# Copper-Catalyzed Annulation of<br/>with 2-Ethynylanilines: The Direct Synthesis of<br/>C2-Functionalized Indoles

Gang Liu, Guangyang Xu, Jian Li, Dong Ding and Jiangtao Sun\*

School of Pharmaceutical Engineering & Life Science, Changzhou University,

Changzhou 213164, P. R. China

## Supporting Information

#### I General Information

All experiments were reacted under an atmosphere of nitrogen unless otherwise indicated. Flasks were all flamed and cooled before use. All solvents were dried before use. <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra were reported on a Brucker 400 MHz, 500 MHz spectrometer. Melting points were determined on a SGW X-4B melting point apparatus. High-resolution mass spectra (HRMS) were performed on Agilent G6230A mass spectrometer.

Solid and liquid anilines were purchased from Aladdin, and they were sublimed or distilled before use.

### **II** A) Preparation of the diazoacetates<sup>1</sup>

All  $\alpha$ -diazoacetates were prepared by the same procedure in the literature.

#### **B)** Preparation of the 2-ethynylaniline substrates

The following synthesis procedure is the general procedure used to prepare all substrates.



To a solution of 2-iodoaniline (3.30 g, 15.00 mmol),  $Pd(PPh_3)_2Cl_2$  (210 mg, 0.30 mmol), CuI (114 mg, 0.60 mmol) in diethylamine (10 ml) was added a solution of trimethylsilylacetylene (2.94 g, 30.00 mmol) at 0 °C. The reaction was stirred at room temperature for about 2 hours. After the completion of the reaction, the mixture was quenched with sat.NH<sub>4</sub>Cl and extracted with CH<sub>2</sub>Cl<sub>2</sub> twice. The organic layers were combined, washed with brine once, dried over Na<sub>2</sub>SO<sub>4</sub> and evaporated in vacuo. The residue was purified via column chromatography on silica gel (petroleum ether: ethyl acetate = 40: 1) to get the final product as oil (2.30 g, 81.0%).



To a solution of 2-trimethylsilanylethynyl-phenylamine (2.30 g, 12.16 mmol) and potassium carbonate (3.36 g, 24.33 mmol) in MeOH (15 mL) was stirred at room temperature for about 2 hours. The reaction was quenched with water and extracted with ethyl acetate three times. The organic layers were separated, combined, dried over Na<sub>2</sub>SO<sub>4</sub> and evaporated in vacuo. The residue was purified via column chromatography on silica gel (petroleum ether: ethyl acetate = 20: 1) to give the final compound as oil (1.34 g, 94.1%).



To a mixture of 2-ethynyl-phenylamine (1.34 g, 11.45 mmol), triethylamine (1.75 g, 17.30 mmol) in anhydrous dichloromethane (10 mL) was added acetyl chloride (0.99 g, 12.7 mmol) at room temperature for 1.5 hours. The reaction mixture was washed with water, extracted with ethyl acetate twice. The organic layers were separated, washed with brine twice, dried over  $Na_2SO_4$  and evaporated in vacuo. The crude product was purified via column chromatography on silica gel (petroleum ether: ethyl acetate = 10: 1) to get the final amide as a white solid (1.60 g, 88.0%).

#### Data for the substrates



*N*-(2-Ethynyl-phenyl)-acetamide<sup>2</sup>: Yield: 63.5%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ (ppm) 7.39 (d, *J* = 8.0 Hz, 1H), 7.91 (s, 1H), 7.45 (d, *J* = 8.0 Hz, 1H), 7.35 (t, *J* = 8.0 Hz, 1H), 7.03 (t, *J* = 8.0 Hz, 1H), 3.50 (s, 1H), 2.22 (s, 3H);



*N*-(4-Chloro-2-ethynyl-phenyl)-acetamide: Yield: 71.2%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 8.38 (d, *J* = 8.0 Hz, 1H), 7.84 (s, 1H), 7.42 (d, 1H), 7.33-7.30 (m, 1H), 3.55 (s, 1H), 2.23 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  168.3, 138.3, 131.6, 130.3, 128.1, 120.6, 112.0, 85.4, 78.0, 24.9;



*N*-(4-Fluoro-2-ethynyl-phenyl)-acetamide<sup>3</sup>: Yield: 50.4%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ (ppm) 8.38-8.35 (m, 1H), 7.80 (s, 1H), 7.16-7.13 (m, 1H), 7.10-7.05 (m, 1H), 3.54 (s, 1H), 2.22 (s, 3H).



*N*-(4-Cyano-2-ethynyl-phenyl)-acetamide: Yield: 48.3%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ (ppm) 8.61 (d, *J* = 8.0 Hz, 1H), 8.05 (s, 1H), 7.74 (d, *J* = 4.0 Hz, 1H), 7.62 (d, *J* = 8.0 Hz, 1H), 3.63 (s, 1H), 2.27 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 168.6, 143.1, 135.9, 133.9, 119.4, 117.9, 111.2, 106.8, 100.0, 86.6, 25.0.



*N*-(4-Carboxylic acid methyl ester-2-ethynyl-phenyl)-acetamide: Yield: 62.5%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ (ppm) 8.52 (d, *J* = 8.0 Hz, 1H), 8.15 (d, 1H), 8.07 (s, 1H), 8.02 (d, *J* = 8.0 Hz, 1H), 3.90 (s, 3H), 3.56 (s, 1H), 2.26 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 168.5, 165.8, 143.2, 133.8, 131.7, 124.9, 118.5, 110.3, 85.2, 78.3, 52.2, 25.0.



N-(4-Methyl-2-ethynyl-phenyl)-acetamide<sup>3</sup>: Yield: 51.8%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ (ppm)
8.26 (d, J = 8.0 Hz, 1H), 7.82 (s, 1H), 7.26 (s, 1H), 7.16 (d, J = 8.0 Hz, 1H), 3.47 (s, 3H), 2.28 (s, 3H), 2.21 (s, 3H).



*N*-(3-Methyl-2-ethynyl-phenyl)-acetamide: Yield: 62.0%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ (ppm) 8.24 (d, 1H), 7.96 (s, 1H), 7.26-7.22 (m, 1H), 6.94 (d, *J* = 8.0 Hz, 1H), 3.73 (s, 1H), 2.44 (s, 3H), 2.22 (s, 3H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 168.3, 141.2, 139.8, 129.5, 128.6, 124.5, 116.5, 88.4, 78.2, 25.0, 21.0.



*N*-(5-Methyl-2-ethynyl-phenyl)-acetamide: Yield: 58%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ (ppm) 8.24 (s, 1H), 7.86 (s, 1H), 7.33 (d, *J* = 8.0 Hz, 1H), 6.85 (d, *J* = 8.0 Hz, 1H), 3.46 (s, 1H), 2.36 (s, 3H), 2.22 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 168.3, 140.9, 139.5, 131.9, 124.3, 119.9, 107.6, 83.7, 79.5, 24.9, 22.0.



*N*-(5-Methoxy-2-ethynyl-phenyl)-acetamide: Yield: 60%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ (ppm) 8.10 (s, 1H), 7.92 (s, 1H), 7.36 (d, *J* = 4.0 Hz, 1H), 6.59 (d, *J* = 4.0 Hz, 1H), 3.83 (s, 3H), 3.45 (s, 1H), 2.23 (s, 1H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 168.4, 161.1, 141.2, 133.1, 110.2, 104.3, 102.4, 83.2, 79.5, 55.5, 25.0.



*N*-(2-Ethynyl-phenyl)-4-methyl-benzenesulfonamide<sup>4</sup>: Yield: 75%; <sup>1</sup>H NMR (400 MHz,

CDCl<sub>3</sub>): δ (ppm) 7.69 (d, *J* = 8.0 Hz, 2H), 7.59 (d, *J* = 8.0 Hz, 1H), 7.35-7.20 (m, 5H), 7.03-6.99 (t, *J* = 8.0 Hz, 1H), 3.37 (s, 1H), 2.37 (s, 3H).

# III General Procedure for the CuI catalyzed synthesis of C2-substituted indoles



To a Schlenk tube was added 2-ethynyl-phenylamine (1.0 mmol), CuI (0.05 mmol) and CH<sub>3</sub>CN (2 mL) under nitrogen atmosphere. Then the diazoacetate (1.0 mmol) in CH<sub>3</sub>CN (1 mL) was added into the system and the whole solution was stirred at 60 °C for 4 hours. The completion of the reaction was monitored by TLC analysis. After cooling to room temperature, the reaction mixture was filtered through a pad of celite. The filtrate was concentrated under vacuum and the residue was purified by flash column chromatography (eluted with ethyl acetate/petroleum ether) to give the desired C2-substituted indole product.

#### Data for the product



**Methyl 2-(1***H***-indol-2-yl)-2-phenylacetate<sup>1</sup>:** Red oil (Flash column chromatography eluent: petroleum ether/ethyl acetate = 50/1), yield: 50%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 8.72 (br, 1H), 7.54 (d, *J* = 8.0 Hz, 1H), 7.32-7.25 (m, 6H), 7.15 (t, *J* = 8.0 Hz, 1H), 7.09-7.05 (m, 1H), 6.39 (s, 1H), 5.21 (s, 1H), 3.77 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  172.4, 137.4, 136.3, 134.5, 128.8, 128.0, 127.8, 121.9, 120.4, 119.9, 111.0, 102.2, 52.7, 50.6; HRMS (ESI) exact mass calcd. for C<sub>17</sub>H<sub>15</sub>NNaO<sub>2</sub> ([M + Na]<sup>+</sup>) 288.1178, found: 288.1175.



Methyl 2-(1-acetyl-1H-indol-2-yl)-2-phenylacetate: White solid (Flash column chromatography

eluent: petroleum ether/ethyl acetate = 50/1), mp 99-101 °C, yield: 72%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.62 (d, *J* = 8.0 Hz, 1H), 7.41-7.35 (m, 6H), 7.29-7.25 (m, 1H), 7.19 (t, *J* = 8.0 Hz, 1H), 6.02 (s, 1H), 5.62 (s, 1H), 3.74 (s, 3H), 2.80 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  172.1, 170.8, 140.4, 136.7, 136.0, 129.6, 129.1, 128.9, 127.9, 124.2, 123.1, 121.4, 114.2, 112.6, 53.3, 52.4, 27.6; HRMS (ESI) exact mass calcd. for C<sub>19</sub>H<sub>17</sub>NNaO<sub>3</sub> ([M + Na]<sup>+</sup>) 330.1089, found: 330.1097.



Methyl 2-(1-(toluene-4-sulfonyl)-1*H*-indol-2-yl)-2-phenylacetate: Colorless oil (Flash column chromatography eluent: petroleum ether/ethyl acetate = 50/1), yield: 70%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ (ppm) 8.02 (d, J = 8.0 Hz, 1H), 7.55 (d, J = 8.0 Hz, 2H), 7.37-7.32 (m, 6H), 7.25-7.22 (m, 1H), 7.16 (t, J = 6.0 Hz, 1H), 7.11 (d, J = 8.0 Hz, 2H), 6.33 (s, 1H), 5.80 (s, 1H), 3.74 (s, 3H), 2.28 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>): δ 171.8, 144.9, 138.6, 137.1, 136.6, 135.9, 129.8, 129.1, 129.0, 128.9, 128.0, 126.6, 124.8, 123.6, 121.0, 114.8, 112.9, 52.7, 51.1, 21.6; HRMS (ESI) exact mass calcd. for C<sub>24</sub>H<sub>21</sub>NNaO<sub>4</sub>S ([M + Na]<sup>+</sup>) 442.1082, found: 442.1078.



Methyl 2-(1-carboxylic acid tert-butyl ester-1*H*-indol-2-yl)-2-phenylacetate: Colorless oil (Flash column chromatography eluent: petroleum ether/ethyl acetate = 50/1), yield: 54%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 8.02 (d, *J* = 8.0 Hz, 1H), 7.41-7.34 (m, 6H), 7.27-7.23 (m, 1H), 7.16 (t, *J* = 6.0 Hz, 1H), 5.96 (s, 1H), 5.65 (s, 1H), 3.73 (s, 3H), 1.67 (s, 9H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  172.1, 150.9, 139.0, 136.9, 136.6, 129.2, 128.8, 128.6, 127.8, 124.1, 122.7, 120.5, 115.7, 111.2, 84.5, 52.7, 52.4, 28.2; HRMS (ESI) exact mass calcd. for C<sub>22</sub>H<sub>23</sub>NNaO<sub>4</sub> ([M + Na]<sup>+</sup>) 388.1508, found: 388.1513.



Methyl 2-(5-methyl-1-(toluene-4-sulfonyl)-1*H*-indol-2-yl)-2-phenylacetate: Colorless oil (Flash column chromatography eluent: petroleum ether/ethyl acetate = 40/1), yield: 73%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.89 (d, *J* = 8.0 Hz, 1H), 7.53 (d, *J* = 8.0 Hz, 2H), 7.35-7.20 (m, 5H), 7.14 (t, *J* = 10.0 Hz, 3H), 7.07 (d, *J* = 8.0 Hz, 1H), 6.27 (s, 1H), 5.78 (s, 1H), 3.75 (s, 3H), 2.35 (s, 3H), 2.31 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  171.8, 144.7, 138.5, 136.5, 135.9, 135.3, 133.2, 129.7, 129.3, 129.0, 128.8, 127.9, 126.6, 126.1, 120.8, 114.5, 112.7, 52.7, 51.0, 21.5, 21.2; HRMS (ESI) exact mass calcd. for C<sub>25</sub>H<sub>23</sub>NNaO<sub>4</sub>S ([M + Na]<sup>+</sup>) 456.1231, found: 456.1237.



**Methyl 2-(5-chloro-1-acetyl-1***H***-indol-2-yl)-2-phenylacetate:** White solid (Flash column chromatography eluent: petroleum ether/ethyl acetate = 40/1), mp 112-114 °C, yield: 62%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.55 (d, *J* = 8.0 Hz, 1H), 7.43-7.34 (m, 6H), 7.25-7.22 (m, 1H), 5.96 (s, 1H), 5.59 (s, 1H), 3.74 (s, 3H), 2.80 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  171.9, 170.5, 141.9, 136.3, 134.4, 130.9, 129.1, 129.0, 128.8, 128.1, 124.2, 120.9, 115.1, 111.8, 53.3, 52.5, 27.5; HRMS (ESI) exact mass calcd. for C<sub>19</sub>H<sub>16</sub>ClNNaO<sub>3</sub> ([M + Na]<sup>+</sup>) 364.0701, found: m/z 364.0705.



**Methyl 2-(5-fluoro-1-acetyl-1***H***-indol-2-yl)-2-phenylacetate:** White solid (Flash column chromatography eluent: petroleum ether/ethyl acetate = 40/1), mp 122-123 °C, yield: 55%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.58-7.55 (m, 1H), 7.43-7.38 (m, 3H), 7.36-7.34 (m, 2H), 7.08-7.05 (m, 1H), 7.03-6.98 (m, 1H), 5.98 (s, 1H), 5.59 (s, 1H), 3.74 (s, 3H), 2.80 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  172.0, 170.5, 160.2, 158.3, 142.1, 136.4, 132.4, 130.8, 130.7, 129.1, 129.0, 128.0, 115.1, 115.0, 112.3, 111.90, 111.7, 106.9, 106.8, 53.3, 52.5, 27.5; HRMS (ESI) exact mass calcd. for C<sub>19</sub>H<sub>16</sub>FNNaO<sub>3</sub> ([M + Na]<sup>+</sup>) 348.1005, found: 348.1002.



**Methyl 2-(5-cyano-1-acetyl-1***H***-indol-2-yl)-2-phenylacetate:** White solid (Flash column chromatography eluent: petroleum ether/ethyl acetate = 30/1), mp 129-131 °C, yield: 45% ; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.73 (d, *J* = 8.0 Hz, 2H), 7.55 (d, *J* = 8.0 Hz, 1H), 7.43-7.42 (m, 4H), 7.34 (d, *J* = 8.0 Hz, 1H), 6.08 (s, 1H), 5.60 (s, 1H), 3.75 (s, 3H), 2.84 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  171.7, 170.6, 142.9, 137.8, 136.0, 129.6, 129.1, 129.0, 128.3, 127.3, 125.9, 119.3, 114.8, 111.8, 106.6, 53.1, 52.6, 27.6; HRMS (ESI) exact mass calcd. for C<sub>20</sub>H<sub>16</sub>N<sub>2</sub>NaO<sub>3</sub> ([M + Na]<sup>+</sup>) 355.1048, found: 355.1052.



Methyl 2-(5-carboxylic acid methyl ester-1-acetyl-1*H*-indol-2-yl)-2-phenylacetate: White solid (Flash column chromatography eluent: petroleum ether/ethyl acetate = 30/1), mp 143-145 °C, yield: 45%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 8.13 (s, 1H), 7.98 (d, *J* = 8.0 Hz, 1H), 7.67 (d, *J* = 8.0 Hz, 1H), 7.42-7.35 (m, 5H), 6.09 (s, 1H), 5.61 (s, 1H), 3.91 (s, 3H), 3.75 (s, 3H), 2.85 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  172.0, 170.8, 167.0, 141.8, 138.6, 136.3, 129.4, 129.1, 129.0, 128.1, 125.5, 125.1, 123.5, 113.8, 112.7, 53.2, 52.5, 52.1, 27.6; HRMS (ESI) exact mass calcd. for C<sub>21</sub>H<sub>19</sub>NNaO<sub>5</sub> ([M + Na]<sup>+</sup>) 388.1147, found: 388.1153.



**Methyl 2-(5-methyl-1-acetyl-1***H***-indol-2-yl)-2-phenylacetate:** White solid (Flash column chromatography eluent: petroleum ether/ethyl acetate = 100/1), mp 160-161 °C, yield: 79%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.49 (d, J = 8.0 Hz, 1H), 7.42-7.35 (m, 5H), 7.19 (br, 1H), 7.10-7.07 (m, 1H), 5.95 (s, 1H), 5.60 (s, 1H), 3.74 (s, 3H), 2.79 (s, 3H), 2.38 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  172.2, 170.7, 140.4, 136.8, 134.3, 132.7, 129.9, 129.2, 128.9, 127.9, 125.5, 121.3, 113.9, 112.4, 53.4, 52.4, 27.5, 21.0; HRMS (ESI) exact mass calcd. for C<sub>20</sub>H<sub>19</sub>NNaO<sub>3</sub> ([M + Na]<sup>+</sup>) 344.1248, found: 344.1255.



**Methyl 2-(4-methyl-1-acetyl-1***H***-indol-2-yl)-2-phenylacetate:** White solid (Flash column chromatography eluent: petroleum ether/ethyl acetate = 40/1), mp 122-123 °C, yield: 82%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.47-7.36 (m, 6H), 7.18 (t, *J* = 8.0 Hz, 1H), 7.01 (d, *J* = 8.0 Hz, 1H), 6.06 (s, 1H), 5.63 (s, 1H), 3.74 (s, 3H), 2.81 (s, 3H), 2.36 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  172.3, 171.0, 139.6, 136.7, 135.9, 130.9, 129.2, 129.1, 128.9, 127.9, 124.2, 123.6, 111.7, 110.7, 53.3, 52.4, 27.6, 18.4; HRMS (ESI) exact mass calcd. for C<sub>20</sub>H<sub>19</sub>NNaO<sub>3</sub> ([M + Na]<sup>+</sup>) 344.1246, found: 344.1253.



**Methyl 2-(6-methyl-1-acetyl-1***H***-indol-2-yl)-2-phenylacetate:** White solid (Flash column chromatography eluent: petroleum ether/ethyl acetate = 40/1), mp 108-110 °C, yield: 83%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.43-7.35 (m, 6H), 7.28 (d, *J* = 8.0 Hz, 1H), 7.03 (d, *J* = 8.0 Hz, 1H), 5.96 (s, 1H), 5.59 (s, 1H), 3.74 (s, 3H), 2.81 (s, 3H), 2.48 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  172.2, 170.9, 139.7, 136.8, 136.5, 134.1, 129.1, 128.8, 127.8, 127.4, 124.4, 120.9, 114.6, 112.4, 53.3, 52.4, 27.7, 22.3; HRMS (ESI) exact mass calcd. for C<sub>20</sub>H<sub>19</sub>NNaO<sub>3</sub> ([M + Na]<sup>+</sup>) 344.1247, found: 344.1256.



**Methyl 2-(6-methoxy-1-acetyl-1***H***-indol-2-yl)-2-phenylacetate:** White solid (Flash column chromatography eluent: petroleum ether/ethyl acetate = 40/1), mp 110-111 °C, yield: 76%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.44-7.35 (m, 5H), 7.29 (d, *J* = 8.0 Hz, 1H), 7.17 (s, 1H), 6.85 (d, *J* = 8.0 Hz, 1H), 5.93 (s, 1H), 5.58 (s, 1H), 3.86 (s, 3H), 3.74 (s, 3H), 2.79 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  172.3, 170.8, 157.5, 139.2, 137.0, 136.8, 129.1, 128.9, 127.9, 123.7, 121.7, 112.3, 110.3, 100.9, 55.9, 53.3, 52.4, 27.5; HRMS (ESI) exact mass calcd. for C<sub>20</sub>H<sub>19</sub>NNaO<sub>4</sub> ([M +

Na]<sup>+</sup>) 360.1198, found: 360.1202.



**Methyl 2-(1***H***-indol-2-yl)-2-p-tolylacetate<sup>1</sup>:** Red oil (Flash column chromatography eluent: petroleum ether/ethyl acetate = 50/1), yield: 53%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 8.71 (s, 1H), 7.54 (d, *J* = 8.0 Hz, 1H), 7.31 (d, *J* = 8.0 Hz, 1H), 7.23-7.19 (m, 2H), 7.16-7.11 (m, 3H), 7.07 (t, *J* = 8.0 Hz, 1H), 6.38 (s, 1H), 5.37 (s, 1H), 3.77 (s, 3H), 2.31 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  172.5, 137.6, 136.3, 134.7, 134.4, 129.5, 128.1, 127.9, 121.9, 120.4, 119.9, 111.0, 102.1, 52.7, 50.3, 21.0; HRMS (ESI) exact mass calcd. for C<sub>18</sub>H<sub>17</sub>NNaO<sub>2</sub>([M + Na]<sup>+</sup>) 302.1335, found: 302.1331.



Methyl 2-(1*H*-indol-2-yl)-2-(4-methoxyphenyl)acetate<sup>1</sup>: Red oil (Flash column chromatography eluent: petroleum ether/ethyl acetate = 50/1), yield: 58%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ (ppm) 8.71 (s, 1H), 7.54 (d, J = 8.0 Hz, 1H), 7.31 (d, J = 8.0 Hz, 1H), 7.23 (d, J = 8.0 Hz, 2H), 7.14 (t, J = 8.0 Hz, 1H), 7.07 (t, J = 8.0 Hz, 1H), 6.84 (d, J = 8.0 Hz, 2H), 6.37 (s, 1H), 5.15 (s, 1H), 3.76 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>): δ 172.6, 159.1, 136.3, 134.9, 129.5, 129.1, 128.1, 128.0, 121.9, 120.3, 119.9, 114.2, 111.0, 102.0, 55.3, 52.6, 49.8; HRMS (ESI) exact mass calcd. for  $C_{18}H_{17}NNaO_3([M + Na]^+)$  318.1286, found: 318.1283.



**Methyl 2-(1***H***-indol-2-yl)-2-(4-chlorophenyl)acetate<sup>1</sup>:** Red oil (Flash column chromatography eluent: petroleum ether/ethyl acetate = 50/1), yield: 61%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 8.69 (s, 1H), 7.54 (d, *J* = 8.0 Hz, 1H), 7.30-7.20 (m, 5H), 7.18-7.12 (m, 1H), 7.07 (t, *J* = 8.0 Hz, 1H), 6.36 (s, 1H), 5.14 (s, 1H), 3.75 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  172.0, 136.3, 135.9, 133.9, 133.7, 129.4, 128.9, 128.0, 122.1, 120.4, 120.0, 111.0, 102.4, 52.8, 49.9; HRMS (ESI)

exact mass calcd. for  $C_{17}H_{14}CINNaO_2([M + Na]^+)$  322.0789, found: 322.0785.



**Methyl 2-(1-acetyl-1***H***-indol-2-yl)-2-(4-chlorophenyl)acetate:** White solid (Flash column chromatography eluent: petroleum ether/ethyl acetate = 100/1), mp 115-116 °C, yield: 80%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.63 (d, J = 8.0 Hz, 1H), 7.44 (d, J = 8.0 Hz, 1H), 7.38 (d, J = 8.0 Hz, 2H), 7.31-7.20 (m, 4H), 6.06 (s, 1H), 5.61 (s, 1H), 3.74 (s, 3H), 2.81 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  171.8, 170.8, 139.7, 136.0, 135.2, 133.9, 130.5, 129.5, 129.1, 124.4, 123.2, 121.5, 114.2, 112.5, 52.6, 52.5, 27.6; HRMS (ESI) exact mass calcd. for C<sub>19</sub>H<sub>16</sub>ClNNaO<sub>3</sub> ([M + Na]<sup>+</sup>) 364.0702, found: 364.0709.



**Methyl 2-(1-acetyl-1***H***-indol-2-yl)-2-(4-methoxyphenyl)acetate:** White solid (Flash column chromatography eluent: petroleum ether/ethyl acetate = 100/1), mp 90-92 °C, yield: 78%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.63 (d, J = 8.0 Hz, 1H), 7.42 (d, J = 8.0 Hz, 1H), 7.30-7.26 (m, 3H), 7.20 (t, J = 8.0 Hz, 1H), 6.94 (d, J = 8.0 Hz, 2H), 6.05 (s, 1H), 5.55 (s, 1H), 3.84 (s, 3H), 3.74 (s, 3H), 2.82 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  172.4, 170.8, 159.3, 140.8, 136.1, 130.2, 129.7, 128.7, 124.2, 123.1, 121.4, 114.3, 114.2, 112.5, 55.3, 52.5, 52.4, 27.6; HRMS (ESI) exact mass calcd. for C<sub>20</sub>H<sub>19</sub>NNaO<sub>4</sub>([M + Na]<sup>+</sup>) 360.1199, found: 360.1204.



**Methyl 2-(1-(toluene-4-sulfonyl)-1***H***-indol-2-yl)-2-(4-methylphenyl)acetate:** Colorless oil (Flash column chromatography eluent: petroleum ether/ethyl acetate = 50/1), yield: 73%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 8.01 (d, *J* = 8.0 Hz, 1H), 7.57 (d, *J* = 8.0 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H)

1H), 7.25-7.10 (m, 8H), 6.32 (s, 1H), 5.75 (s, 1H), 3.73 (s, 3H), 2.35 (s, 3H), 2.29 (s, 3H);  $^{13}$ C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  171.9, 144.8, 138.8, 137.7, 137.1, 135.9, 133.5, 129.7, 129.5, 129.0, 128.8, 126.6, 124.6, 123.6, 120.9, 114.7, 112.8, 52.6, 50.7, 21.5, 21.1; HRMS (ESI) exact mass calcd. for C<sub>25</sub>H<sub>23</sub>NNaO<sub>4</sub>S ([M + Na]<sup>+</sup>) 456.1230, found: 456.1235.



**Methyl 2-(1-acetyl-1***H***-indol-2-yl)-2-(4-methylphenyl)acetate:** White solid (Flash column chromatography eluent: petroleum ether/ethyl acetate = 40/1), mp 100-102 °C, yield: 82%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.64 (d, *J* = 8.0 Hz, 1H), 7.42 (d, *J* = 8.0 Hz, 1H), 7.29-721 (m, 6H), 6.06 (s, 1H), 5.59 (s, 1H), 3.75(s, 3H), 2.83 (s, 3H), 2.40 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  172.3, 170.8, 140.6, 137.6, 136.1, 133.6, 129.7, 129.6, 129.0, 124.2, 123.1, 121.4, 114.2, 112.5, 52.9, 52.4, 27.6, 21.2; HRMS (ESI) exact mass calcd. for C<sub>20</sub>H<sub>19</sub>NNaO<sub>3</sub> ([M + Na]<sup>+</sup>) 344.1246, found: 344.1252.



**Methyl 2-(1-acetyl-1***H***-indol-2-yl)-2-(2-bromophenyl)acetate:** White solid (Flash column chromatography eluent: petroleum ether/ethyl acetate = 40/1), mp 146-147 °C, yield: 82%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.68-7.65 (m, 2H), 7.44 (d, *J* = 4.0 Hz, 1H), 7.37-7.29 (m, 3H), 7.24-7.20 (m, 2H), 6.10 (s, 1H), 5.97 (s, 1H), 3.78 (s, 3H), 2.84 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$ 171.8, 170.7, 138.5, 136.7, 136.1, 133.5, 129.6, 129.6, 129.4, 127.8, 125.5, 124.3, 123.1, 121.4, 114.3, 112.2, 52.9, 52.6, 27.6; HRMS (ESI) exact mass calcd. for C<sub>19</sub>H<sub>16</sub>BrNNaO<sub>3</sub> ([M + Na]<sup>+</sup>) 408.0206, found: 408.0203.



Methyl 2-(5-methyl-1-(toluene-4-sulfonyl)-1*H*-indol-2-yl)-2-(4-methylphenyl)acetate: Colorless oil (Flash column chromatography eluent: petroleum ether/ethyl acetate = 50/1), yield: 76%; <sup>1</sup>H NMR (400MHz, CDCl<sub>3</sub>): δ (ppm) 7.89 (d, J = 8.0 Hz, 1H), 7.54 (d, J = 8.0 Hz, 2H), 7.20-7.09 (m, 7H), 7.05 (d, J = 8.0 Hz, 1H), 6.27 (s, 1H), 5.73 (s, 1H), 3.72 (s, 3H), 2.34 (s, 3H), 2.33 (s, 3H), 2.28 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>): δ 171.9, 144.6, 138.8, 137.6, 135.9, 135.3, 133.6, 133.2, 129.6, 129.5, 129.3, 128.8, 126.5, 126.0, 120.8, 114.4, 112.7, 52.6, 50.6, 21.5, 21.1; HRMS (ESI) exact mass calcd. for C<sub>26</sub>H<sub>25</sub>NNaO<sub>4</sub>S ([M + Na]<sup>+</sup>) 470.1392, found: 470.1397.



Methyl 2-(5-chloro-1-acetyl-1*H*-indol-2-yl)-2-(4-methylphenyl)acetate: White solid (Flash column chromatography eluent: petroleum ether/ethyl acetate = 40/1), mp 118-120 °C, yield: 75%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ (ppm) 7.54 (d, J = 8.0 Hz, 1H), 7.37 (d, J = 4.0 Hz, 1H), 7.24-7.21 (m, 5H), 5.99 (s, 1H), 5.55 (s, 1H), 3.73 (s, 3H), 2.79 (s, 3H), 2.39 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>): δ 172.1, 170.5, 142.1, 137.8, 134.4, 133.3, 130.9, 129.7, 128.9, 128.8, 124.2, 120.8, 115.1, 111.7, 52.9, 52.4, 27.5, 21.2; HRMS (ESI) exact mass calcd. for C<sub>20</sub>H<sub>18</sub>ClNNaO<sub>3</sub> ([M + Na]<sup>+</sup>) 378.0855, found: 378.0860.



Methyl 2-(6-methyl-1-acetyl-1*H*-indol-2-yl)-2-(4-chlorophenyl)acetate: White solid (Flash column chromatography eluent: petroleum ether/ethyl acetate = 40/1), mp 143-144 °C, yield: 81%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.42 (s, 1H), 7.37 (d, *J* = 8.0 Hz, 2H), 7.32-7.28 (m, 3H), 7.05 (d, *J* = 8.0 Hz, 1H), 6.00 (s, 1H), 5.58 (s, 1H), 3.74 (s, 3H), 2.80 (s, 3H), 2.48 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  171.9, 170.9, 139.0, 136.4, 135.3, 134.3, 133.8, 130.5, 129.0, 127.3, 124.6, 121.0, 114.6, 112.4, 52.6, 52.5, 27.7, 22.3; HRMS (ESI) exact mass calcd. for C<sub>20</sub>H<sub>18</sub>ClNNaO<sub>3</sub> ([M + Na]<sup>+</sup>) 378.0858, found: 378.0862.



**Methyl 2-(6-methyl-1-acetyl-1***H***-indol-2-yl)-2-(4-methylphenyl)acetate:** White solid (Flash column chromatography eluent: petroleum ether/ethyl acetate = 40/1), mp 122-124 °C, yield: 88%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.43 (s, 1H), 7.28 (d, *J* = 8.0 Hz, 1H), 7.26-7.19 (m, 4H), 7.03 (d, *J* = 8.0 Hz, 1H), 5.99 (s, 1H), 5.55 (s, 1H), 3.73 (s, 3H), 2.81 (s, 3H), 2.48 (s, 3H), 2.38 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  172.4, 170.9, 139.9, 137.6, 136.5, 134.0, 133.8, 129.6, 129.0, 127.4, 124.4, 120.9, 114.6, 112.4, 52.9, 52.3, 27.7, 22.3, 21.2; HRMS (ESI) exact mass calcd. for C<sub>21</sub>H<sub>21</sub>NNaO<sub>3</sub> ([M + Na]<sup>+</sup>) 358.1408, found: 358.1411.



**Methyl 2-(6-methyl-1-acetyl-1***H***-indol-2-yl)-2-(4-methoxyphenyl)acetate:** White solid (Flash column chromatography eluent: petroleum ether/ethyl acetate = 40/1), mp 161-162 °C, yield: 85%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.42 (s, 1H), 7.30-7.26 (m, 3H), 7.03 (d, *J* = 8.0 Hz, 1H), 6.93 (d, *J* = 8.0 Hz, 2H), 6.00 (s, 1H), 5.53 (s, 1H), 3.83 (s, 3H), 3.73 (s, 3H), 2.80 (s, 3H), 2.48 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  172.4, 170.9, 159.2, 140.1, 136.5, 134.0, 130.2, 128.8, 127.4, 124.4, 120.9, 114.6, 114.3, 112.3, 55.3, 52.5, 52.3, 27.7, 22.3; HRMS (ESI) exact mass calcd. for C<sub>21</sub>H<sub>21</sub>NNaO<sub>4</sub>([M + Na]<sup>+</sup>) 374.1350, found: 374.1358.



**Methyl 2-(5-cyano-1-acetyl-1***H***-indol-2-yl)-2-(4-methylphenyl)acetate:** White solid (Flash column chromatography eluent: petroleum ether/ethyl acetate = 40/1), mp 152-153 °C, yield: 55%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.73 (d, *J* = 8.0 Hz, 2H), 7.56-7.53 (m, 1H), 7.23-7.21 (m, 4H), 6.10 (s, 1H), 5.56 (s, 1H), 3.74 (s, 3H), 2.84 (s, 3H), 2.40(s, 3H); <sup>13</sup>C NMR (125 MHz,

CDCl<sub>3</sub>)  $\delta$  171.9, 170.5, 143.1, 138.1, 137.8, 132.9, 129.8, 129.6, 128.9, 127.2, 125.9, 119.3, 114.8, 111.7, 106.6, 52.7, 52.6, 27.6, 21.2; HRMS (ESI) exact mass calcd. for C<sub>21</sub>H<sub>18</sub>N<sub>2</sub>NaO<sub>3</sub>([M + Na]<sup>+</sup>) 369.1209, found: 369.1211.



**Methyl 2-(1-(toluene-4-sulfonyl)-1***H***-indol-2-yl)-2-benzylacetate:** Yellow oil (Flash column chromatography eluent: petroleum ether/ethyl acetate = 50/1), yield: 67%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 8.12 (d, J = 8.0 Hz, 1H), 7.59 (d, J = 8.0 Hz, 2H), 7.46 (d, J = 8.0 Hz, 1H), 7.29-7.20 (m, 7H), 7.14 (d, J = 8.0 Hz, 2H), 6.72 (s, 1H), 4.98 (t, J = 8.0 Hz, 1H), 3.61 (s, 3H), 3.34-3.31 (m, 2H), 2.32 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$  172.4, 144.8, 138.7, 138.4, 137.0, 135.8, 129.7, 129.3, 129.1, 128.4, 126.6, 126.5, 124.7, 123.7, 120.8, 115.1, 110.6, 52.2, 46.5, 39.7, 21.5; HRMS (ESI) exact mass calcd. for C<sub>25</sub>H<sub>23</sub>NNaO<sub>4</sub>S ([M + Na]<sup>+</sup>) 456.1235, found: 456.1239.



Methyl 2-(1-acetyl-1*H*-indol-2-yl)-2-benzylacetate: Yellow oil (Flash column chromatography eluent: petroleum ether/ethyl acetate = 100/1), yield: 73%; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ (ppm) 7.63 (d, J = 8.0 Hz, 1H), 7.53 (d, J = 4.0 Hz, 1H), 7.30-7.19 (m, 7H), 6.62 (s, 1H), 4.73 (t, J = 6.0 Hz, 1H), 3.65 (s, 3H), 3.48-3.43 (m, 1H), 3.30-3.25 (m, 1H), 2.80 (s, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>): δ 172.8, 170.5, 139.0, 139.0, 135.7, 129.7, 128.9, 128.3, 126.4, 124.1, 123.1, 121.3, 114.1, 110.5, 52.1, 48.0, 38.1, 27.6; HRMS (ESI) exact mass calcd. for C<sub>20</sub>H<sub>19</sub>NNaO<sub>3</sub> ([M + Na]<sup>+</sup>) 344.1250, found: 344.1253.



(*IR*,2*S*,5*R*)-8-menthyl-2-(1-acetyl-1*H*-indol-2-yl)-2-phenylacetate: Colorless oil (Flash column chromatography eluent: petroleum ether/ethyl acetate = 50/1), yield: 71% (d.r.: 1:1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.63 (d, *J* = 8.0 Hz, 1H), 7.43-7.35 (m, 6H), 7.30-7.26 (m, 1H), 7.20

(t, J = 8.0 Hz, 1H), 6.08 (s, 1H), 5.57 (s, 1H), 4.71-4.64 (m, 1H), 2.83 (s, 3H), 2.20-2.17 (m, 1H), 1.67-1.57 (m, 1H), 1.51-1.49 (m, 1H), 1.13-1.28 (m, 2H), 1.18-1.10 (m, 1H), 0.95 (d, J = 4.0 Hz, 3H), 0.64-0.62 (d, J = 8.0 Hz, 3H), 0.54-0.52 (d, J = 8.0 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>):  $\delta$ 171.2, 170.7, 140.6, 136.9, 136.1, 129.7, 129.3, 128.6, 127.7, 124.0, 123.0, 121.3, 114.1, 112.3, 75.1, 53.8, 47.0, 40.6, 34.3, 31.5, 27.6, 25.5, 23.2, 22.1, 20.5, 15.9; HRMS (ESI) exact mass calcd. for C<sub>28</sub>H<sub>33</sub>NNaO<sub>3</sub> ([M + Na]<sup>+</sup>) 454.2348, found: 454.2351.



(*1R,2S,5R*)-8-Phenylmenthyl-2-(1-acetyl-1*H*-indol-2-yl)-2-phenylacetate: White solid (Flash column chromatography eluent: petroleum ether/ethyl acetate = 40/1), mp 114-115 °C, yield: 76% (d.r.: 1:1.5); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.64 (d, *J* = 8.0 Hz, 1H), 7.45-7.35 (m, 5H), 7.32-7.28 (m, 2H), 7.24-7.19 (m, 3H), 7.13-7.10 (m, 3H), 6.18 (s, 1H), 5.88 (s, 1H), 4.81-4.74 (m, 1H), 2.80 (s, 3H), 2.23 (d, *J* = 12.0 Hz, 1H), 1.90-1.83 (m, 1H), 1.48-1.45 (m, 2H), 1.16 (t, *J* = 12.0 Hz, 2H), 1.00 (s, 3H), 0.89 (d, *J* = 8.0 Hz, 1H), 0.86-0.70 (m, 5H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  170.8, 170.5, 150.7, 140.2, 136.1, 129.7, 129.6, 128.7, 127.9, 125.7, 125.1, 124.1, 123.0, 121.3, 114.2, 112.3, 53.6, 50.6, 41.2, 40.1, 34.6, 31.4, 29.7, 27.6, 22.9, 21.9; HRMS (ESI) exact mass calcd. for C<sub>34</sub>H<sub>37</sub>NNaO<sub>3</sub>([M + Na]<sup>+</sup>) 530.2650, found: 530.2660.

#### References

- 1) Chan, W.-W.; Yeung, S-H.; Zhou, Z.; Chan, A.; Yu, W.-Y. Org. Lett. 2010, 12, 604-607.
- 2) Sakai, N.; Annaka, K.; Fujita, A.; Sato, A.; Konakahara, T. J. Org. Chem. 2008, 73, 4160-4165.
- 3) Chen, Z.-Y.; Zheng, D.-Q.; Wu, J. Org. Lett. 2011, 13, 848-851.
- 4) Shu, C.; Liu, M.-Q.; Wang, S.-.S.; Li, L.; Ye, L.-W. J. Org. Chem. 2008, 78, 3292-3299.









400MHz, CDCl<sub>3</sub>

11.0 10.5 10.0







| Electronic Supplementary Material (ESI) for Organic & Biomolecu | lar Chemistry |                               |                                                                                                                  |
|-----------------------------------------------------------------|---------------|-------------------------------|------------------------------------------------------------------------------------------------------------------|
| I his journal is © The Royal Society of Chemistry 2014          |               |                               |                                                                                                                  |
| NC H<br>NHAc                                                    |               |                               |                                                                                                                  |
| 125MHz, CDCl <sub>3</sub>                                       |               |                               |                                                                                                                  |
|                                                                 |               |                               |                                                                                                                  |
|                                                                 |               |                               |                                                                                                                  |
|                                                                 | I             |                               |                                                                                                                  |
|                                                                 |               |                               |                                                                                                                  |
|                                                                 |               |                               |                                                                                                                  |
|                                                                 |               |                               | les the second |
|                                                                 |               |                               |                                                                                                                  |
| 210 200 190 180 170 160 15                                      | 0 140 130     | 120 110 100 90 80<br>f1 (ppm) | 70 60 50 40 30 20 10 0                                                                                           |





| is journal is © The Royal Society of Chemistry 2014 | <ul> <li>− 8. 24</li> <li>8. 23</li> <li>6. 7. 96</li> </ul> | $\bigwedge_{6.93}^{7.26} 7.26 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 \\ 6.93 $ | 3. 73 |  |
|-----------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|
| MeH                                                 |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |  |



400MHz, CDCl<sub>3</sub>













03 03 03 ċċ 





-42000

-40000

-38000

-36000





6.0 5.5 f1 (ppm) 12.0 11.5 11.0 10.5 10.0 9.5 5.0 4.5 1.5 1.0 9.0 8.5 8.0 7.5 7.0 6.5 4.0 3.5 3.0 2.5 2.0 0.5 0.0

-2000





-28000






7. 11 7. 08 7. 06 6. 27



10.5

10.0

9.5

9.0

8.5

8.0



4.5

4.0

3.5

3.0

2.0

1.5

1.0

0.5

0.0

2.5

7.0

6.5

6.0

7.5



















| Electronic Supplementary Material (ESI) for Organic & Biomolec     | ular Chemistry                                                                                                                                                 |                                                            |         |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------|
| This journal is © The Royal Society of Chemistry 2014<br>City<br>나 | $\begin{array}{c} & 139. \ 61 \\ \hline 135. \ 86 \\ 1336. \ 70 \\ 1230. \ 86 \\ 1221. \ 88 \\ 1224. \ 228 \\ 123. \ 58 \\ 123. \ 58 \\ 110. \ 66 \end{array}$ | 53.27<br>53.27<br>52.40                                    |         |
|                                                                    |                                                                                                                                                                |                                                            |         |
| 125MHz, CDCl <sub>3</sub>                                          |                                                                                                                                                                |                                                            |         |
|                                                                    |                                                                                                                                                                |                                                            |         |
|                                                                    |                                                                                                                                                                |                                                            |         |
|                                                                    |                                                                                                                                                                |                                                            |         |
|                                                                    |                                                                                                                                                                |                                                            |         |
|                                                                    |                                                                                                                                                                | Managen general and an |         |
| 210 200 190 180 170 160 1                                          | 50 140 130 120 110 100 90 80<br>f1 (ppm)                                                                                                                       | 70 60 50 40 30                                             | 20 10 0 |



| Electronic Supplementary Material (ESI)<br>This journal is © The Royal Society of Ch<br>Me O Ac<br>125MHz, CDCl <sub>3</sub> | for Organic & Biomolecular<br>nemistry 2014<br>222<br>221<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | Chemistry<br>136.99<br>136.99<br>136.98<br>136.98<br>121.65<br>121.65 |                           | 55. 92<br>∧ 55. 38<br>52. 38                                                                                   |                                                                         |
|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
|                                                                                                                              |                                                                                                                                      |                                                                       |                           |                                                                                                                |                                                                         |
| na an a                                                                                     |                                                                                                                                      |                                                                       |                           | Kanati ina peringa di nin digan yang menantahan di na ang antah sebagan yang menantahan sebagan yang menantaha | tarren bili - Landrich mannen zen zen Balinien jarren bereke bereken ge |
| 210 200 190 180                                                                                                              | 170 160 150                                                                                                                          | 140 130 120                                                           | 110 100 90 80<br>f1 (ppm) | 70 60 50 40                                                                                                    | 30 20 10 0                                                              |











----5. 59

\_\_\_\_2. 80

-42000

-40000

-38000





























-50000

-45000

-40000

-35000

-30000

-25000





110 100 f1 (ppm) 


















400MHz, CDCl<sub>3</sub>



-60000

-55000

-35000

















| Electronic Supplementary Material (ESI) f                                                                        | or Organic & Biomolecular C                                                  | nemistry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |                       |            |
|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------|------------|
| This journal is © The Royal Society of Ch                                                                        | 172. 449<br>170. 851449<br>159. 2014 159.                                    | $\begin{array}{c} 140.09\\ 136.50\\ 136.50\\ 138.19\\ 128.81\\ 128.81\\ 128.82\\ 129.12\\ 124.22\\ 112.34\\ 114.60\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\ 112.34\\$ |                     | 55.30 $52.32$ $52.32$ |            |
| OMe                                                                                                              |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |                       |            |
| Me Ac COOMe                                                                                                      |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |                       |            |
| 125MHz, CDCl <sub>3</sub>                                                                                        |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |                       |            |
|                                                                                                                  |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |                       |            |
|                                                                                                                  |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |                       |            |
|                                                                                                                  |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |                       |            |
|                                                                                                                  |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |                       |            |
|                                                                                                                  |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |                       |            |
| as in the American and a well as well for the American Statement of the American Statement of American Statement | lang bandaran kara ban sekilaran yan da kara kara kara kara kara kara kara k | <u>, , , , , , , , , , , , , , , , , , , </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                       |            |
| 210 200 190 180                                                                                                  | 170 160 150                                                                  | 140 130 120 110<br>f1 (p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100 90 80 70<br>pm) | 60 50 40              | 30 20 10 0 |







400MHz, CDCl<sub>3</sub>









Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2014  $\begin{array}{c} 7.60\\ 7.58\\ 7.29\\ 6.72\\ 7.22\\ 6.13\\ 6.13\\ 6.13\\ 7\end{array}$ 







Bn

Ac.

400MHz, CDCl<sub>3</sub>

COOMe





-36000

-34000

-32000

-30000

-28000

-26000

-24000

-22000

-20000

-18000

Ļ

--2000

-16000













