Deproto-metallation using a mixed lithium-zinc base and computed CH

acidity of 1-aryl 1H-benzotriazoles and 1-aryl 1H-indazoles

Elisabeth Nagaradja,^a Floris Chevallier,^{*a} Thierry Roisnel,^b Vincent Dorcet,^b Yury S. Halauko,^{*c} Oleg A. Ivashkevich,^c Vadim E. Matulis^d and Florence Mongin^{*a}

^a Équipe Chimie et Photonique Moléculaires, Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes 1, Bâtiment 10A, Case 1003, Campus Scientifique de Beaulieu, 35042 Rennes, France.

^b Centre de Diffractométrie X, Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes 1, Bâtiment 10B, Campus Scientifique de Beaulieu, 35042 Rennes, France.

> ^c Department of Electrochemistry of Belarusian State University, 14 Leningradskaya Str., Minsk, 220030, Belarus.

^d Research Institute for Physico-Chemical Problems of Belarusian State University, 14 Leningradskaya Str., Minsk, 220030, Belarus.

e-mails: floris.chevallier@univ-rennes1.fr, hys@tut.by, florence.mongin@univ-rennes1.fr

Table of Contents

Page	Item
S2	¹ H, ¹³ C and ¹⁹ F NMR spectra
S33	Crystal data
S35	Calculated values of the Gibbs energies $\Delta_{acid}G$ [kcal mo1 ⁻¹] for
	deprotonation at the corresponding positions of the investigated
	heteroaromatic compounds
S36	Cartesian coordinates of molecular geometries for most stable rotamer
	forms of selected heteroaromatics (on example of 1e , 2e) (neutral
	molecule, gas phase) optimized at B3LYP/6-31G(d) level of theory

¹H, ¹³C and ¹⁹F NMR and spectra

1-Phenyl-1*H*-benzotriazole (1a).

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

1H - 300 MHz - CDCIa Դ 2.00 구 2.31 구 2.19 구 2.16 8.0 5.0 3.0 2.0 Т 7.0 6.0 Т 4.0 Т Т 1.0 Т Т Т Т 9.0 ppm (t1) 164.565 161.264 145.175 136.758 136.716 127.394 122.605 122.492 118.441 116.628 116.320 77.583 77.160 76.737 13C - 75 MHz - CDCl₃ 100 90 70 60 20 190 180 170 160 150 140 130 120 110 80 50 40 30 10 ppm (t1)

2-(4-Fluorophenyl)-2*H*-benzotriazole (1b')

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2013

ppm (t1)

1-(4-Chlorophenyl)-1*H*-benzotriazole (1c).

ppm (t1)

2-(4-Chlorophenyl)-2H-benzotriazole (1c').

ppm (t1)

1-(4-Trifluoromethylphenyl)-1*H*-benzotriazole (1d).

ppm (t1)

1-(4-Methoxyphenyl)-1*H*-benzotriazole (1e).

ppm (t1)

2-(4-Methoxyphenyl)-2H-benzotriazole (1e').

1-(3-Pyridyl)-1*H*-benzotriazole (1f).

ppm (f1)

1-(2-Thienyl)-1*H*-benzotriazole (1g).

ppm (t1)

2-(2-Thienyl)-2H-benzotriazole (1g').

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm (t1)

1-Phenyl-1*H*-indazole (2a).

ppm (t1)

8.249 8.247 7.926 7.928 7.849 7.845 7.797 7.797 7.797 7.797 7.797 7.797 7.797 7.797 7.797 7.797 7.797 7.798 7.493 7.493 7.493 7.286 7.286 7.286 7.286 Ŭ CF₃ 1H - 300 MHz - CDCla ΨΨ Ч <u>ц</u> - 0.94 - 1.09 6.24 1.00 8.0 3.0 5.0 4.0 Т Т 7.0 6.0 2.0 Т 1.0 Т Т Т Т Т Т 9.0 ppm (t1) 77.584 77.160 76.736 \square Ç CF3 13C - 75 MHz - CDCl3 110 100 60 10 190 180 170 160 150 140 130 120 90 80 70 50 40 30 20 ppm(t1)

1-(4-Trifluoromethylphenyl)-1*H*-indazole (2d).

ppm (t1)

1-(2-Thienyl)-1*H*-indazole (2g).

140 130 120 ppm (t1)

4-lodo-1-phenyl-1*H*-benzotriazole (3b).

1-(2-lodophenyl)-1*H*-benzotriazole (3b').

4-lodo-1-(4-methoxyphenyl)-1*H*-benzotriazole (3e).

ppm (t1)

1-(5-lodo-2-thienyl)-1*H*-benzotriazole (3g).

1-(5-lodo-2-thienyl)-1*H*-indazole (5g).

ppm (t1)

4-lodo-1-(2-iodophenyl)-1*H*-benzotriazole (4b).

4-lodo-1-(3-iodo-4-chlorophenyl)-1*H*-benzotriazole (4c).

4-lodo-1-(2-iodo-4-trifluoromethylphenyl)-1*H*-benzotriazole (4d).

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 ppm (t1)

4-lodo-1-(2-iodo-4-methoxyphenyl)-1*H*-benzotriazole (4e).

4-lodo-1-(5-iodo-2-thienyl)-1*H*-benzotriazole (4g).

2-(Phenylamino)benzonitrile (6a).

ppm (t1)

Crystal data

The samples were studied with graphite monochromatized Mo-K α radiation ($\lambda = 0.71073$ Å). X-ray diffraction data were collected at T = 150(2) K using APEXII Bruker-AXS diffractometer. The structure was solved by direct methods using the SIR97 program,¹ and then refined with full-matrix least-square methods based on F^2 (SHELX-97)² with the aid of the WINGX program.³ All non-hydrogen atoms were refined with anisotropic atomic displacement parameters. H atoms were finally included in their calculated positions. Molecular diagrams were generated by ORTEP-3 (version 2.02).

Crystal data for 1f. C₁₁H₈N₄, M = 196.21, monoclinic, $P 2_I/c$, a = 11.2914(14), b = 3.7335(4), c = 21.924(3) Å, $\beta = 96.597(7)$ °, V = 918.1(2) Å³, Z = 4, d = 1.42 g cm⁻³, $\mu = 0.091$ mm⁻¹. A final refinement on F^2 with 2081 unique intensities and 137 parameters converged at $\omega R(F^2) = 0.1134$ (R(F) = 0.0533) for 1241 observed reflections with $I > 2\sigma(I)$.

Crystal data for 2g. $C_{11}H_8N_2S$, M = 200.25, monoclinic, $P 2_I$, a = 6.4535(5), b = 7.2728(5), c = 10.4085(6) Å, $\beta = 105.814(3)$ °, V = 470.03(6) Å³, Z = 2, d = 1.415 g cm⁻³, $\mu = 0.299$ mm⁻¹. A final refinement on F^2 with 1885 unique intensities and 127 parameters converged at $\omega R(F^2) = 0.0857$ (R(F) = 0.0414) for 1683 observed reflections with $I > 2\sigma(I)$.

Crystal data for 3b. $C_{12}H_8IN_3$, M = 321.11, monoclinic, $P2_1/c$, a = 8.00450(10), b = 15.6507(3), c = 9.0232(2) Å, $\beta = 100.4390(10)$ °, V = 1111.68(4) Å³, Z = 4, d = 1.919 g cm⁻³, $\mu = 2.854$ mm⁻¹. A final refinement on F^2 with 2544 unique intensities and 145 parameters converged at $\omega R(F^2) = 0.0507$ (R(F) = 0.0215) for 2303 observed reflections with $I > 2\sigma(I)$.

Crystal data for 3b'. $C_{12}H_8IN_3$, M = 321.11, monoclinic, $P2_1/n$, a = 9.9051(6), b = 7.5720(5), c = 14.9735(9) Å, $\beta = 100.491(3)$ °, V = 1104.26(12) Å³, Z = 4, d = 1.932 g cm⁻³, $\mu = 2.873$ mm⁻¹. A final refinement on F^2 with 2504 unique intensities and 145 parameters converged at $\omega R(F^2) = 0.0627$ (R(F) = 0.0257) for 2241 observed reflections with $I > 2\sigma(I)$.

Crystal data for 3e. $C_{13}H_{10}IN_{3}O$, M = 351.14, monoclinic, $P 2_{I}/a$, a = 12.1661(7), b = 7.2750(4), c = 14.9877(8) Å, $\beta = 111.5170(17)$ °, V = 1234.09(12) Å³, Z = 4, d = 1.89 g cm⁻³, $\mu = 2.586$ mm⁻¹. A final refinement on F^{2} with 2827 unique intensities and 164 parameters converged at $\omega R(F^{2}) = 0.0629$ (R(F) = 0.0281) for 2515 observed reflections with $I > 2\sigma(I)$.

Crystal data for 3g. $C_{10}H_6IN_3S$, M = 327.14, monoclinic, $P2_I/c$, a = 6.6989(10), b = 8.5117(12), c = 19.409(3) Å, $\beta = 96.629(5)$ °, V = 1099.3(3) Å³, Z = 4, d = 1.977 g cm⁻³, $\mu = 3.071$ mm⁻¹. A final refinement on F^2 with 2509 unique intensities and 136 parameters converged at $\omega R(F^2) = 0.1004$ (R(F) = 0.0392) for 1970 observed reflections with $I > 2\sigma(I)$.

¹ A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori and R. Spagna, *J. Appl. Crystallogr.*, 1999, **32**, 115-119.

² G. M. Sheldrick, Acta Crystallogr., Sect. A, 2008, A64, 112-122.

³ L. J. Farrugia, J. Appl. Crystallogr., 2012, **45**, 849-854.

Crystal data for 4b. $C_{12}H_7I_2N_3$, M = 447.01, orthorhombic, $P2_12_12_1$, a = 4.4884(2), b = 12.4932(5), c = 22.1910(10) Å, V = 1244.35(9) Å³, Z = 4, d = 2.386 g cm⁻³, $\mu = 5.034$ mm⁻¹. A final refinement on F^2 with 2732 unique intensities and 154 parameters converged at $\omega R(F^2) = 0.0747$ (R(F) = 0.0314) for 2611 observed reflections with $I > 2\sigma(I)$.

Crystal data for 4c. $C_{12}H_6CII_2N_3$, M = 481.45, orthorhombic, $P \ b \ c \ 2_I$, a = 4.0838(4), b = 14.2493(13), c = 23.294(2) Å, V = 1355.5(2) Å³, Z = 4, d = 2.359 g cm⁻³, $\mu = 4.821$ mm⁻¹. A final refinement on F^2 with 2941 unique intensities and 163 parameters converged at $\omega R(F^2) = 0.0796 \ (R(F) = 0.0429)$ for 2555 observed reflections with $I > 2\sigma(I)$.

Crystal data for 4c'. $C_{12}H_6Cll_2N_3$, M = 481.45, triclinic, P - I, a = 7.1169(3), b = 8.2892(3), c = 12.3378(5) Å, $\alpha = 77.399(2)$, $\beta = 74.075(2)$, $\gamma = 73.384(2)$ °, V = 662.94(5) Å³, Z = 2, d = 2.412 g cm⁻³, $\mu = 4.929$ mm⁻¹. A final refinement on F^2 with 2987 unique intensities and 163 parameters converged at $\omega R(F^2) = 0.0789$ (R(F) = 0.0416) for 2162 observed reflections with $I > 2\sigma(I)$.

Crystal data for 4d. $C_{13}H_6F_3I_2N_3$, M = 515.01, monoclinic, $P2_1/a$, a = 13.300(3), b = 5.2093(11), c = 21.672(6) Å, $\beta = 95.208(8)$ °, V = 1495.3(6) Å³, Z = 4, d = 2.288 g cm⁻³, $\mu = 4.234$ mm⁻¹. A final refinement on F^2 with 3424 unique intensities and 209 parameters converged at $\omega R(F^2) = 0.0706$ (R(F) = 0.0327) for 2806 observed reflections with $I > 2\sigma(I)$.

Crystal data for 4e. $C_{13}H_9I_2N_3O$, M = 477.03, monoclinic, $P 2_I/c$, a = 8.2536(4), b = 15.6664(7), c = 11.6615(5) Å, $\beta = 108.822(2)$ °, V = 1427.25(11) Å³, Z = 4, d = 2.22 g cm⁻³, $\mu = 4.402$ mm⁻¹. A final refinement on F^2 with 3270 unique intensities and 173 parameters converged at $\omega R(F^2) = 0.0783$ (R(F) = 0.0348) for 2889 observed reflections with $I > 2\sigma(I)$.

Crystal data for 4e'. $C_{13}H_9I_2N_3O$, M = 477.03, monoclinic, $P2_I/n$, a = 4.2004(2), b = 20.7217(14), c = 15.9102(11) Å, $\beta = 97.125(3)$ °, V = 1374.12(15) Å³, Z = 4, d = 2.306 g cm⁻³, $\mu = 4.572$ mm⁻¹. A final refinement on F^2 with 3121 unique intensities and 173 parameters converged at $\omega R(F^2) = 0.108$ (R(F) = 0.0356) for 2789 observed reflections with $I > 2\sigma(I)$.

Crystal data for 4g. $C_{10}H_5I_2N_3S$, M = 453.04, orthorhombic, $P \ b \ c \ 2_I$, a = 4.10400(10), b = 22.5488(7), c = 25.9538(10) Å, V = 2401.77(13) Å³, Z = 8, d = 2.506 g cm⁻³, $\mu = 5.386$ mm⁻¹. A final refinement on F^2 with 5344 unique intensities and 217 parameters converged at $\omega R(F^2) = 0.1001$ (R(F) = 0.0441) for 5098 observed reflections with $I > 2\sigma(I)$.

Calculated values of the Gibbs energies $\Delta_{acid}G$ [kcal mo1⁻¹] for deprotonation at the corresponding positions of the investigated heteroaromatic compounds

Cartesian coordinates of molecular geometries for most stable rotamer forms of selected heteroaromatics (on example of 1e, 2e) (neutral molecule, gas phase) optimized at B3LYP/6-31G(d) level of theory

1e

С	-1.90121	0.39199	0.055327
С	-2.10959	1.769358	-0.11828
С	-3.42905	2.189511	-0.2042
С	-4.51372	1.282504	-0.12501
С	-4.30318	-0.07773	0.03184
С	-2.97369	-0.52082	0.117184
Н	-1.28552	2.470358	-0.19359
Н	-3.63731	3.247217	-0.33989
Н	-5.52711	1.666795	-0.19554
Н	-5.12339	-0.78655	0.082583
Ν	-0.78939	-0.40676	0.160562
Ν	-1.17504	-1.72359	0.272634
Ν	-2.46279	-1.79565	0.245949
С	0.588611	-0.06427	0.155427
С	1.042616	1.062851	0.85348
С	1.497841	-0.86671	-0.5338
С	2.391018	1.391342	0.83835
Н	0.34398	1.667135	1.422901
С	2.856425	-0.55028	-0.53418
Н	1.138684	-1.74241	-1.0628
С	3.309394	0.587742	0.145765
Н	2.76092	2.260273	1.372846
Н	3.544979	-1.18992	-1.07358
0	4.608253	0.996049	0.198123
С	5.587198	0.217552	-0.47426
Н	5.39461	0.173519	-1.55421
Н	6.53992	0.719682	-0.29803
Н	5.635212	-0.8033	-0.07336

2e

С	-1.93096	0.279145	0.045031
С	-2.06485	1.670827	-0.10288
С	-3.35258	2.177784	-0.18975
С	-4.49064	1.339481	-0.13657
С	-4.35681	-0.03325	-0.01085
С	-3.06194	-0.57622	0.073875
Н	-1.20078	2.323069	-0.1625
Н	-3.49085	3.249312	-0.30637
Н	-5.47976	1.783361	-0.20442
Н	-5.23001	-0.67953	0.014633
Ν	-0.8261	-0.54224	0.138575
Ν	-1.19002	-1.86076	0.204347
С	0.549868	-0.19596	0.142705
С	1.005771	0.923024	0.853621
С	1.465789	-0.9906	-0.54817
С	2.354399	1.25415	0.84328
Н	0.308831	1.518647	1.433549
С	2.824112	-0.67274	-0.54408
Н	1.108953	-1.86524	-1.08028
С	3.275133	0.460192	0.14485
Н	2.721639	2.117065	1.38952
Н	3.514353	-1.30849	-1.08633
0	4.575813	0.869921	0.203312
С	5.553668	0.097932	-0.47546
Н	5.361625	0.062418	-1.55609
Н	6.507123	0.597818	-0.2955
Н	5.602349	-0.92702	-0.08438
С	-2.50795	-1.88771	0.170132
Н	-3.0249	-2.83764	0.218757