127.8, 104.1, 31.3, 29.5, 29.1, 29.0, 28.8, 28.7, 26.5, 26.1, 22.1, 13.9.

¹H NMR (300 MHz, DMSO-*d*6) δ 10.52 (br s, 1H), 7.62 (m, 2H), 7.09 (m, 2H), 7.00 (s, 1H), 5.73 (m, 1H), 3.11 (m, 2H), 1.50 (m, 2H), 1.25 (m, 14H), 0.85 (m, 3H). ¹³C NMR (75,5 MHz, DMSO-*d*6) δ 174.0, 157.0, 131.5, 130.3, 129.3, 114.9, 104.2, 31.3, 29.5, 29.1, 29.0, 28.9, 28.7, 26.5, 26.1, 22.1, 13.9.

¹H NMR (300 MHz, DMSO-*d*6) δ 7.82 (s, 1H), 7.58 (d, *J*=8.67, 1H), 7.48 (d, *J*=8.67, 1H), 7.21 (s, 1H), 6.25 (brs, 1H), 5.80 (m, 1H), 3.13 (m, 2H), 1.51 (m, 2H), 1.25 (br, 12H), 0.85 (m, 3H).

N-decyl-5-(3,4-dichlorophenyl)-1*H*-imidazol-2-amine (6e)

¹H NMR (300 MHz, DMSO-*d*6) δ 10.54 (br s, 1H), 7.82 (s, 1H), 7.57 (d, J = 8.67, 1H), 7.48 (d, J = 8.67, 1H), 7.21 (s, 1H), 5.80 (m, 1H), 3.14 (m, 2H), 1.52 (m, 2H), 1.25 (m, 14H), 0.85 (m, 3H). ¹³C NMR (75,5 MHz, CDCl₃) δ 151.6, 133.7, 133.4, 132.6, 130.5, 129.5, 125.7, 123.3, 105.2, 44.2, 31.9, 29.9, 29.6 (×2), 29.4, 29.3, 26.9, 22.7, 14.1.

5-(naphthalen-2-yl)-N-nonyl-1H-imidazol-2-amine (6f)

¹H NMR (300 MHz, DMSO-*d*6) δ 10.51(br s, 1H), 8.05 (s, 1H), 7.82 (m, 3H), 7.39 (m, 3H) 7.17 (s, 1H), 5.73 (t, 1H), 3.18 (q, 2H), 1.53 (m, 2H), 1.31-1.26 (br, 12H), 0.84 (m, 3H). ¹³C NMR (75,5 MHz, CDCl₃) δ 146.5, 135.0, 132.8, 132.5, 130.2, 129.5, 129.4, 129.2, 128.4, 127.6, 126.5, 126.1, 105.0, 31.9, 29.6, 29.5, 29.4, 29.3 (×2), 29.2, 22.7, 14.1. *N*-decyl-5-(naphthalen-2-yl)-1*H*-imidazol-2-amine (6g)

¹H NMR (300 MHz, DMSO-*d*6) δ 8.06 (s, 1H), 7.82 (m, 4H), 7.42 (m, 2H), 7.19 (s, 1H), 5.80 (m, 1H), 3.18 (m, 2H), 1.55 (m, 2H), 1.25 (br, 14H), 0.85 (m, 3H).

5-benzhydryl-*N*-decyl-1*H*-imidazol-2-amine (6h):

¹H NMR (300 MHz, DMSO-*d*6) δ 7.23 (m, 10H), 5.99 (s, 1H), 5.18 (s, 1H), 3.05 (m, 2H), 1.46 (m, 2H), 1.24 (br, 18H), 0.85 (m, 3H).

Copies of ¹H NMR and ¹³C NMR spectra of new compounds

¹H NMR and ¹³C NMR spectra of **1a** (CDCl₃)

¹H NMR spectra of **1b** (CDCl₃)

¹H NMR and ¹³C NMR spectra of **3a** (DMSO- d_6)

¹H NMR and ¹³C NMR spectra of **3b** (DMSO- d_6)

¹H NMR and ¹³C-NMR spectra of **3d** (DMSO- d_6)

¹H NMR and ¹³C NMR spectra of 3e (DMSO- d_6)

¹H NMR and ¹³C NMR spectra of **3f** (DMSO- d_6)

¹H NMR and ¹³C NMR spectra of 3g (DMSO- d_6)

¹H NMR and ¹³C NMR spectra of **3h** (DMSO- d_6)

¹H NMR and ¹³C NMR spectra of **3i** (DMSO- d_6)

¹H NMR and ¹³C NMR spectra of 3j (DMSO- d_6)

¹H NMR and ¹³C NMR spectra of $3\mathbf{k}$ (DMSO- d_6)

¹H NMR and ¹³C NMR spectra of **3l** (DMSO- d_6)

¹H NMR and ¹³C NMR spectra of 5a (DMSO- d_6)

160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 Chemical Shift (ppm)

¹H NMR and ¹³C NMR spectra of **5b** (DMSO- d_6)

¹H NMR and ¹³C NMR spectra of 5c (DMSO- d_6)

¹H NMR and ¹³C NMR spectra of **5d** (DMSO- d_6)

¹H NMR and ¹³C NMR spectra of **5f** (DMSO- d_6)

¹H NMR and ¹³C NMR spectra of 5g (DMSO- d_6)

¹H NMR and ¹³C NMR spectra of **5h** (DMSO- d_6)

¹H NMR and ¹³C NMR spectra of **5i** (DMSO- d_6)

¹H NMR and ¹³C NMR spectra of 5j (DMSO- d_6)

¹H NMR and ¹³C NMR spectra of 5k (DMSO- d_6)

¹H NMR and ¹³C NMR spectra of **5**l (DMSO- d_6)

¹H NMR and ¹³C NMR spectra of **50** (DMSO- d_6)

¹H NMR and ¹³C NMR spectra of **5q** (DMSO- d_6)

¹H NMR and ¹³C NMR spectra of 5r (DMSO- d_6)

¹H NMR and ¹³C NMR spectra of 5s (DMSO- d_6)

-0.001

0.0

¹H NMR and ¹³C NMR spectra of 5t (DMSO- d_6)

¹H NMR and ¹³C NMR spectra of 5u (DMSO- d_6)

¹H NMR and ¹³C NMR spectra of 5v (DMSO- d_6)

¹H NMR and ¹³C NMR spectra of 5w (DMSO- d_6)

¹H NMR and ¹³C NMR spectra of 5x (DMSO- d_6)

¹H NMR and ¹³C NMR spectra of $5y(DMSO-d_6)$

¹H NMR and ¹³C NMR spectra of $5z(DMSO-d_6)$

¹H NMR and ¹³C NMR spectra of **5aa** (DMSO-*d*₆)

¹H NMR and ¹³C NMR spectra of **5ab** (DMSO-*d*₆)

¹H NMR and ¹³C NMR spectra of **5ac** (DMSO-*d*₆)

¹H NMR and ¹³C NMR spectra of **5ad** (DMSO- d_6)

¹H NMR and ¹³C NMR spectra of **5ae** (DMSO-*d*₆)

¹H NMR and ¹³C NMR spectra of **5af** (DMSO- d_6)

¹H NMR and ¹³C NMR spectra of **5ag** (DMSO-*d*₆)

¹H NMR and ¹³C NMR spectra of **5ah** (DMSO-*d*₆)

¹H NMR and ¹³C NMR spectra of **5ai** (DMSO- d_6)

¹H NMR and ¹³C NMR spectra of **5aj** (DMSO-*d*₆)

¹H NMR spectra of **6a** (DMSO- d_6)

¹H NMR spectra of **6b** (DMSO- d_6)

¹H NMR spectra of **6d** (DMSO- d_6)

¹H NMR and ¹³C NMR spectra of **6e** (DMSO- d_6)

¹H NMR and ¹³C NMR spectra of **6f** (DMSO- d_6)

¹H NMR spectra of **6g** (DMSO- d_6)

¹H NMR spectra of **6h** (DMSO- d_6)

