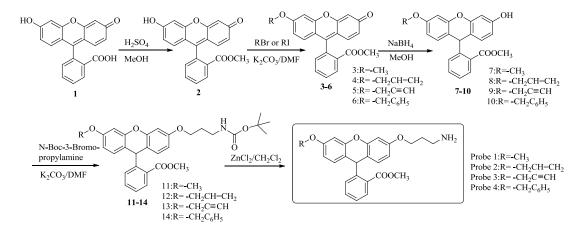
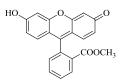
Fluorescent probes for detecting monoamine oxidase activity and cell imaging

Xuefeng Li, Huatang Zhang, Yusheng Xie, Yi Hu, Hongyan Sun^{*}, Qing Zhu^{*}

Supporting Information

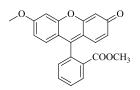

Table of Contents

1. General information	S1
2. Preparation and characterization of probes	
3. Limit of detection	S8
4. Enzymatic activity assays	S8
5. Enzymatic kinetics assays	S9
6. Live cell imaging	S10

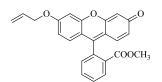

1. General information

Compounds were visualized by UV light (254 and 365 nm) and all reactions were monitored by thin layer chromatography (TLC). ¹H NMR and ¹³C NMR spectra were recorded on a 400M Bruker instrument (400 MHz and 100 MHz, respectively). Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity(s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet or unresolved, coupling constant (J)in Hz, integration). Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm). Mass spectra (MS) were measured with Bruker instrument. Fluorescence spectra were determined on a Multi-Mode Microplate Readers.

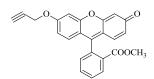
2. Preparation and characterization of probes

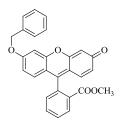


A solution of fluorescein(8 g, 0.24 mmol) in MeOH (45 mL) was added dropwise into concentrated sulfuric acid (6 mL). The reaction was carried out at $85 \,^{\circ}$ C monitored by TLC until completion (~12h). The reaction mixture was poured into 20g of ice-water. Then NaHCO₃ (24 g) was added to the solution in portions and stirred vigorously at room temperature. A red precipitate was formed; this was collected by filtration, washed with water and petroleum ether, dried and obtained 6.90g product **2**. Yield: 82.7%.

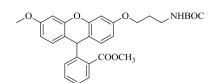


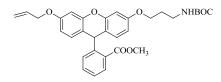
2-(6-Hydroxy-3-oxo-3H-xantene-9-yl)-benzoic acid methyl ester (2):red solid, Yield 82.7%,¹H NMR (400 MHz, CDCl₃): δ 8.05 (dd, *J*= 1.2, 0.8 Hz, 1H), 7.74 (m, 2H), 7.64 (m, 1H), 6.41 (d, *J*= 9.2 Hz, 2H), 6.03 (dd, *J*= 2.0, 2.0 Hz, 2H), 5.97 (d, *J*= 2.0 Hz, 2H), 3.55 (s, 3H); ESI-MS m/z 347.1 (M+1)⁺.


Appropriate bromide and iodide (3.6 mmol) was added to the mixture of 2(1.0 g, 2.9 mmol) and K₂CO₃(0.598 g, 4.5 mmol) in 30 mL of DMF at room temperature. After stirring for 24 hours, the product was extracted withCH₂Cl₂ (100 mL× 3), and the organic layer was washed with water (100 mL×2) and brine (100mL), dried over Na₂SO₄ and concentrated under reduced pressure. Yield: 91.5 % for **3** (0.94 g, orange solid); 91.5 % for **4** (1.00 g, orange powder); 90 % for **5** (0.99 g, orange powder); 80 % for **6** (1.00 g, orange solid).

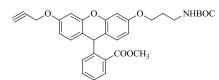

2-(6-Methoxy-3-oxo-3H-xantene-9-yl)-benzoic acid methyl ester (3):orange solid, Yield 91.5%, ¹H NMR (400 MHz, (CD₃)₂SO): [§] 8.22 (dd, J = 7.8, 1.3 Hz, 1H), 7.72 (dd, J = 7.5, 1.4 Hz, 1H), 7.65 (td, J = 7.6, 1.4 Hz, 1H), 7.29 (dd, J = 7.5, 1.2 Hz, 1H), 6.94 (d, J = 2.4 Hz, 1H), 6.85 (dd, J = 14.6, 9.3 Hz, 2H), 6.72 (dd, J = 8.9, 2.5 Hz, 1H), 6.52 (dd, J = 9.7, 1.9 Hz, 1H), 6.44 (d, J = 1.9 Hz, 1H), 3.91 (s, 3H), 3.63 (s, 3H); ESI-MS m/z 361.1 (M+1)⁺.

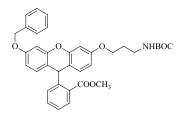
2-(6-allyloxy-3-oxo-3H-xanthen-9-yl) benzoic acid methyl ester (4):orangepowder, 91.5 %, ¹H NMR (400 MHz, CDCl₃): δ 8.17 (dd, *J* = 7.8, 1.1 Hz, 1H), 7.68 (td, *J* = 7.4, 1.3 Hz, 1H), 7.61 (td, *J* = 7.6, 1.3 Hz, 1H), 7.25 (dd, *J* = 7.4, 1.0 Hz, 1H), 6.90 (d, J = 2.4 Hz, 1H), 6.82 (dd, J = 15.2, 9.2 Hz, 2H), 6.71 (dd, J = 8.8, 2.4 Hz, 1H), 6.47 (dd, J = 9.6, 1.8 Hz, 1H), 6.38 (d, J = 1.8 Hz, 1H), 5.99 (m, 1H), 5.42 (d, J = 1.3 Hz, 1H), 5.38 (d, J = 1.3 Hz, 1H), 4.60 (d, J = 5.3 Hz, 2H), 3.61 (s, 3H); ESI-MS m/z 387.1 (M+1)⁺.


2-(6-(prop-2-ynyloxy)-3-oxo-3H-xanthen-9-yl) benzoic acid methyl ester (5): orange solid, yield 90%, ¹H NMR (400 MHz, CDCl₃): δ 8.24 (d, *J* = 7.8 Hz, 1H), 7.73 (t, *J* = 7.4 Hz, 1H), 7.67 (t, *J* = 7.6 Hz, 1H), 7.30 (d, *J* = 7.5 Hz, 1H), 7.05 (d, *J* = 2.2 Hz, 1H), 6.90 (d, *J* = 8.9 Hz, 1H), 6.85 (d, *J* = 9.6 Hz, 1H), 6.79 (dd, *J* = 8.9, 2.2 Hz, 1H), 6.56 – 6.48 (m, 1H), 6.44 (d, *J* = 1.1 Hz, 1H), 4.79 (d, *J* = 2.1 Hz, 2H), 3.64 (s, 3H), 3.52 (s, 1H); ESI-MS m/z 385.1 (M+1)⁺.


2-(6-benzyloxy-3-oxo-3*H***-xanthen-9-yl) benzoic acid methyl ester (6):** orange solid, yield 80%, ¹H NMR (400 MHz, CDCl₃): δ 8.23 (d, *J* = 7.8 Hz, 1H), 7.72 (t, *J* = 7.4 Hz, 1H), 7.65 (t, *J* = 7.6 Hz, 1H), 7.37 (dt, *J* = 13.3, 7.4 Hz, 5H), 7.32 – 7.02 (m, 2H), 7.00 (d, *J* = 2.3 Hz, 1H), 6.89 (d, *J* = 8.9 Hz, 1H), 6.87 – 6.77 (m, 2H), 6.52 (d, *J* = 9.7 Hz, 1H), 5.13 (s, 2H), 3.62 (s, 3H); ESI-MS *m*/*z* 437.1 (M+1)⁺.

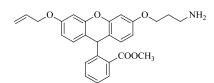
To a solution of corresponding **3-6**(3.0 mmol) in MeOH (10 mL) was added NaBH₄ (0.57 g, 15.0 mmol) at 0 °C. The reaction was stirred in an ice-water bath for 30 min, and at room temperature for 2 h. After removal of the solvent, the product was extracted with CH_2Cl_2 (50 mL×3), and the organic layer was washed with brine (50 mL), dried over Na_2SO_4 and concentrated under reduced pressure to yield the homologous air-sensitive product **7-10** as yellow powder.


Appropriate compound **7-10** (2.7 mmol) was dissolved in DMF (30 mL). Then, $K_2CO_3(0.559 \text{ g}, 4.05 \text{ mmol})$ and N-Boc-3-bromopropylamine (0.771 g, 3.24 mmol) were added to the solution. The mixture was stirred at r.t for 6 hours. The remaining solid residue was removed by filtration. The filtrate was concentrated and purified by SiO₂ chromatography (CH₂Cl₂: MeOH = 50:1). Yield: 70.4 % for **11**(1.00 g, white solid); 72% for **12**(1.07 g, white solid); 75 % for **13**(1.11 g, white solid); 80 % for **14**(1.30 g, white solid).

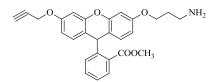

methyl2-(3-(3-((tert-butoxycarbonyl)amino)propoxy)-6-methoxy-9H-xanthen-9-y l)benzoate (11):white solid, yield 70.4%, ¹H NMR (400 MHz, CDCl₃): δ 7.65 (d, J = 7.8 Hz, 1H), 7.15 (t, J = 7.5 Hz, 1H), 7.06 – 6.94 (m, 2H), 6.82 (dd, J = 8.5, 4.2 Hz, 2H), 6.54 – 6.48 (m, 2H), 6.42 – 6.34 (m, 2H), 6.10 (s, 1H), 4.96 (s, 1H), 3.88 – 3.76 (m, 5H), 3.61 (s, 3H), 3.17 (d, J = 5.8 Hz, 2H), 1.86 – 1.77 (m, 2H), 1.33 (s, 9H); ESI-MS m/z 520.1 (M+1)⁺.

methyl2-(3-(allyloxy)-6-(3-((tert-butoxycarbonyl)amino)propoxy)-9H-xanthen-9yl)benzoate (12): white solid, yield 72%,¹H NMR (400 MHz, CDCl₃): δ 7.67 (d, J =8.9 Hz, 1H), 7.19 (t, J = 7.6 Hz, 1H), 7.10 – 6.96 (m, 2H), 6.82 (dd, J = 8.6, 1.9 Hz, 2H), 6.53 (dd, J = 9.5, 2.5 Hz, 2H), 6.41 (ddd, J = 13.0, 8.5, 2.5 Hz, 2H), 6.09 (s, 1H), 5.87 (m, 1H), 5.29 (d, J = 17.2 Hz, 1H), 5.16 (d, J = 10.5 Hz, 1H), 4.73 (s, 1H),4.40 (d, J = 5.3 Hz, 2H), 3.90 – 3.83 (m, 5H), 3.20 (d, J = 5.9 Hz, 2H), 1.89 – 1.82 (m, 2H), 1.34 (s, 9H); ESI-MS m/z 546.1 (M+1)⁺.

methyl2-(3-(3-((tert-butoxycarbonyl)amino)propoxy)-6-(prop-2-yn-1-yloxy)-9H-x anthen-9-yl)benzoate(13):white solid, yield 75%,¹H NMR (400 MHz, CDCl₃): δ 7.67 (d, *J* = 8.8 Hz, 1H), 7.17 (dd, *J* = 13.9, 6.5 Hz, 1H), 7.05 (t, *J* = 7.5 Hz, 1H), 6.97 (d,*J* = 7.8 Hz, 1H), 6.82 (dd, *J* = 16.4, 8.6 Hz, 2H), 6.61 (d, *J* = 2.5 Hz, 1H), 6.51 (d, *J* = 2.4 Hz, 1H), 6.46 (dd, *J* = 8.6, 2.5 Hz, 1H), 6.39 (dd, *J* = 8.5, 2.5 Hz, 1H), 6.09 (s, 1H), 4.80 (s, 1H), 4.53 (s, 2H), 3.91 – 3.78 (m, 5H), 3.18 (d, *J* = 6.0 Hz, 2H), 2.43 (s, 1H)1.89 – 1.79 (m, 2H), 1.33 (s, 9H); ESI-MS *m*/z 544.3 (M+1)⁺.

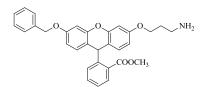


methyl2-(3-(benzyloxy)-6-(3-((tert-butoxycarbonyl)amino)propoxy)-9H-xanthen-9-yl)benzoate(14):white solid, yield80%, ¹H NMR (400 MHz, CDCl₃): δ 7.6 –7.61 (m, 1H), 7.18 (ddd, J = 33.4, 17.8, 7.8 Hz, 6H), 6.98 (dd, J = 16.7, 7.5 Hz, 2H), 6.82 – 6.76 (m, 2H), 6.58 (d, J = 2.5 Hz, 1H), 6.49 – 6.41 (m, 2H), 6.37 – 6.32 (m, 1H), 6.07 (s, 1H), 4.85 (s, 3H), 3.84 – 3.75 (m, 5H), 3.14 (t, 2m), 1.85 – 1.72 (m, 2H), 1.31 (s, 9H);ESI-MS m/z 596.4 (M+1)⁺.


To a solution of compound **11–14**(1 mmol) in CH₂Cl₂ (5mL) was added ZnCl₂ (0.27 g, 2 mmol) at room temperature and the resulting mixture was stirred for 3 hours. The remaining solid residue was removed by filtration. The filtrate was extracted with CH₂Cl₂ (50 mL×3), and the organic layer was washed with NaHCO₃ solution and brine, dried over Na₂SO₄ and concentrated under reduced pressure to yield the air-sensitive product. Yield: 47.7 % for **probe1**(0.2 g, white solid); 50% for **probe2** (0.22 g, white solid); 40 % for **probe3**(0.18 g, white solid); 42 % for **probe4**(0.21 g, white solid).

NH .COOCH₃

methyl 2-(3-(3-aminopropoxy)-6-methoxy-9H-xanthen-9-yl)benzoate (probe 1): white solid, yield 47.7%, ¹H NMR (400 MHz, CDCl₃) δ 7.66 (dd, J = 7.8, 1.3 Hz, 1H), 7.22–7.13 (m, 1H), 7.08–7.03 (m, 1H), 7.00–6.95 (m, 1H), 6.81 (dd, J = 8.6, 4.4 Hz, 2H), 6.52 (d, J = 2.5 Hz, 2H), 6.40 (dt, J = 8.5, 2.4 Hz, 2H), 6.08 (s, 1H), 3.90 (t, J = 6.0 Hz, 2H), 3.83 (s, 3H), 3.66 (s, 3H), 3.02 (s, 2H), 2.84 (s, 2H), 1.91–1.81 (m, 2H);¹³C NMR (101 MHz, CDCl₃) δ 168.50, 159.03, 158.24, 151.22, 151.22, 148.05, 132.19, 131.55, 130.38, 130.38, 130.38, 129.32, 129.32, 125.87, 116.82, 110.51, 110.04, 101.70, 101.06, 65.94, 55.39, 52.29, 38.96, 37.92, 31.82. ESI-MS m/z 420.1 (M+1)⁺.



methyl 2-(3-(allyloxy)-6-(3-aminopropoxy)-9H-xanthen-9-yl)benzoate (probe 2): white solid, yield 50%, ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 6.6 Hz, 1H), 7.15 (t, J = 8.0 Hz, 1H), 7.07 – 6.99 (m, 1H), 6.97 (d, J = 7.8 Hz, 1H), 6.87 – 6.77 (m, 2H), 6.54 – 6.46 (m, 2H), 6.40 (td, J = 8.6, 2.2 Hz, 2H), 6.07 (d, J = 6.5 Hz, 1H), 5.89 (ddd, J = 22.1, 10.5, 5.3 Hz, 1H), 5.26 (d, J = 17.2 Hz, 1H), 5.17–5.10 (m, 1H), 4.36 (d, J =4.8 Hz, 2H), 3.94–3.76 (m, 5H), 2.80 (dt, J = 20.4, 6.8 Hz, 2H), 1.93–1.75 (m, 2H); 13C NMR (101 MHz, CDCl3) δ 168.24, 158.09, 157.83, 151.00, 147.89, 132.85, 132.85, 131.99, 131.38, 130.19, 130.19, 130.19, 129.04, 129.04, 125.69, 117.24, 116.81, 110.49, 110.32, 101.80, 101.53, 68.71, 65.67, 52.09, 38.58, 37.69, 31.46. ESI-MS m/z 446.5 (M+1)⁺.

methyl 2-(3-(3-aminopropoxy)-6-(prop-2-yn-1-yloxy)-9H-xanthen-9-yl)benzoate

(**probe 3**): white solid, yield 40%, ¹H NMR (400 MHz, CDCl₃) δ 7.74 – 7.61 (m, 1H), 7.24 – 7.15 (m, 1H), 7.06 (t, *J* = 7.1 Hz, 1H), 6.97 (d, *J* = 7.7 Hz, 1H), 6.88 – 6.77 (m, 2H), 6.60 (s, 1H), 6.48 (dd, *J* = 8.3, 6.5 Hz, 2H), 6.38 (dd, *J* = 13.6, 6.2 Hz, 1H), 6.11 – 6.05 (m, 1H), 4.55 (s, 2H), 4.14 (s, 2H), 4.00 – 3.76 (m, 5H), 2.94 (s, 2H), 2.44 (s, 1H), 2.08 – 1.82 (m, 2H); ESI-MS m/z 444.5 (M+1)⁺.

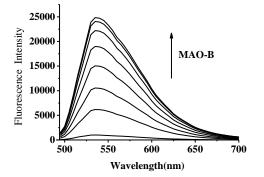
methyl 2-(3-(3-aminopropoxy)-6-(benzyloxy)-9H-xanthen-9-yl)benzoate (probe 4): white solid, yield 42%. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 7.1 Hz, 1H), 7.32 – 7.15 (m, 6H), 7.03 (t, J = 7.5 Hz, 1H), 6.95 (d, J = 7.7 Hz, 1H), 6.78 (t, J = 8.3Hz, 2H), 6.57 (d, J = 2.4 Hz, 1H), 6.49 – 6.44 (m, 2H), 6.38 (dd, J = 8.5, 2.3 Hz, 1H), 6.04 (s, 1H), 5.54 (s, 2H), 4.87 (s, 2H), 3.88 – 3.78 (m, 5H), 3.04 (s, 2H), 2.11 – 1.98 (m, 2H); ESI-MS m/z 496.4 (M+1)⁺.

3. Limit of detection


The limit of detection, expressed as the concentration, $c_{\rm L}$,

$$c_{\rm L} = 3 \sigma / m,$$

$$\sigma = \sqrt{\frac{\Sigma (\bar{x} - xi)^2}{n-1}}$$


 \bar{x} is the mean of the blank measures(just probe only), xi is the values of blank measures, n is the tested number of blank measure. m is the slope of the linear regression equation.

4. Enzymatic activity assays

MAO-A and MAO-B were prepared from human placenta and beef liver respectively and the crude enzymes were used directly to approach the in vivo environment. The stock solutions of Probe 1-4 were prepared in DMSO (10mM) and diluted in 100 mM aqueous borate buffer (pH = 8.4) to a final concentration 200 μ M. All fluorescence spectra were performed in 96-well plates. MAO A, MAO B, diamineoxidase and heat-inactivated enzyme were added to a final protein concentration 16 μ g/mL and incubation for 40 min at 37 °C, respectively. Fluorescence intensity of Probe 1-4 were collected by microplate reader and the excitation wavelength was 470 nm. The resultsare shown in Figure S1 and Figure S2.

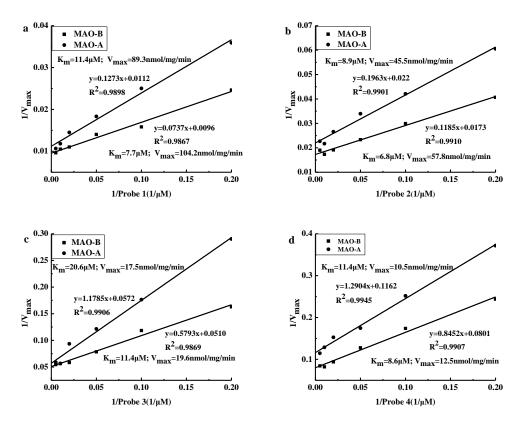

Fig.S1(a-c) Fluorescence of probe 2-4 before and after reaction with MAO-B (dot line), MAO-A (short dash line) and corresponding inhibitor, inactive enzyme. The spectra were recorded in 100 mM borate buffer (pH = 8.4) at λ_{ex} = 470 nm.

Fig. S2 Fluorescence of probe 1 (200 μ M) treated with different concentrations of MAO-B, [Enzyme] =0-300 μ g/mL, pH=8.4, borate buffer.

5. Enzymatic kinetics assays

Enzyme kinetics experiments were performed in 96-well fluorescence assay plates. A series of different concentrations of probe 1-4 was diluted in enzyme assay buffer (100 mM Borate buffer, pH = 8.4) to a final concentration containing (0-200 μ M). The fluorescence intensity was collected at 535 nm (λ ex = 470 nm) by using Molecular Devices Spectramax M2 Microplate Fluorometer at 5 min intervals from 0 to 1 h at 37 °C. Enzyme kinetics experiments with Probe 1-4 and MAO-A or MAO-B were performed on three independent experiments.

Fig.S3(a-d) Km values of Probe 1-4 with MAO-A and MAO-B. The Km and V_{max} value of MAO-A or MAO-B was assessed by a series concentrations of Probe 1-4(0-200µM) reaction with MAO-A or MAO-B (16µg/mL) at 37 °C in enzyme assay buffer(borate buffer, pH=8.4). The fluorescence intensity was collected at 535nm (λ ex=470nm).

6. Live cell imaging

Experiments were performed as following steps. First, MCF-7 cells were cultured in chamber at 37 °C, and after80% confluence, the medium was removed followed by

washing with PBS buffer twice. Next, the probe1 (50 μ M) were then added to the chamber in the growth mediumseparately. After incubation in a 5% CO₂ incubatorfor 3 h at 37 °C, cells werewashed twice with PBS buffer to remove the extracellular probes, and further fixed by 75% ethanol for 30min. Cell imaging experimentswere conducted with a fluorescence microscope. Moreover, the cells were treated with MAO inhibitor selegiline for 90 minutes at 37 °C in a 5% CO₂ incubator. Probe 1 were then added to final concentrations of 50 μ M and incubated for 2 hours, cells were then washed twice with PBS buffer to remove the extracellular inhibitors and probes, and further fixed by 75% ethanol for 30 min. Following that, the cells were imaged with a fluorescence microscope.