Enantioselective organocatalytic oxa-Michael addition of oximes to β -CF₃- β -disubstituted nitroalkenes: efficient synthesis of β -amino- α -trifluoromethyl alcohol

Feng-Lei Liu, Jia-Rong Chen*, Bin Feng, Xiao-Qiang Hu, Li-Hua Ye, Liang-Qiu Lu and Wen-Jing Xiao*

The Key Laboratory of Pesticide & Chemical Biology, Ministry of Education; College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, People's Republic of China

chenjiarong@mail.ccnu.edu.cn; wxiao@mail.ccnu.edu.cn;

Supporting Information

Table of Contents

1. General Information	S-3
2. Materials	S-3
3. Reaction Optimization	S-3
4. Experimental Procedures, Characterizations and Copies of HPLC Chromatograms	S-5
5. References	S-17
6. X-Ray Single Crystal Structure of Product 3e	S-17
7. Application of the Michael Reaction Product 3a	S-18
8. Copies of ¹ H NMR and ¹³ C NMR ¹⁹ F Spectra	S-20

1. General Information

¹H NMR spectra were recorded on Varian-Mercury 400 MHz or 600 MHz spectrophotometers. Solvent for NMR is CDCl₃, unless otherwise noted. Chemical shifts are reported in delta (δ) units in parts per million (ppm) relative to the singlet (0 ppm) for tetramethylsilane (TMS). Data are reported as follows: chemical shift, multiplicity (s = single, d = doublet, t = triplet, m = multiplet, dd = doublet of doublets), coupling constants (Hz) and integration. ¹³C NMR spectra were recorded on recorded on Varian Mercury 400/600 (100/150 MHz) with complete proton decoupling. Chemical shifts are reported in ppm relative to the central line of the heptalet at 77.0 ppm for CDCl₃ Mass spectra were measured on a Bruker micrOTOF Q II. Enantiomeric ratios were determined by chiral HPLC on Agilent 1100 series with chiral columns (chiralpak IC column, chiralpak AD-H column) with hexane and *i*-PrOH as solvents. Optical rotations were measured with JASCO P-1020 polarimeter.

2. Materials

Unless otherwise noted, all trifluoromethylated nitroalkenes were prepared according to the known literature;¹ difluoromethylated nitroalkene **4** was prepared according to the known literature.^{1,2} Bifuntional organocatalysts A^{3a} , B^{3b} , C^{3c} , D^{3d} , E^{3e} were prepared according to literature procedures. Dichloromethane was freshly distilled from calcium hydride. Ethyl ether, tetrahydrofuran (THF) and toluene were distilled from sodium / benzophenone. Other solvents were also purified before using. Reactions were monitored by thin layer chromatography (TLC), and column chromatography purifications were performed using 200-300 mesh silica gel.

3. Reaction Optimization

Table S1 Catalyst Screen for Conjugate Addition of 4-Methoxybenzaldehyde Oxime 1a to (E)-(3,3,3-trifluoro-1-nitroprop-1-en-2-yl)benzene $2a^a$

Entry	Catslyst	t	Yield $(\%)^b$	e.r. ^c
1	В	6 d	31	42:58
2	С	7 d	47	84:16
3	D	6 d	trace	n.d. ^e
4	Ε	6 d	46	40:60
5	В	96 h	71	$30:70^{d}$
6	С	105 h	54	84:16 ^d
7	Α	72 h	75	$88:12^{d}$

^{*a*} The reactions were carried out with 0.40 mmol (2.0 equiv) of **1a**, 0.20 mmol (1.0 equiv) of **2a** and 5 mol% **B-E** in toluene (1.0 mL) at rt. ^{*b*} Isolated yield. ^{*c*} Determined by chiral HPLC. ^{*d*} 10 mol% catalyst was uesd. ^{*e*} Not determined.

Table S2 Conjugated Addition of 4-Methoxybenzaldehyde Oximes **1a-h** to (E)-(3,3,3-trifluoro-1-nitroprop-1-en-2-yl)benzene **2a**^{*a*}

Entry	R^1	Product	<i>t</i> (h)	Yield $(\%)^b$	e.r. ^c
1	4-MeOPh (1a)	3a	50	91	92:8
2	2-MeOPh (1b)	3b <i>'</i>	48	74	74:26
3	3-MeOPh (1c)	3c′	48	95	86:15
4	2,4-MeOPh (1d)	3d <i>'</i>	48	89	78:22
5	4-MePh (1e)	3e′	48	90	88:12
6	4- ^{<i>t</i>} BuPh (1f)	3f′	48	87	87:13
7	2-naphthyl (1g)	3g′	48	95	60:40
8	3-PhO (1h)	3h <i>'</i>	48	85	89:11

^{*a*} The reactions were carried out with 0.40 mmol (2.0 equiv) of **1**, 0.20 mmol (1.0 equiv) of **2a** and 10 mol% **A** in mesitylene (1.0 mL) at rt. ^{*b*} Isolated yield. ^{*c*} Determined by chiral HPLC.

4. Experimental Procedure and Characterizations.

Oxime **1a** (0.40 mmol) was added to a solution of trifluoromethylated alkenes **2** (0.20 mmol) and organocatalyst **A** (0.02 mmol) in 1.0 mL of mesitylene at 0 $^{\circ}$ C. After completion (monitored by TLC analysis), the desired products **3** were purified by flash column chromatography.

(*S*, *E*)-4-methoxybenzaldehyde O-(1,1,1-trifluoro-3-nitro-2-phenylpropan-2-yl) oxime (**3a**)

Prepared according to the general procedure from **1a** (0.40 mmol), **2a** (0.20 mmol), mesitylene (1.0 mL) at 0 °C for 3 d to provide the title compound as a white solid (75% yield, 93:7 e.r.). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.37$ (s, 1H), 7.61 (s, 1H), 7.60 (s, 1H), 7.56 (s, 1H), 7.54 (s, 1H), 7.44 (d, J = 3.7 Hz, 3H), 6.93 (s, 1H), 6.90 (s, 1H), 5.74 (d, J = 13.5 Hz, 1H), 5.27 (d, J = 13.5 Hz, 1H), 3.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 161.7$, 151.5, 131.8, 129.5, 129.2, 128.4, 126.7, 123.4(q, J = 287.6 Hz), 123.3, 114.2, 83.2 (q, J = 27.3 Hz), 73.6, 55.2; ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -74.6$ (s, 3F). HRMS m/z (ESI): calcd for $[C_{17}H_{15}F_{3}N_{2}O_{4} + H]^{+}$: 369.1057, found 369.1062. M.P. = 79.7-81.7 °C; $[\alpha]_{D}^{25} = -67.2$ (C = 1.00, CHCl₃); HPLC (Chiralpak IC-H column, hexane/2-propanol = 98:2, 0.7 mL/min; 254 nm, 25 °C, t₁ = 13.30 min, t₂ = 14.48 min).

(*S*,*E*)-4-methoxybenzaldehyde O-(1,1,1-trifluoro-3-nitro-2-(m-tolyl)propan-2-yl) oxime (**3b**)

Prepared according to the general procedure from **1a** (0.40 mmol), **2b** (0.20 mmol), mesitylene (1.0 mL) at 0 °C for 3 d to provide the title compound as a white solid (74% yield, 93:7 e.r.). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.37$ (s, 1H), 7.56 (s, 1H), 7.54 (s, 1H), 7.41 (s, 1H), 7.38 (s, 1H), 7.32 (t, J = 7.7 Hz, 1H), 7.24 (d, J = 7.5 Hz, 1H), 6.92 (s, 1H), 6.90 (s, 1H), 5.74 (d, J = 13.5 Hz, 1H), 5.26 (d, J = 13.5 Hz, 1H), 3.84 (s, 3H), 2.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 161.7$, 151.5, 138.3, 131.8, 130.4, 129.3, 128.4, 127.2, 123.8, 123.5, 123.4 (q, J = 287.6 Hz), 121.9, 114.3, 83.2 (q, J = 27.7 Hz), 73.6, 55.3, 21.6; ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -74.7$ (s, 3F). HRMS m/z (ESI): calcd for [C₁₈H₁₇F₃N₂O₄ +H]⁺: 383.1213, found 383.1219. M.P. = 83.6-85.2 °C; [α]²⁷_D = -71.7 (C = 1.00, CHCl₃); HPLC (Chiralpak AD-H column, hexane/2-propanol = 95:5, 1.0 mL/min; 254 nm, 25 °C, t₁ = 9.05 min, t₂ = 9.89 min).

(*S*,*E*)-4-methoxybenzaldehyde O-(1,1,1-trifluoro-3-nitro-2-(p-tolyl)propan-2-yl) oxime (**3c**)

Prepared according to the general procedure from **1a** (0.40 mmol), **2c** (0.20 mmol), mesitylene (1.0 mL) at 0 °C for 3 d to provide the title compound as a white solid (70% yield, 90.5:9.5 e.r.). ¹H NMR (600 MHz, CDCl₃): δ = 8.36 (s, 1H), 7.56 (s, 1H), 7.54 (s, 1H), 7.49 (s, 1H), 7.47 (s, 1H), 7.25 (s, 1H), 7.24 (s, 1H), 6.92 (s, 1H), 6.91 (s, 1H), 5.72 (d, *J* = 13.5 Hz, 1H), 5.25 (d, *J* = 13.5 Hz, 1H), 3.84 (s, 3H), 2.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 161.7, 151.5, 139.6, 129.2, 128.8, 126.6, 123.5, 123.4 (q, *J* = 287.4 Hz),114.2, 83.2 (q, *J* = 27.8 Hz), 73.7, 55.2, 21.0; ¹⁹F NMR (376

MHz, CDCl₃): $\delta = -74.8$ (s, 3F). HRMS m/z (ESI): calcd for $[C_{18}H_{17}F_3N_2O_4 + H]^+$: 383.1213, found 383.1214. M.P. = 103.7-105.1 °C; $[\alpha]_D^{28} = -59.9$ (C = 1.00, CHCl₃); HPLC (Chiralpak IC-H column, hexane/2-propanol = 95:5, 0.5 mL/min; 254 nm, 25 °C, t₁ = 14.51 min, t₂ = 15.43 min).

(*S*,*E*)-4-methoxybenzaldehyde O-(2-(3,5-dimethylphenyl)-1,1,1-trifluoro-3-nitropropan-2-yl) oxime (**3d**)

Prepared according to the general procedure from **1a** (0.40 mmol), **2d** (0.20 mmol), mesitylene (1.0 mL) at 0 °C for 3 d to provide the title compound as a white solid (77% yield, 95:5 e.r.). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.37$ (s, 1H), 7.56 (s, 1H), 7.54 (s, 1H), 7.19 (s, 2H), 7.05 (s, 1H), 6.93 (s, 1H), 6.90 (s, 1H), 5.74 (d, J = 13.5 Hz, 1H), 5.24 (d, J = 13.5 Hz, 1H), 3.84 (s, 3H), 2.35 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 161.7$, 151.4, 138.1, 131.7, 131.3, 129.2, 124.3, 123.5, 123.4 (q, J = 287.4 Hz), 114.2, 83.2 (q, J = 27.4 Hz), 73.5, 55.2, 21.4; ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -74.7$ (s, 3F). HRMS m/z (ESI): calcd for [C₁₉H₁₉F₃N₂O₄ +H]⁺: 397.1370, found 397.1374. M.P. = 115.0-116.8 °C; [α] $\frac{28}{D}$ = -54.5 (C = 0.2, CHCl₃); HPLC (Chiralpak AD-H column, hexane/2-propanol = 95:5, 1.0 mL/min; 254 nm, 25 °C, t₁ = 7.30 min, t₂ = 7.78 min).

(S,E)-4-methoxybenzaldehyde O-(1,1,1-trifluoro-2-(4-methoxyphenyl)-3-nitropropan-2-yl) oxime (3e)

Prepared according to the general procedure from **1a** (0.40 mmol), **2e** (0.20 mmol), mesitylene (1.0 mL) at 0 °C for 4 d to provide the title compound as a white solid (71% yield, 92:8 e.r.). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.35$ (s, 1H), 7.56 (s, 1H), 7.54 (s, 1H), 7.53 (s, 1H), 7.51 (s, 1H), 6.96 (s, 1H), 6.94 (s, 1H), 6.92 (s, 1H), 6.90 (s, 1H), 5.71 (d, J = 13.5 Hz, 1H), 5.23 (d, J = 13.5 Hz, 1H), 3.84 (s, 3H), 3.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 161.7$, 160.4, 151.5, 129.3, 128.2, 123.50, 123.4 (q, J = 287.3 Hz), 114.3, 113.9, 83.2 (q, J = 27.7 Hz), 73.7, 55.3, 55.2; ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -75.0$ (s, 3F). HRMS m/z (ESI): calcd for [C₁₈H₁₇F₃N₂O₅ +H]⁺: 399.1162, found 399.1169. M.P. = 115.6-117.4 °C; $[\alpha]_{D}^{25} = -77.7$ (C = 1.00, CHCl₃); HPLC (Chiralpak AD-H column, hexane/2-propanol = 95:5, 1.0 mL/min; 254 nm, 25 °C, t₁ = 18.45 min, t₂ = 19.86 min).

Peak #	RetTime [min]	Туре	Width [min]	Area mAU *s	Height [mAU]	Area %	Peak #	RetTime [min]	Туре	Width [min]	Area mAU *s	Height [mAU]	Area %
1	18.298	BV	0.3790	4459.86963	182.04749	49.9022	1	18.446	BV	0.3800	1018.35699	41.41745	8.2899
2	19.700	VB	0.4153	4477.34570	168.26591	50.0978	2	19.856	VB		1.12659e4	418.25153	91.7101

(*S*,*E*)-4-methoxybenzaldehyde O-(2-(3-chlorophenyl)-1,1,1-trifluoro-3-nitropropan-2-yl) oxime (**3g**)

Prepared according to the general procedure from **1a** (0.40 mmol), **2g** (0.20 mmol), mesitylene (1.0 mL) at 0 °C for 3 d to provide the title compound as a colourless oil (87% yield, 93.5:6.5 e.r.). ¹H NMR (600 MHz, CDCl₃) δ = 8.37 (s, 1H), 7.64 (s, 1H), 7.56 (s, 1H), 7.54 (s, 1H), 7.47 (d, *J* = 7.7 Hz, 1H), 7.43 (d, *J* = 7.8 Hz, 1H), 7.39 (d, *J* = 7.9 Hz, 1H), 6.93 (s, 1H), 6.92 (s, 1H), 5.74 (d, *J* = 13.5 Hz, 1H), 5.22 (d, *J* = 13.5 Hz, 1H), 3.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 161.9, 151.9, 134.7, 133.9, 129.9, 129.7, 129.4, 127.2, 124.9, 123.1 (q, *J* = 287.7 Hz), 114.3, 82.8 (q, *J* = 28.0 Hz), 73.5, 55.3. ¹⁹F NMR (376 MHz, CDCl₃): δ = -74.8 (s, 3F). HRMS m/z (ESI): calcd for [C₁₇H₁₄ClF₃N₂O₄ +H]⁺: 403.0667, found 403.0669. [α]²⁵_D = -79.2 (C = 1.00, CHCl₃); HPLC (Chiralpak AD-H column, hexane/2-propanol = 95:5, 1.0 mL/min; 254 nm, 25 °C, t₁ = 11.51 min, t₂ = 12.78 min).

(*S*,*E*)-4-methoxybenzaldehyde O-(2-(4-chlorophenyl)-1,1,1-trifluoro-3-nitropropan-2-yl) oxime (**3h**)

Prepared according to the general procedure from **1a** (0.40 mmol), **2h** (0.20 mmol), mesitylene (1.0 mL) at 0 °C for 3 d to provide the title compound as a white solid (67% yield, 89:11 e.r.). ¹H NMR (600 MHz, CDCl₃): $\delta = 8.35$ (s, 1H), 7.55 (s, 2H), 7.54 (s, 2H), 7.44 (s, 1H), 7.42 (s, 1H), 6.93 (s, 1H), 6.91 (s, 1H), 5.73 (d, J = 13.5 Hz, 1H), 5.22 (d, J = 13.5 Hz, 1H), 3.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 161.8$, 151.8, 135.9, 130.4, 129.3, 128.8, 128.2, 123.2, 123.1 (q, J = 287.5 Hz) 114.3, 83.0 (q, J = 27.9 Hz), 73.6, 55.3; ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -74.9$ (s, 3F). HRMS m/z (ESI): calcd for [C₁₇H₁₄ClF₃N₂O₄+H]⁺: 403.0667, found 403.0674. M.P. = 105.2-107.3 °C; [α]²⁷_D = -51.6 (C = 1.00, CHCl₃); HPLC (Chiralpak AD-H column, hexane/2-propanol = 95:5, 1.0 mL/min; 254 nm, 25 °C, t₁ = 14.96 min, t₂ = 15.91 min).

(*S*,*E*)-4-methoxybenzaldehyde O-(2-(4-bromophenyl)-1,1,1-trifluoro-3-nitropropan-2-yl) oxime (**3i**)

Prepared according to the general procedure from **1a** (0.40 mmol), **2i** (0.20 mmol), mesitylene (1.0 mL) at 0 °C for 3 d to provide the title compound as a white solid (86% yield, 87:13 e.r.). ¹H NMR (600 MHz, CDCl₃): $\delta = 8.35$ (s, 1H), 7.59 (s, 1H), 7.58 (s, 1H), 7.55 (s, 1H), 7.53 (s, 1H), 7.49 (s, 1H), 7.47 (s, 1H), 6.92 (s, 1H), 6.91 (s, 1H), 5.71 (d, J = 13.5 Hz, 1H), 5.21 (d, J = 13.5 Hz, 1H), 3.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) $\delta = 161.8$, 151.9, 131.7, 130.9, 129.3, 128.5, 124.2, 123.2, 123.0 (q, J = 287.8 Hz), 114.3, 83.0 (q, J = 27.8 Hz), 73.5, 55.3; ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -74.9$ (s, 3F). HRMS m/z (ESI): calcd for [C₁₇H₁₄BrF₃N₂O₄ +H]⁺: 447.0162, found 447.0168. M.P. = 111.1-113.2 °C; [α] $_{D}^{28} = -40.4$ (C = 1.00, CHCl₃); HPLC (Chiralpak AD-H column, hexane/2-propanol = 95:5, 1.0 mL/min; 254 nm, 25 °C, t₁ = 15.87 min, t₂ =17.08 min)

(*S*,*E*)-4-methoxybenzaldehyde O-(1,1,1-trifluoro-3-nitro-2-(4-(trifluoromethyl)phenyl)propan-2-yl) oxime (**3j**)

Prepared according to the general procedure from **1** (0.40 mmol), **2j** (0.20 mmol), mesitylene (1.0 mL) at 0 °C for 3 d to provide the title compound as a colourless oil (80% yield, 79:21 e.r.). ¹H NMR (600 MHz, CDCl₃): $\delta = 8.37$ (s, 1H), 7.76 (d, J = 7.7 Hz, 2H), 7.72 (d, J = 8.1 Hz, 2H), 7.55 (s, 1H), 7.54 (s, 1H), 6.93 (s, 1H), 6.92 (s, 1H), 5.77 (d, J = 13.5 Hz, 1H), 5.27 (d, J = 13.5 Hz, 1H), 3.85 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 161.9$, 152.1, 135.8, 131.7 (q, J = 32.7 Hz), 129.4, 127.4, 125.5, 123.6 (q, J = 270.3 Hz), 123.1, 121.6 (q, J = 287.5 Hz), 114.3, 83.0 (q, J = 27.7 Hz), 73.5, 55.3; ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -63.4$ (s, 3F), -74.7 (s, 3F). HRMS m/z (ESI): calcd for [C₁₈H₁₄F₆N₂O₄ +Na]⁺: 459.0755, found 459.0751. [α]²⁶_D = -44.4 (C = 1.00, CHCl₃); HPLC (Chiralpak OD-H column, hexane/2-propanol = 99:1, 0.7 mL/min; 254 nm, 25 °C, t₁ = 35.99 min, t₂ = 40.90 min).

Peak #	RetTime [[min]	Type	Width [min]	Area mAU *s	Height [mAU]	Area %	Peak #	RetTime [min]	Туре	Width [min]	Area mAU *s	Height [mAU]	Area %
1	35.350 1	BB	0.9783	1.00667e4	155.13893	50.1322		35.994	BB	1.0486	2275.68311	31.81261	20.7450
2	40.393 H	BB	1.1083	1.00136e4	132.79504	49.8678	2	40.904	BB	1.0927	8694.08496	119.39623	79.2550

(S,E)-4-methoxybenzaldehyde O-(1,1,1-trifluoro-2-(naphthalen-2-yl)-3-nitropropan-2-yl) oxime (3k)

Prepared according to the general procedure from **1a** (0.40 mmol), **2k** (0.20 mmol), mesitylene (1.0 mL) at 0 °C for 3 d to provide the title compound as a white solid (83% yield, 91:9 er). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.44$ (s, 1H), 8.11 (s, 1H), 7.94 – 7.85 (m, 3H), 7.67 (d, J = 8.7 Hz, 1H), 7.57 (s, 1H), 7.55 (d, J = 2.7 Hz, 2H), 7.54 (s, 1H), 6.93 (s, 1H), 6.91 (s, 1H), 5.83 (d, J = 13.5 Hz, 1H), 5.39 (d, J = 13.5 Hz, 1H), 3.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 161.7$, 151.7, 133.4, 132.7, 129.3, 128.6, 128.3, 127.5, 127.2, 127.0, 126.6, 123.5, 123.4, 123.4 (q, J = 287.3 Hz), 114.3, 83.5 (q, J = 27.7 Hz), 73.8, 55.3; ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -74.5$ (s, 3F). HRMS m/z (MALDI): calcd for [C₂₁H₁₇F₃N₂O₄ +H]⁺: 419.1219, found 419.1213. M.P. = 128.5-130.0 °C; [α]_D²⁶ = -47.3 (C = 1.00, CHCl₃); HPLC (Chiralpak AD-H column, hexane/2-propanol = 95:5, 1.0 mL/min; 254 nm, 25 °C, t₁ = 19.75 min, t₂ = 22.90 min).

(S,E)-4-methoxybenzaldehyde O-(1,1,1-trifluoro-3-nitro-2-(thiophen-3-yl)propan-2-yl) oxime (31)

Prepared according to the general procedure from **1a** (0.40 mmol), **2l** (0.20 mmol), mesitylene (1.0 mL) at 0 °C for 3 d to provide the title compound as a yellow solid (69% yield, 90.5:9.5 e.r.). ¹H NMR (600 MHz, CDCl₃): $\delta = 8.33$ (s, 1H), 7.57 (s, 2H), 7.55 (s, 1H), 7.39 (s, 1H), 7.23 (s, 1H), 6.93 (s, 1H), 6.92 (s, 1H), 5.65 (d, J = 13.5 Hz, 1H), 5.16 (d, J = 13.5 Hz, 1H), 3.85 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 161.7$, 151.5, 132.2, 129.2, 126.2, 125.9, 125.4, 123.3, 123.1 (J = 287.1 Hz), 114.3, 82.4 (q, J = 28.6 Hz), 74.4, 55.3; ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -75.1$ (s, 3F). HRMS m/z (ESI): calcd for [C₁₅H₁₃F₃N₂O₄S +H]⁺: 375.0621, found 375.0623. M.P. = 84.0-85.7 °C; $[\alpha]_{D}^{21} = -57.6$ (C = 1.00, CHCl₃); HPLC (Chiralpak IC-H column, hexane/2-propanol = 95:5, 0.5 mL/min; 254 nm, 25 °C, t₁ = 17.20 min, t₂ = 18.29 min).

(S,E)-4-methoxybenzaldehyde O-(1,1,1-trifluoro-2-(nitromethyl)-4-phenylbutan-2-yl) oxime (3m)

Prepared according to the general procedure from **1a** (0.40 mmol), **2m** (0.20 mmol), mesitylene (1.0 mL) at 0 °C for 3 d to provide the title compound as a colourless oil (71% yield, 73:27 e.r.). ¹H NMR (600 MHz, CDCl₃): δ = 8.18 (s, 1H), 7.56 (s, 1H), 7.54 (s, 1H), 7.31 (s, 2H), 7.24 (s, 1H), 7.23 (s, 2H), 6.93 (s, 1H), 6.92 (s, 1H), 5.13 (d, *J* = 12.0 Hz, 1H), 4.96 (d, *J* = 12.0 Hz, 1H), 3.85 (s, 3H), 2.89 (s, 2H), 2.39 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ = 161.7, 151.6, 140.5, 129.1, 128.6, 128.3, 126.3, 124.1 (q, *J* = 287.5 Hz), 123.3, 114.3, 81.8 (q, *J* = 27.4 Hz), 75.0, 55.2, 33.0, 28.9; ¹⁹F

NMR (376 MHz, CDCl₃): $\delta = -74.1$ (s, 3F). HRMS m/z (ESI): calcd for $[C_{19}H_{19}F_3N_2O_4 +H]^+$: 397.1370, found 397.1370. $[\alpha]_{D}^{26} = -26.3$ (C = 1.00, CHCl₃); HPLC (Chiralpak OD-H column, hexane/2-propanol = 95:5, 1.0 mL/min; 254 nm, 25 °C, t₁ = 14.08 min, t₂ = 17.20 min).

Table S3 Catalyst screen for the reaction with substrate $2m^a$

Entry	Catslyst	t	Yield $(\%)^b$	e.r. ^c
1	F	3 d	48	39:61
2	G	3d	52	85:15
3	Н	3d	32	31.5:68.5

^{*a*} The reactions were carried out with 0.40 mmol (2.0 equiv) of **1a**, 0.20 mmol (1.0 equiv) of **2m** and 10 mol% catalyst in mesitylene (1.0 mL) at 0 °C. ^{*b*} Isolated yield. ^{*c*} Determined by chiral HPLC.

Table S4 Oxa-Michael addition of oxime to β -CF₂H- β -disubstituted nitroalkene 5^{*a*}

^{*a*} The reactions were carried out with 0.40 mmol (2.0 equiv) of **1a**, 0.20 mmol (1.0 equiv) of **4** and 10 mol% catalyst in mesitylene (1.0 mL) at 0 °C. ^{*b*} Conducted at room temperature. ^{*c*} Conducted at -10 °C. ^{*d*} Conducted at -10 °C, x = 20. ^{*e*} Isolated yield. ^{*f*} Determined by chiral HPLC.

(E)-(3,3-difluoro-1-nitroprop-1-en-2-yl)benzene (4)

Prepared according to the known literature (yellow oil). ¹H NMR (400 MHz, CDCl₃): δ = 7.46 (s, 3H), 7.35 (s, 1H), 7.28 (s, 2H), 6.34 (t, *J* = 54.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ = 139.8 (t, *J* = 20.0 Hz), 138.5 (t, *J* = 12.5 Hz), 130.0, 128.8, 128.6, 127.7, 112.5(t, *J* = 243.5 Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ = -119.0 (s, 2F). HRMS m/z (ESI): calcd for [C₉H₇F₂NO₂+Na]⁺: 222.0337, found 222.0335.

(E)-4-methoxybenzaldehyde O-(1,1-difluoro-3-nitro-2-phenylpropan-2-yl) oxime (5)

Prepared according to the general procedure from **1a** (0.40 mmol), **4** (0.20 mmol), mesitylene (1.0 mL) at -10 °C for 42 h to provide the title compound as a colourless oil (80% yield, 85:15 e.r.). ¹H NMR (600 MHz, CDCl₃): δ = 8.29 (s, 1H), 7.50 (d, *J* = 8.0 Hz, 4H), 7.42 (d, *J* = 7.4 Hz, 3H), 6.90 (d, *J* = 8.4 Hz, 2H), 6.52 (t, *J* = 54.0 Hz, 1H), 5.37 (d, *J* = 13.0 Hz, 1H), 5.21 (d, *J* = 13.0 Hz, 1H), 3.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 161.6, 151.6, 132.7, 129.2, 129.1, 128.4, 126.8, 123.4, 114.2, 113.3 (t, *J* = 247.5 Hz), 82.8 (t, *J* = 23.0 Hz), 76.5, 55.3; ¹⁹F NMR (376 MHz, CDCl₃): δ = -128.5 - -131.92 (m, 2F). HRMS m/z (ESI): calcd for [C₁₇H₁₆F₂N₂O₄ +H]⁺: 351.1151, found 351.1154. [α]¹⁹ = 17.3 (C = 1.00, CHCl₃); HPLC (Chiralpak AD-H column, hexane/2-propanol = 85:15, 1.0 mL/min; 254 nm, 25 °C, t₁ = 9.99 min, t₂ = 10.61 min).

Michael addition of thiol 8 to β -CF₃- β -disubstituted nitroalkene 2a

Thiol 9 (0.22 mmol) was added to a solution of trifluoromethylated alkene 2a (0.20 mmol) and organocatalyst I (0.02 mmol) in 1.5 mL of mesitylene-Et₂O (V/V = 2:1) at -78 °C. After

completion (monitored by TLC analysis), the desired products **10** were purified by flash column chromatography.

Prepared according to the general procedure from **9** (0.22 mmol), **2a** (0.20 mmol), mesitylene-Et₂O (1.5 mL, V/V = 2:1) at -78 °C for 30 min to provide the title compound as a colourless oil (70% yield, 58:42 e.r.). ¹H NMR (600 MHz, CDCl₃): δ = 7.60 (d, *J* = 7.0 Hz, 2H), 7.41 – 7.39 (m, 5H), 7.13 (d, *J* = 7.7 Hz, 2H), 5.11 – 5.03 (m, 2H), 2.36 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ = 141.4, 137.9, 131.51, 130.0, 129.1, 128.5, 127.7, 125.3 (q, *J* = 283.0 Hz), 124.0, 75.5, 60.3 (q, *J* = 26.7 Hz), 21.2; ¹⁹F NMR (376 MHz, CDCl₃): δ = -66.1 (s, 3F). HRMS m/z (ESI): calcd for [C₁₆H₁₄F₃NO₂S +Na]⁺: 364.0595, found 364.0607. HPLC (Chiralpak OD-H column, hexane/2-propanol = 95:5, 1.0 mL/min; 254 nm, 25 °C, t₁ = 7.77 min, t₂ = 8.88 min).

5. References

- (1) J.-R. Gao, H. Wu, B. Xiang, W.-B. Yu, L. Han and Y.-X. Jia, J. Am. Chem. Soc., 2013, 135, 2983.
- (2) T. Kitazume, M. Asai, T. Tsukamoto and T. Yamazaki, J. Fluorine Chem., 1992, 56, 271.
- (3) (a) B. Vakulya, S. Varga, A. Csampai and T. Soos, *Org. Lett.*, 2005, 7, 1967; (b) M. Amere, M. C. Lasne and J. Rouden, *Org. Lett.*, 2007, 9, 2621; (c) W. Yang and D.-M. Du, *Org. Lett.*, 2010, 12, 5450; (d) J. P. Malerich, K. Hagihara and V. H. Rawal, *J. Am. Chem. Soc.*, 2008, 130, 14416; (e) F.-G. Zhang, Q.-Q. Yang, J. Xuan, H.-H. Lu, S.-W. Duan, J.-R. Chen and W.-J. Xiao, *Org. Lett.*, 2010, 12, 5636.
- (4) J. Weng, Y.-B. Li, R.-B. Wang, F.-Q. Li, C. Liu, A.-S. Chan and G. Lu, J. Org. Chem., 2010, 75, 3125.

6. X-Ray Single Crystal Structure of Product 3e

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2014

7. Application of the Michael Reaction Product 3a

(*S*,*E*)-4-methoxybenzaldehyde O-(3-amino-1,1,1-trifluoro-2-phenylpropan-2-yl) oxime 6⁴

Activated Zn powder (975 mg, 15 mmol) was added carefully to a solution of **3a** (110.5 mg, 0.30 mmol) and trimethylsilyl chloride (1.14 mL, 37.2 mmol) in EtOH (5.0 mL) at room temperature. The mixture was stirred at 70 °C for 2 h, cooled to rt and adjusted to weakly basic (pH = 8) with 28% NH₄OH in H₂O. The aqueous layer was extracted with CH₂Cl₂. The combined organic layer was washed with saturated brine, dried over MgSO₄ and then removed under reduced pressure. Finally, purification by flash chromatography gave **6** as a white solid (72 mg, 71% yield, 93% ee).

¹H NMR (600 MHz, CDCl₃): 8.36 (s, 1H), 7.55 (s, 2H), 7.54 (d, J = 2.4 Hz , 2H), 7.43 (t, J = 7.4 Hz, 2H), 7.39 (d, J = 6.6 Hz, 1H), 6.91 (s, 1H), 6.89 (s, 1H), 3.88 (d, J = 14.7 Hz, 1H), 3.83 (s, 3H), 3.47 (d, J = 14.7 Hz, 1H).1.67 (brs, 2H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 161.5$, 151.0, 134.6, 129.0, 128.7, 128.4, 127.2, 125.1 (q, J = 274.4 Hz), 123.9, 114.2, 85.4 (q, J = 21.8 Hz), 55.3, 44.1; ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -74.6$ (s, 3F). HRMS m/z (MALDI): calcd for $[C_{17}H_{17}F_3N_2O_2+H]^+$: 339.1415, found 339.1419. M.P. = 63.2-65.7 °C; $[\alpha]_{D}^{25} = -18.7$ (C = 1.00, CHCl₃); HPLC (Chiralpak AD-H column, hexane/2-propanol = 90:10, 0.7 mL/min; 254 nm, 25 °C, t₁ = 14.02 min, t₂ = 15.45 min).

(S)-3-amino-1,1,1-trifluoro-2-phenylpropan-2-ol 7^{3e}

A suspension solution of **3a** (147.3 mg, 0.40 mmol) and 10% Pd/C (221 mg) in EtOAc (6 mL) was stirred under 25 atm of hydrogen for 24 h. After the reaction mixture was filtered from Celite, the solvent was removed under reduced pressure and the residue was purified by flash chromatography to give **7** as a white solid (64.4 mg, 78% yield, 96% ee). ¹H NMR (600 MHz, CDCl₃): δ = 7.58 (s, 1H), 7.57 (s, 1H), 7.41 – 7.34 (m, 3H), 3.56 (d, *J* = 13.2 Hz, 1H), 3.03 (d, *J* = 13.3 Hz, 1H), 1.44 (br, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 137.3, 128.5, 128.3, 126.2, 125.7 (q, *J* = 285.3 Hz), 74.0 (q, *J* = 27.0 Hz), 45.4; ¹⁹F NMR (376 MHz, CDCl₃): δ = -79.0 (s, 3F). HRMS m/z (MALDI): calcd for [C₉H₁₀F₃NO +H]⁺: 206.0787, found 206.0780. M.P. = 89.1-90.8 °C; [α]²⁶_D = +36.75 (C = 1.00, CHCl₃); HPLC (Chiralpak IC-H column, hexane/2-propanol = 90:10, 0.7 mL/min; 215 nm, 25 °C, t₁ = 9.91 min, t₂ = 12.04 min).

8. Copies of ¹H NMR ¹³C NMR and ¹⁹F NMR Spectra

¹H NMR (400 MHz, CDCl₃) spectrum of 3a

¹³C NMR (100 MHz, CDCl₃) spectrum of 3a

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 3a

¹H NMR (400 MHz, CDCl₃) spectrum of 3b

¹³C NMR (100 MHz, CDCl₃) spectrum of 3b

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 3b

¹H NMR (600 MHz, CDCl₃) spectrum of 3c

¹³C NMR (100 MHz, CDCl₃) spectrum of product 3c

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 3c

¹H NMR (400 MHz, CDCl₃) spectrum of 3d

¹³C NMR (100 MHz, CDCl₃) spectrum of product 3d

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 3d

¹H NMR (400 MHz, CDCl₃) spectrum of 3e

¹³C NMR (100 MHz, CDCl₃) spectrum of product 3e

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 3e

¹H NMR (600 MHz, CDCl₃) spectrum of 3g

¹³C NMR (100 MHz, CDCl₃) spectrum of product 3g

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 3g

¹H NMR (600 MHz, CDCl₃) spectrum of 3h

¹³C NMR (100 MHz, CDCl₃) spectrum of product 3h

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 3h

¹H NMR (600 MHz, CDCl₃) spectrum of 3i

¹³C NMR (100 MHz, CDCl₃) spectrum of product 3i

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 3i

¹H NMR (600 MHz, CDCl₃) spectrum of 3j

¹³C NMR (100 MHz, CDCl₃) spectrum of product 3j

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 3j

¹H NMR (600 MHz, CDCl₃) spectrum of 3k

¹³C NMR (100 MHz, CDCl₃) spectrum of product 3k

¹⁹F NMR (100 MHz, CDCl₃) spectrum of 3k

¹H NMR (600 MHz, CDCl₃) spectrum of 3l

¹³C NMR (100 MHz, CDCl₃) spectrum of product 31

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 31

¹H NMR (600 MHz, CDCl₃) spectrum of 3m

¹³C NMR (100 MHz, CDCl₃) spectrum of product 3m

¹⁹F NMR (376 MHz, CDCl₃) spectrum of product 3m

¹H NMR (400 MHz, CDCl₃) spectrum of 4

¹³C NMR (100 MHz, CDCl₃) spectrum of product 4

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 4

¹H NMR (600 MHz, CDCl₃) spectrum of 5

¹³C NMR (100 MHz, CDCl₃) spectrum of product 5

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 5

¹H NMR (600 MHz, CDCl₃) spectrum of 6

¹³C NMR (100 MHz, CDCl₃) spectrum of 6

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 6

¹H NMR (600 MHz, CDCl₃) spectrum of product 7

¹³C NMR (100 MHz, CDCl₃) spectrum of 7

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 7

¹H NMR (600 MHz, CDCl₃) spectrum of product 10

¹³C NMR (100 MHz, CDCl₃) spectrum of 10

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 10

