Supporting Information

for

Iridium-Catalyzed Ortho-C–H Borylation of Aromatic Aldimine Derived from Pentafluoroaniline with Bis(pinacolate)diboron

Ikuo Sasaki, Tatsunosuke Amou, Hajime Ito,* and Tatsuo Ishiyama*

Division of Chemical Process Engineering, Frontier Chemistry Center (FCC), Graduate School of Engineering, Hokkaido University, Sapporo, 060-8628, Japan. Fax: +81-(0)11 706 6562; Tel: +81-(0)11 706 6562

E-mail: <u>ishiyama@eng.hokudai.ac.jp</u>.

Table of Contents

- 1. General and Materials
- 2. Experimental Section
 - 2.1. Preparation of Substrates
 - 2.2. A General Procedure for [Ir(OMe)(cod)]₂-Catalyzed C–H Borylation
 - 2.3. Transformation of **2a** to **5**
- 3. References
- 4. NMR Spectra for New Compounds

1. General and Materials

Materials were obtained from commercial suppliers and purified by standard procedures unless otherwise noted. Solvents were also purchased from commercial suppliers, degassed via three freeze-pump-thaw cycles, and further dried over molecular sieves (MS 4A). NMR spectra were recorded on JEOL JNM-ECX400P spectrometer (¹H: 400 MHz, ¹³C: 100 MHz, ¹⁹F: 376 MHz). Tetramethylsilane (¹H), CDCl₃ (¹³C) and monofluorobenzene (¹⁹F) were employed as external standards, respectively. 1,1,2,2-tetracholoethane was used as an internal standard to determine the NMR yields. GLC analyses were conducted on a Hitachi G-3500 instrument equipped with a glass column (OV-101 on Uniport B, 2 m). High-resolution mass spectra was recorded at the Center for Instrumental Analysis, Hokkaido University.

2. Experimental Section

2.1. Preparation of Substrates

Aromatic aldimines **1b–g** were synthesized according to the reported procedure.^{1–3}

Preparation of (*E*)-*N*-benzylidene-2,3,4,5,6-pentafluoroaniline (1a).

In a vacuum dried 200 mL round bottomed flask, benzaldehyde (3.18 g, 30 mmol) and pentafluoroaniline (5.49 g, 30 mmol) were dissolved in THF (50 mL) under nitrogen atmosphere. MgSO₄ (1.7 g, 14 mmol) was then added at room temperature, and the mixture was stirred for 48 h at 55 °C. After filtration, the solvent was removed by evaporation. the crude product was purified by flash column chromatography (SiO₂) to obtain aromatic aldimine **1a** (5.14 g, 19 mmol, 63%) as a solid.

¹H NMR (396 MHz, CDCl₃, δ): 7.48–7.59 (m, 3H), 7.92–7.95 (m, 2H), 8.59 (s, 1H). ¹³C NMR (99 MHz, CDCl₃, δ): 126.8 (m, *C*), 128.9 (*C*H), 129.3 (*C*H), 132.9 (*C*H), 135.1 (*C*), 137.9 (br d, ¹*J*_C-_F = 251 Hz, *C*F), 138.1 (br d, ¹*J*_C-_F = 252 Hz, *C*F), 140.1 (br d, ¹*J*_C-_F = 250 Hz, *C*F), 168.6 (*C*H). ¹⁹F NMR (373 MHz, CDCl₃, δ): –163.7 – –163.6 (m, 2F), –161.1 (t, 1F, *J* = 21.5 Hz), –153.9 (dd, 2F, *J* = 7.2, 21.5 Hz). HRMS-ESI (*m*/*z*): [M+H]⁺ Calcd for C₁₃H₇F₅N: 272.04944; found: 272.04932.

The following compounds **1h–t** were prepared according to the above procedure.

(E)-2,3,4,5,6-Pentafluoro-N-(4-methylbenzylidene)aniline (1h).

¹H NMR (392 MHz, CDCl₃, δ): 2.44 (s, 3H), 7.31 (d, 2H, J = 8.3 Hz), 7.82 (d, 2H, J = 8.3 Hz), 8.58 (s, 1H). ¹³C NMR (100 MHz, CDCl₃, δ): 21.7 (*C*H₃), 127.0 (m, *C*), 129.4 (*C*H), 129.6 (*C*H), 132.6 (*C*), 137.9 (br d, ¹ $J_{C-F} = 249$ Hz, *C*F), 140.0 (br d, ¹ $J_{C-F} = 247$ Hz, *C*F), 143.7 (*C*), 168.4 (*C*H). ¹⁹F NMR (373 MHz, CDCl₃, δ): -163.3 - -163.2 (m, 2F), -161.6 (t, 1F, J = 21.5 Hz), -154.1 (dd, 2F, J = 7.2, 21.5 Hz). HRMS-ESI (m/z): [M+H]⁺ Calcd for C₁₄H₉F₅N: 286.06552; found: 286.06539.

(E)-2,3,4,5,6-Pentafluoro-N-(4-methoxybenzylidene)aniline (1i).

¹H NMR (396 MHz, CDCl₃, δ): 3.90 (s, 3H), 7.00 (d, 2H, J = 8.6 Hz), 7.88 (d, 2H, J = 8.6 Hz), 8.50 (s, 1H). ¹³C NMR (100 MHz, CDCl₃, δ): 55.5 (CH₃), 114.3 (CH), 127.2 (m, C), 128.1 (C), 131.3 (CH), 137.9 (br d, ¹ $J_{C-F} = 248$ Hz, CF), 140.1 (br d, ¹ $J_{C-F} = 238$ Hz, CF), 163.5 (C), 167.6 (CH). ¹⁹F NMR (373 MHz, CDCl₃, δ): -164.1 – -163.9 (m, 2F), -162.0 (t, 1F, J = 21.5 Hz), -154.3 (dd, 2F, J = 5.4, 21.5 Hz). HRMS-ESI (m/z): [M+H]⁺ Calcd for C₁₄H₉F₅NO: 302.05993; found: 302.05988.

(E)-N-(4-(Dimethylamino)benzylidene)-2,3,4,5,6-pentafluoroaniline (1j).

¹H NMR (396 MHz, CDCl₃, δ): 3.09 (s, 6H), 6.73 (d, 2H, J = 8.6 Hz), 7.78 (d, 2H, J = 9.1 Hz), 8.39 (s, 1H). ¹³C NMR (100 MHz, CDCl₃, δ): 40.1 (*C*H₃), 111.4 (*C*H), 123.1 (*C*), 127.9 (m, *C*), 131.2 (*C*H), 140.3 (br d, ¹ $J_{C-F} = 244$ Hz, *C*F), 153.4 (*C*), 167.7 (*C*H). ¹⁹F NMR (373 MHz, CDCl₃, δ): -164.6 - -164.4 (m, 2F), -163.4 (t, 1F, J = 21.5 Hz), -154.7 (dd, 2F, J = 5.4, 21.5 Hz). HRMS-ESI (*m*/*z*): [M+H]⁺ Calcd for C₁₅H₁₂F₅N₂: 315.09206; found: 315.09256.

(E)-2,3,4,5,6-Pentafluoro-N-(4-fluorobenzylidene)aniline (1k).

¹H NMR (396 MHz, CDCl₃, δ): 7.17–7.23 (m, 2H), 7.93–7.98 (m, 2H), 8.57 (s, 1H). ¹³C NMR

(100 MHz, CDCl₃, δ): 116.2 (d, ${}^{2}J_{C-F} = 23.0$ Hz, *C*H), 126.6 (m, *C*), 131.5 (d, ${}^{3}J_{C-F} = 8.6$ Hz, *C*H), 138.0 (br d, ${}^{1}J_{C-F} = 235$ Hz, *C*F), 138.1 (br d, ${}^{1}J_{C-F} = 260$ Hz, *C*F), 140.1 (br d, ${}^{1}J_{C-F} = 250$ Hz, *C*F), 165.6 (d, ${}^{1}J_{C-F} = 258$ Hz, *C*F), 166.9 (*C*H). 19 F NMR (373 MHz, CDCl₃, δ): -163.7 – -163.5 (m, 2F), -160.9 (t, 1F, *J* = 21.5 Hz), -153.9 (dd, 2F, *J* = 5.4, 21.5 Hz), -105.75 (m, 1F). HRMS-ESI (*m*/*z*): [M+H]⁺ Calcd for C₁₃H₆F₆N: 290.04044; found: 290.04072.

(E)-N-(4-Chlorobenzylidene)-2,3,4,5,6-pentafluoroaniline (11).

¹H NMR (396 MHz, CDCl₃, δ): 7.48 (d, 2H, J = 8.6 Hz), 7.87 (d, 2H, J = 8.6 Hz), 8.57 (s, 1H). ¹³C NMR (100 MHz, CDCl₃, δ): 126.4 (m, *C*), 129.3 (*C*H), 130.5 (*C*H), 133.6 (*C*), 137.9 (br d, ¹ J_{C-F} = 245 Hz, *C*F), 138.3 (br d, ¹ J_{C-F} = 249 Hz, *C*F), 139.1 (*C*), 140.1 (br d, ¹ J_{C-F} = 258 Hz, *C*F), 167.0 (*C*H). ¹⁹F NMR (373 MHz, CDCl₃, δ): -163.6 – -163.5 (m, 2F), -160.6 (t, 1F, J = 21.5 Hz), -153.7 (dd, 2F, J = 5.4, 21.5 Hz). HRMS-ESI (m/z): [M+H]⁺ Calcd for C₁₃H₆ClF₅N: 306.01204; found: 306.01176.

(E)-N-(4-Bromobenzylidene)-2,3,4,5,6-pentafluoroaniline (1m).

¹H NMR (392 MHz, CDCl₃, δ): 7.65 (br d, 2H, J = 8.6 Hz), 7.80 (br d, 2H, J = 8.3 Hz), 8.56 (s, 1H). ¹³C NMR (100 MHz, CDCl₃, δ): 127.8 (*C*), 130.6 (*C*H), 132.3 (*C*H), 134.0 (*C*), 167.2 (*C*H). The carbon directly attached to the fluorine atom was not detected, probably due to C–F coupling. ¹⁹F NMR (373 MHz, CDCl₃, δ): –163.5 – –163.4 (m, 2F), –160.5 (t, 1F, J = 21.5 Hz), 153.6 (dd. 2F, J = 5.4, 21.5 Hz). HPMS ESL (m/z): [M+H]⁺ Calcd for C H BrE N: 349.96038:

-153.6 (dd, 2F, J = 5.4, 21.5 Hz). HRMS-ESI (m/z): $[M+H]^+$ Calcd for $C_{13}H_6BrF_5N$: 349.96038; found: 349.96019.

(E)-2,3,4,5,6-Pentafluoro-N-(4-(trifluoromethyl)benzylidene)aniline (1n).

¹H NMR (396 MHz, CDCl₃, δ): 7.77 (d, 2H, *J* = 8.2 Hz), 8.06 (d, 2H, *J* = 8.2 Hz), 8.68 (s, 1H). ¹³C NMR (100 MHz, CDCl₃, δ): 123.6 (q, ¹*J*_{C-F} = 282 Hz, *C*F₃), 125.9 (d, ³*J*_{C-F} = 3.8 Hz, *C*H), 129.5 (*C*H), 134.2 (q, ²*J*_{C-F} = 36.4 Hz, *C*H), 138.0 (br d, ¹*J*_{C-F} = 256 Hz, *C*F), 138.1 (*C*), 138.7 (br d, ¹*J*_{C-F} = 262 Hz, *C*F), 140.1 (br d, ¹*J*_{C-F} = 263 Hz, *C*F), 166.9 (*C*H). ¹⁹F NMR (373 MHz, CDCl₃, δ): – 163.3 - -163.2 (m, 2F), -159.8 (t, 1F, J = 21.5 Hz), -153.3 (dd, 2F, J = 5.4, 21.5 Hz), -63.6 (s, 1F). HRMS-ESI (m/z): $[M+H]^+$ Calcd for $C_{14}H_6F_8N$: 340.03735; found: 340.03670.

(E)-2,3,4,5,6-Pentafluoro-N-(3-methylbenzylidene)aniline (10).

¹H NMR (396 MHz, CDCl₃, δ): 2.44 (s, 3H), 7.38–7.42 (m, 2H), 7.70 (br d, 1H, J = 5.9 Hz); 7.78 (s, 1H); 8.55 (s, 1H). ¹³C NMR (100 MHz, CDCl₃, δ): 21.3 (CH₃), 127.0 (CH), 128.8 (CH), 129.5 (CH), 133.8 (CH), 135.1 (C), 137.9 (br d, ¹ $J_{C-F} = 249$ Hz, CF), 138.1 (br d, ¹ $J_{C-F} = 249$ Hz, CF), 138.8 (C), 140.0 (br d, ¹ $J_{C-F} = 237$ Hz, CF), 168.9 (CH). ¹⁹F NMR (373 MHz, CDCl₃, δ): –163.8 – – 163.6 (m, 2F), –161.3 (t, 1F, J = 21.5 Hz), –154.0 (dd, 2F, J = 5.4, 21.5 Hz). HRMS-ESI (m/z): [M+H]⁺ Calcd for C₁₄H₉F₅N: 286.06528; found: 286.06497.

(E)-2,3,4,5,6-Pentafluoro-N-(3-methoxybenzylidene)aniline (1p).

¹H NMR (396 MHz, CDCl₃, δ): 3.89 (s, 3H), 7.10–7.13 (m, 1H), 7.39–7.45 (m, 2H), 7.53 (m, 1H), 8.55 (s, 1H). ¹³C NMR (100 MHz, CDCl₃, δ): 55.4 (*C*H₃), 112.1 (*C*H), 119.8 (*C*H), 123.0 (*C*H), 126.7 (m, *C*), 129.9 (*C*H), 136.5 (*C*), 137.9 (br d, ¹*J*_{C-F} = 241 Hz, *C*F), 140.0 (br d, ¹*J*_{C-F} = 244 Hz, *C*F), 160.1 (*C*), 168.5 (*C*H). ¹⁹F NMR (373 MHz, CDCl₃, δ): –163.7 – –163.6 (m, 2F), –161.1 (t, 1F, *J* = 21.5 Hz), –153.8 (dd, 2F, *J* = 5.4, 21.5 Hz). HRMS-ESI (*m*/*z*): [M+H]⁺ Calcd for C₁₄H₉F₅NO: 302.06013; found: 302.05988.

(E)-N-(3-Chlorobenzylidene)-2,3,4,5,6-pentafluoroaniline (1q).

¹H NMR (396 MHz, CDCl₃, δ): 7.45 (t, 1H, J = 7.7 Hz), 7.54 (br d, 1H, J = 8.2 Hz), 7.78 (d, 1H, J = 7.7 Hz), 7.96 (s, 1H); 8.57 (s, 1H). ¹³C NMR (100 MHz, CDCl₃, δ): 126.1 (m, *C*), 127.7 (*C*H), 128.7 (*C*H), 130.2 (*C*H), 132.7 (*C*H), 135.2 (*C*), 136.8 (*C*), 138.0 (br d, ¹ $J_{C-F} = 241$ Hz, *C*F), 138.4 (br d, ¹ $J_{C-F} = 253$ Hz, *C*F), 140.1 (br d, ¹ $J_{C-F} = 242$ Hz, *C*F), 166.9 (*C*H). ¹⁹F NMR (373 MHz, CDCl₃, δ): -163.5 - -163.3 (m, 2F), -160.3 (t, 1F, J = 21.5 Hz), -153.5 (dd, 2F, J = 5.4, 21.5 Hz). HRMS-ESI (m/z): [M+H]⁺ Calcd for C₁₃H₆ClF₅N: 306.01061; found: 306.01034.

(E)-2,3,4,5,6-Pentafluoro-N-(2-methylbenzylidene)aniline (1r).

¹H NMR (396 MHz, CDCl₃, δ): 2.59 (s, 3H), 7.27 (d, 1H, J = 7.7 Hz), 7.33 (d, 1H, J = 7.7 Hz), 7.43 (d, 1H, J = 7.5 Hz), 8.08 (d, 1H, J = 7.7 Hz), 8.88 (s, 1H). ¹³C NMR (100 MHz, CDCl₃, δ): 19.4 (CH₃), 126.5 (CH), 127.3 (m, C), 128.5 (CH), 131.2 (CH), 132.4 (CH), 133.1 (C), 137.9 (br d, ¹ J_{C-F} = 249 Hz, CF), 139.6 (C), 140.0 (br d, ¹ J_{C-F} = 250 Hz, CF), 167.6 (CH). ¹⁹F NMR (373 MHz, CDCl₃, δ): -163.9 - -163.7 (m, 2F), -161.5 (t, 1F, J = 21.5 Hz), -154.3 (dd, 2F, J = 5.4, 21.5 Hz). HRMS-ESI (m/z): [M+H]⁺ Calcd for C₁₄H₉F₅N: 286.06525; found: 286.06497.

(E)-2,3,4,5,6-Pentafluoro-N-(2-fluorobenzylidene)aniline (1s).

¹H NMR (396 MHz, CDCl₃, δ): 7.16 (t, 1H, J = 8.8 Hz), 7.29 (t, 1H, J = 7.3 Hz), 7.52–7.58 (m, 1H), 8.21 (t, 1H, J = 7.1 Hz), 8.91 (s, 1H). ¹³C NMR (100 MHz, CDCl₃, δ): 116.0 (d, ² $J_{C-F} = 21.0$ Hz, CH), 123.0 (d, ² $J_{C-F} = 9.6$ Hz, C), 124.7 (d, ³ $J_{C-F} = 3.8$ Hz, CH), 126.7 (m, C), 127.9 (CH), 134.7 (d, ³ $J_{C-F} = 8.6$ Hz, CH), 137.9 (br d, ¹ $J_{C-F} = 254$ Hz, CF), 138.3 (br d, ¹ $J_{C-F} = 241$ Hz, CF), 140.1 (br d, ¹ $J_{C-F} = 255$ Hz, CF), 161.9 (CH), 163.2 (d, ¹ $J_{C-F} = 257$ Hz, CF). ¹⁹F NMR (373 MHz, CDCl₃, δ): -163.6 - -163.4 (m, 2F), -160.5 (t, 1F, J = 21.5 Hz), -153.6 (dd, 2F, J = 5.4, 21.5 Hz), -120.6 (m, 1F). HRMS-ESI (m/z): [M+H]⁺ Calcd for C₁₃H₆F₆N: 290.04013; found: 290.03989.

(E)-2,3,4,5,6-Pentafluoro-N-(2-methoxybenzylidene)aniline (1t).

¹H NMR (396 MHz, CDCl₃, δ): 3.90 (s, 3H), 6.97 (d, 1H, J = 8.2 Hz), 7.16 (m, 1H), 8.18 (dd, 1H, J = 1.4, 7.7 Hz), 9.02 (s, 1H). ¹³C NMR (100 MHz, CDCl₃, δ): 55.6 (CH₃), 111.2 (CH), 120.9 (CH), 123.7 (C), 127.7 (CH), 134.4 (CH), 137.8 (br d, ¹ $J_{C-F} = 251$ Hz, CF), 140.0 (br d, ¹ $J_{C-F} = 256$ Hz, CF), 160.0 (C), 164.9 (CH). ¹⁹F NMR (373 MHz, CDCl₃, δ): -164.1 – -164.0 (m, 2F), -162.0 (t, 1F, J = 21.5 Hz), -154.2 (dd, 2F, J = 5.4, 21.5 Hz). HRMS-ESI (m/z): [M+H]⁺ Calcd for C₁₄H₉F₅NO: 302.05994; found: 302.05988.

2.2. A General Procedure for [Ir(OMe)(cod)]₂-Catalyzed C-H Borylation.

A general procedure for *ortho*-selective C–H borylation of aromatic aldimines : $[Ir(OMe)(cod)]_2$ (3.3 mg, 0.005 mmol, 1.5 mol%), tris(pentafluorophenyl)phosphine (10.6 mg, 0.02 mmol, 6.0 mol%) and B₂pin₂ (82.5 mg, 0.325 mmol, 1.0 equiv) were placed in an oven-dried two neck flask. The flask was connected to a vacuum/nitrogen manifold through a rubber tube. It was evacuated and then backfilled with nitrogen. This cycle was repeated three times. Mesitylene (3 mL) was added in the flask through the rubber septum with a syringe, and stirred at room temperature for 10 min. Then, substrate **1** (1.625 mmol, 5.0 equiv) and 2-norbornene (30.6 mg, 0.325 mmol, 1.0 equiv) were added to the reaction mixture, and stirred at 120 °C. After the reaction was complete, the reaction mixture was concentrated and purified by kugelrohr distillation to give the the corresponding arylboronate **2**.

<Analytical Data>

(E) - 2, 3, 4, 5, 6 - Pentafluoro - N - (2 - (4, 4, 5, 5 - tetramethyl - 1, 3, 2 - dioxaborolan - 2 - yl) benzylidene) anilin e (2a).

¹H NMR (396 MHz, CDCl₃, δ): 1.35 (s, 12H), 7.51–7.59 (m, 2H), 7.92 (dd, 1H, J = 1.4, 7.3 Hz), 8.30 (m, 1H), 9.40 (s, 1H). ¹³C NMR (100 MHz, CDCl₃, δ): 24.8 (*C*H₃), 84.3 (*C*), 127.0 (*C*H), 127.1 (m, *C*), 131.2 (*C*H), 131.4 (*C*H), 136.0 (*C*H), 137.9 (br d, ¹ $J_{C-F} = 245$ Hz, *C*F), 140.2 (br d, ¹ $J_{C-F} = 248$ Hz, *C*F), 140.5 (*C*), 170.4 (*C*H). The carbon directly attached to the boron atom was not detected, likely due to quadropolar relaxation.⁴ ¹⁹F NMR (373 MHz, CDCl₃, δ): –163.5 – –163.3 (m, 2F), –161.6 (t, 1F, J = 21.5 Hz), –153.9 (dd, 2F, J = 7.3, 21.5 Hz). HRMS-ESI (m/z): [M]⁺ Calcd for C₁₉H₁₇BF₅NO₂: 397.13870; found: 397.13816.

(*E*)-2,3,4,5,6-Pentafluoro-*N*-(4-methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzylid ene)aniline (2h).

¹H NMR (396 MHz, CDCl₃, δ): 1.35 (s, 12H), 2.43 (s, 3H), 7.38 (d, 1H, J = 7.2 Hz), 7.72 (s, 1H), 8.20 (d, 1H, J = 8.1 Hz), 9.35 (s, 1H). ¹³C NMR (100 MHz, CDCl₃, δ): 21.5 (*C*H₃), 24.8 (*C*H₃), 84.2 (*C*), 127.3 (*C*H), 127.3 (m, *C*), 132.0 (*C*H), 136.5 (*C*H), 137.8 (br d, ¹ $J_{C-F} = 261$ Hz, *C*F), 138.0 (*C*), 140.3 (br d, ¹ $J_{C-F} = 237$ Hz, *C*F), 142.0 (*C*), 170.2 (*C*H). The carbon directly attached to the boron atom was not detected, likely due to quadropolar relaxation.^{4 19}F NMR (373 MHz, CDCl₃, δ): -164.3 - -164.1 (m, 2F), -162.0 (t, 1F, *J* = 21.5 Hz), -154.0 (dd, 2F, *J* = 5.4, 21.5 Hz). HRMS-ESI (*m*/*z*): [M]⁺ Calcd for C₂₀H₁₉BF₅NO₂: 411.15456; found: 411.15381.

(*E*)-2,3,4,5,6-Pentafluoro-*N*-(4-methoxy-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyli dene)aniline (2i).

¹H NMR (396 MHz, CDCl₃, δ): 1.35 (s, 12H), 3.90 (s, 3H), 7.07 (dd, 1H, J = 2.7, 9.0 Hz), 7.37 (d, 1H, J = 2.7 Hz), 8.27 (d, 1H, J = 9.0 Hz), 9.29 (s, 1H). ¹³C NMR (100 MHz, CDCl₃, δ): 24.8 (CH₃), 55.5 (CH₃), 84.3 (C), 117.3 (CH), 120.0 (CH), 127.4 (m, C), 129.2 (CH), 133.4 (C), 137.8 (br d, ¹ $J_{C-F} = 245$ Hz, *C*F), 140.3 (br d, ¹ $J_{C-F} = 249$ Hz, *C*F), 162.2 (*C*), 169.4 (*C*H). The carbon directly attached to the boron atom was not detected, likely due to quadropolar relaxation.⁴ ¹⁹F NMR (373 MHz, CDCl₃, δ): -164.3 - -164.1 (m, 2F), -162.4 (t, 1F, J = 21.5 Hz), -154.2 (dd, 2F, J = 5.4, 21.5 Hz). HRMS-ESI (m/z): [M]⁺ Calcd for C₂₀H₁₉BF₅NO₃: 427.14945; found: 427.14872.

(*E*)-*N*-(4-(Dimethylamino)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzylidene)-2,3,4,5 ,6-pentafluoroaniline (2j).

¹H NMR (396 MHz, CDCl₃, δ): 1.34 (s, 12H), 3.09 (s, 3H), 6.82 (dd, 1H, J = 2.7, 9.0 Hz), 7.10 (d, 1H, J = 2.7 Hz), 8.19 (d, 1H, J = 9.1 Hz), 9.18 (s, 1H). ¹³C NMR (100 MHz, CDCl₃, δ): 24.8 (*C*H₃), 40.1 (*C*H₃), 84.0 (*C*), 113.8 (*C*H), 117.8 (*C*H), 128.2 (*C*), 129.0 (*C*H), 140.5 (br d, ¹ $J_{C-F} = 255$ Hz, *C*F), 152.2 (*C*), 169.40 (*C*H). The carbon directly attached to the boron atom was not detected, likely due to quadropolar relaxation.⁴ ¹⁹F NMR (373 MHz, CDCl₃, δ): -164.9 – -164.8 (m, 2F), -163.7 (t, 1F, J = 21.5 Hz), -154.6 (d, 2F, J = 21.5 Hz). HRMS-ESI (m/z): [M]⁺ Calcd for C₂₁H₂₂BF₅N₂O₃: 440.18102; found: 440.18036.

(*E*)-2,3,4,5,6-Pentafluoro-*N*-(4-fluoro-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzylide ne)aniline (2k).

¹H NMR (396 MHz, CDCl₃, δ): 1.36 (s, 12H), 7.22–7.27 (m, 1H), 7.58 (dd, 1H, J = 2.7, 9.1 Hz),

8.33 (dd, 1H, J = 5.5, 8.6 Hz), 9.35 (s, 1H). ¹³C NMR (100 MHz, CDCl₃, δ): 24.8 (*C*H₃), 84.6 (*C*), 118.5 (d, ² $J_{C-F} = 22.0$ Hz, *C*H), 122.3 (d, ² $J_{C-F} = 21.0$ Hz, *C*H), 126.8 (m, *C*), 129.7 (d, ³ $J_{C-F} = 8.6$ Hz, *C*H), 138.1 (br d, ¹ $J_{C-F} = 266$ Hz, *C*F), 140.3 (br d, ¹ $J_{C-F} = 253$ Hz, *C*F), 164.7 (d, ¹ $J_{C-F} = 257$ Hz, *C*H), 168.9 (*C*H). The carbon directly attached to the boron atom was not detected, likely due to quadropolar relaxation.⁴ ¹⁹F NMR (373 MHz, CDCl₃, δ): –164.1 – –163.9 (m, 2F), –161.5 (t, 1F, J = 21.5 Hz), –153.9 (dd, 2F, J = 7.1, 21.5 Hz), –108.2 (m, 1F). HRMS-ESI (*m*/*z*): [M]⁺ Calcd for C₁₉H₁₆BF₆NO₂: 415.12969; found: 415.12874.

(*E*)-*N*-(4-Chloro-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzylidene)-2,3,4,5,6-pentafl uoroaniline (2l).

¹H NMR (396 MHz, CDCl₃, δ): 1.36 (s, 12H), 7.53 (dd, 1H, *J* = 2.3, 8.2 Hz), 7.88 (d, 1H, *J* = 1.8 Hz), 8.26 (d, 1H, *J* = 8.6 Hz), 9.37 (s, 1H). ¹³C NMR (100 MHz, CDCl₃, δ): 24.8 (CH₃), 84.7 (*C*), 128.5 (*C*H), 131.4 (*C*H), 135.8 (*C*H), 138.9 (*C*), 169.0 (*C*H). The carbon directly attached to the boron atom was not detected, likely due to quadropolar relaxation.⁴ Additionally, the carbon directly attached to the fluorine atom was not detected, probably due to C–F coupling. ¹⁹F NMR (373 MHz, CDCl₃, δ): –163.3 – –163.2 (m, 2F), –161.1 (t, 1F, *J* = 21.5 Hz), –153.7 (dd, 2F, *J* = 7.2, 21.5 Hz). HRMS-ESI (*m*/*z*): [M]⁺ Calcd for C₁₉H₁₆BClF₅NO₂: 431.10011; found: 431.09919.

(*E*)-*N*-(4-Bromo-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzylidene)-2,3,4,5,6-pentafl uoroaniline (2m).

¹H NMR (392 MHz, CDCl₃, δ): 1.36 (s, 12H), 7.69 (dd, 1H, *J* = 2.2, 8.6 Hz), 8.05 (d, 1H, *J* = 2.2 Hz), 8.18 (d, 1H, *J* = 8.6 Hz), 9.37 (s, 1H). ¹³C NMR (100 MHz, CDCl₃, δ): 24.8 (CH₃), 84.7 (C), 126.9 (C), 128.5 (CH), 134.3 (CH), 138.8 (CH), 139.3 (C), 169.1 (CH). The carbon directly attached to the boron atom was not detected, likely due to quadropolar relaxation.⁴ Additionally, the carbon directly attached to the fluorine atom was not detected, probably due to C–F coupling. ¹⁹F NMR (373 MHz, CDCl₃, δ): –163.9 – –163.8 (m, 2F), –161.0 (t, 1F, *J* = 21.5 Hz), –153.6 (dd, 2F, *J* = 5.4, 21.5 Hz). HRMS-ESI (*m*/*z*): [M]⁺ Calcd for C₁₉H₁₆BBrF₅NO₂: 475.04945; found: 475.04867.

(*E*)-2,3,4,5,6-Pentafluoro-*N*-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-4-(trifluoromethy l)benzylidene)aniline (2n).

¹H NMR (396 MHz, CDCl₃, δ): 1.37 (s, 12H), 7.80 (d, 1H, *J* = 8.2 Hz), 8.18 (s, 1H), 8.43 (d, 1H, *J* = 8.2 Hz), 9.48 (s, 1H). ¹³C NMR (100 MHz, CDCl₃, δ): 24.8 (*C*H₃), 84.8 (*C*), 123.8 (q, ¹*J*_{C-F} = 275 Hz, *C*F₃), 126.4 (m, *C*), 127.3 (*C*H), 127.8 (*C*H), 132.9 (*C*H), 137.9 (br d, ¹*J*_{C-F} = 248 Hz, *C*F), 140.3 (br d, ¹*J*_{C-F} = 236 Hz, *C*F), 143.6 (*C*), 168.9 (*C*H). The carbon directly attached to the boron atom was not detected, likely due to quadropolar relaxation. ^{4 19}F NMR (373 MHz, CDCl₃, δ): –163.7 – –163.6 (m, 2F), –160.3 (t, 1F, *J* = 21.5 Hz), –153.3 (dd, 2F, *J* = 7.2, 21.5 Hz), –63.5 (s, 3F). HRMS-ESI (*m*/*z*): [M]⁺ Calcd for C₂₀H₁₆BF₈NO₂: 465.12662; found: 465.12554.

(*E*)-2,3,4,5,6-Pentafluoro-*N*-(5-methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzylid ene)aniline (20).

¹H NMR (396 MHz, CDCl₃, δ): 1.37 (s, 12H), 2.45 (s, 3H), 7.36 (d, 1H, J = 7.2 Hz), 7.83 (d, 1H, J = 7.7 Hz), 8.13 (s, 1H), 9.41 (s, 1H). ¹³C NMR (100 MHz, CDCl₃, δ): 21.5 (CH₃), 24.8 (CH₃), 84.1 (C), 127.2 (CH), 127.3 (m, C), 132.4 (CH), 136.3 (CH), 138.0 (br d, ¹ $J_{C-F} = 263$ Hz, CF), 140.12 (br d, ¹ $J_{C-F} = 244$ Hz, CF), 140.5 (C), 141.6 (C), 170.8 (CH). The carbon directly attached to the boron atom was not detected, likely due to quadropolar relaxation.⁴ ¹⁹F NMR (373 MHz, CDCl₃, δ): –163.5 – –163.3 (m, 2F), –161.8 (t, 1F, J = 21.5 Hz), –154.0 (dd, 2F, J = 5.4, 21.5 Hz). HRMS-ESI (m/z): [M]⁺ Calcd for C₂₀H₁₉BF₅NO₂: 411.15469; found: 411.15381.

(*E*)-2,3,4,5,6-Pentafluoro-*N*-(5-methoxy-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyli dene)aniline (2p).

¹H NMR (392 MHz, CDCl₃, δ): 1.34 (s, 12H), 3.92 (s, 3H), 7.08 (dd, 1H, *J* = 2.9, 8.3 Hz), 7.86–7.89 (m, 2H), 9.47 (s, 1H). ¹³C NMR (100 MHz, CDCl₃, δ): 24.8 (*C*H₃), 55.4 (*C*H₃), 84.0 (*C*), 110.0 (*C*H), 118.6 (*C*H), 138.0 (*C*H), 142.7 (*C*), 162.0 (*C*), 170.3 (*C*H). The carbon directly attached to the boron atom was not detected, likely due to quadropolar relaxation.⁴ Additionally, the carbon directly attached to the fluorine atom was not detected, probably due to C–F coupling. ¹⁹F NMR (373 MHz,

CDCl₃, δ): -164.1 - -164.0 (m, 2F), -161.6 (t, 1F, *J* = 21.5 Hz), -153.8 (dd, 2F, *J* = 5.4, 21.5 Hz). HRMS-ESI (*m*/*z*): [M]⁺ Calcd for C₂₀H₁₉BF₅NO₃: 427.14939; found: 427.14872.

(*E*)-*N*-(5-Chloro-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzylidene)-2,3,4,5,6-pentafl uoroaniline (2q).

¹H NMR (396 MHz, CDCl₃, δ): 1.35 (s, 12H), 7.49 (dd, 1H, J = 2.2, 8.2 Hz), 7.87 (d, 1H, J = 7.9 Hz), 8.31 (d, 1H, J = 1.8 Hz), 9.42 (s, 1H). ¹³C NMR (100 MHz, CDCl₃, δ): 24.8 (*C*H₃), 84.5 (*C*), 126.6 (*C*H), 131.3 (*C*H), 137.6 (*C*H), 138.0 (*C*), 142.3 (*C*), 168.9 (*C*H). The carbon directly attached to the boron atom was not detected, likely due to quadropolar relaxation.⁴ Additionally, the carbon directly attached to the fluorine atom was not detected, probably due to C–F coupling. ¹⁹F NMR (373 MHz, CDCl₃, δ): -163.8 – -163.7 (m, 2F), -160.8 (t, 1F, J = 21.5 Hz), -153.5 (dd, 2F, J = 5.4, 21.5 Hz). HRMS-ESI (m/z): [M]⁺ Calcd for C₁₉H₁₆BClF₅NO₂: 431.10007; found: 431.09919.

(*E*)-2,3,4,5,6-Pentafluoro-*N*-(2-methyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzylid ene)aniline (2r).

¹H NMR (396 MHz, CDCl₃, δ): 1.29 (s, 12H), 2.58 (s, 3H), 7.29 (d, 1H, *J* = 7.3 Hz), 7.39 (t, 1H, *J* = 7.2 Hz), 7.54 (d, 1H, *J* = 7.2 Hz), 9.07 (s, 1H). ¹³C NMR (100 MHz, CDCl₃, δ): 20.5 (*C*H₃), 24.7 (*C*H₃), 83.8 (*C*), 127.1 (*C*H), 131.6 (*C*H), 132.0 (*C*H), 132.8 (*C*H), 137.2 (*C*), 137.9 (br d, ¹*J*_{C-F} = 263 Hz, *C*F), 139.0 (*C*), 139.8 (br d, ¹*J*_{C-F} = 254 Hz, *C*F), 169.8 (*C*H). The carbon directly attached to the boron atom was not detected, likely due to quadropolar relaxation.⁴ ¹⁹F NMR (373 MHz, CDCl₃, δ): -163.7 - -163.6 (m, 2F), -161.4 (t, 1F, *J* = 21.5 Hz), -153.5 (dd, 2F, *J* = 5.4, 21.5 Hz). HRMS-ESI (*m*/*z*): [M]⁺ Calcd for C₂₀H₁₉BF₅NO₂: 411.15451; found: 411.15381.

(*E*)-2,3,4,5,6-Pentafluoro-*N*-(2-fluoro-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzylide ne)aniline (2s).

¹H NMR (392 MHz, CDCl₃, δ): 1.31 (s, 12H), 7.14–7.19 (m, 1H), 7.38 (d, 1H, J = 7.2 Hz), 7.49–7.55 (m, 1H), 8.94 (s, 1H). ¹³C NMR (100 MHz, CDCl₃, δ): 24.7 (*C*H₃), 84.2 (*C*), 117.1 (d, ² $J_{C-F} = 10.4$ CDCl₃, δ): 24.7 (*C*H₃), 84.2 (*C*), 117.1 (d, ² $J_{C-F} = 10.4$ CDCl₃, δ): 24.7 (*C*H₃), 84.2 (*C*), 117.1 (d, ² $J_{C-F} = 10.4$ CDCl₃, δ): 24.7 (*C*H₃), 84.2 (*C*), 117.1 (d, ² $J_{C-F} = 10.4$ CDCl₃, δ): 24.7 (*C*H₃), 84.2 (*C*), 117.1 (d, ² $J_{C-F} = 10.4$ CDCl₃, δ): 24.7 (*C*H₃), 84.2 (*C*), 117.1 (d, ² $J_{C-F} = 10.4$ CDCl₃, δ): 24.7 (*C*H₃), 84.2 (*C*), 117.1 (d, ² $J_{C-F} = 10.4$ CDCl₃, δ): 24.7 (*C*H₃), 84.2 (*C*), 117.1 (d, ² $J_{C-F} = 10.4$ CDCl₃, δ): 24.7 (*C*H₃), 84.2 (*C*), 117.1 (d, ² $J_{C-F} = 10.4$ CDCl₃, δ): 24.7 (*C*H₃), 84.2 (*C*), 117.1 (d, ² $J_{C-F} = 10.4$ CDCl₃, δ): 24.7 (*C*H₃), 84.2 (*C*), 117.1 (d, ² $J_{C-F} = 10.4$ CDCl₃, δ): 24.7 (*C*H₃), 84.2 (*C*), 117.1 (d, ² $J_{C-F} = 10.4$ CDCl₃, δ): 24.7 (*C*H₃), 84.2 (*C*), 117.1 (d, ² $J_{C-F} = 10.4$ CDCl₃, δ): 24.7 (*C*H₃), 84.2 (*C*), 117.1 (d, ² $J_{C-F} = 10.4$ CDCl₃, δ): 24.7 (*C*H₃), 84.2 (*C*), 117.1 (d, ² $J_{C-F} = 10.4$ CDCl₃, δ): 24.7 (*C*H₃), 84.2 (*C*), 117.1 (d, ² $J_{C-F} = 10.4$ CDCl₃, δ): 24.7 (*C*H₃), 84.2 (*C*), 117.1 (d, ² $J_{C-F} = 10.4$ CDCl₃, δ): 24.7 (*C*H₃), 84.2 (*C*), 117.1 (d, ² $J_{C-F} = 10.4$ CDCl₃, δ): 24.7 (*C*H₃), 84.2 (*C*), 117.1 (d, ² $J_{C-F} = 10.4$ CDCl₃, δ): 24.7 (*C*H₃), 84.2 (*C*), 117.1 (d, ² $J_{C-F} = 10.4$ CDCl₃, δ): 24.7 (*C*H₃), 84.2 (*C*), 117.1 (d, ² $J_{C-F} = 10.4$ CDCl₃, δ): 24.7 (*C*H₃), 84.2 (*C*), 117.1 (d, ² $J_{C-F} = 10.4$ CDCl₃, δ): 24.7 (*C*H₃), 84.2 (*C*), 117.1 (d, ² $J_{C-F} = 10.4$ CDCl₃, δ): 24.7 (*C*H₃), 84.2 (*C*), 117.1 (d, ² $J_{C-F} = 10.4$ CDCl₃, δ): 24.7 (*C*H₃), 84.2 (*C*), 117.1 (d, ² $J_{C-F} = 10.4$ CDCl₃, δ): 24.7 (*C*H₃), 84.2 (*C*), 117.1 (d, ² $J_{C-F} = 10.4$ CDCl₃, δ): 24.7 (*C*H₃), 84.2 (*C*), 117.1 (d,

21.0 Hz, *C*H), 129.3 (*C*H), 133.9 (d, ${}^{3}J_{C-F} = 8.6$ Hz, *C*H), 164.2 (*C*H). The carbon directly attached to the boron atom was not detected, likely due to quadropolar relaxation.⁴ Additionally, the carbon directly attached to the fluorine atom was not detected, probably due to C–F coupling. ¹⁹F NMR (373 MHz, CDCl₃, δ): –163.3 – –163.2 (m, 2F), –160.4 (t, 1F, *J* = 21.5 Hz), –153.2 (dd, 2F, *J* = 5.4, 21.5 Hz), –118.9 (m, 1F). HRMS-ESI (*m*/*z*): [M]⁺ Calcd for C₁₉H₁₆BF₆NO₂: 415.12961; found: 415.12874.

2.3. Transformation of 2a to 5.

Suzuki-Miyaura coupling reaction with 4-bromobenzene was carried out as follows: The reaction was carried out under nitrogen atmosphere. A dried 25 mL-flask quipped with a magnetic stirring bar was charged with $Pd(Cl)_2(dppf)$ (8.0 mg, 0.000975 mmol, 3.0 mol%), K₃PO₄ (207.0 mg, 0.975 mmol, 3.0 equiv) and **2a** (129.1 mg, 0.325 mmol, 1.0 equiv). methyl 4-bromobenzoate (69.9 mg, 0.325 mmol, 1.0 equiv) and mesitylene (3 mL) was added in the flask under nitrogen atmosphere, and the reaction mixture was stirred for 24 h at 120 °C. After the reaction was completed, the crude product was purified by a silica gel packed flash chromatography column, using ethyl acetate/hexane as the eluent. The product **4** was obtained 111.8 mg, 85% yield. The reaction was carried out in air. A dried 25 mL-flask quippied with a magnetic stirring bar was charged with compound **4** (34.7 mg, 0.1 mmol, 1.0 equiv), TsOH \cdot H₂O (86.1 mg, 0.5 mmol, 5.0 equiv), H₂O (6 mL) and acetone (6 mL). The reaction mixture was stirred for 1.5 h at 50 °C. After the reaction was completed, the crude product was purified by a silica gel packed flash chromatography column, using acetone/hexane as the eluent. The product **5** was obtained 24.2 mg, >99% yield.

<Analytical Data>

(E)-Methyl 2'-(((perfluorophenyl)imino)methyl)-(1,1'-biphenyl)-4-carboxylate (4).

¹H NMR (392 MHz, CDCl₃, δ): 3.96 (s, 3H), 7.44–7.47 (m, 3H), 7.56 (br t, 1H, J = 7.6 Hz), 7.63 (dt, 1H, J = 1.5, 7.5 Hz), 8.14 (br d, 2H, J = 7.7 Hz), 8.38 (br d, 1H, J = 7.4 Hz), 8.49 (s, 1H). ¹³C NMR (99 MHz, CDCl₃, δ): 52.3 (CH₃), 126.9 (m, *C*), 127.6 (CH), 128.5 (CH), 129.6 (CH), 129.7 (*C*), 130.0 (CH), 130.2 (CH), 132.3 (CH), 132.6 (*C*), 137.8 (br d, ¹ $J_{C-F} = 251$ Hz, *C*F), 138.0 (br d, ¹ $J_{C-F} = 251$ Hz, *C*F), 139.9 (br d, ¹ $J_{C-F} = 248$ Hz, *C*F), 143.2 (*C*), 143.6 (*C*), 166.7 (*C*), 167.5 (CH). ¹⁹F NMR (373 MHz, CDCl₃, δ): -163.6 – -163.5 (m, 2F), -161.1 (t, 1F, J = 21.5 Hz), -154.0 (dd, 2F, J = 5.4, 21.5 Hz). HRMS-ESI (m/z): [M+H]⁺ Calcd for C₂₁H₁₃O₂NF₅: 406.08668; found: 406.08610.

Methyl 2'-formyl-(1,1'-biphenyl)-4-carboxylate (5).

Analytical data of compound **5** was reported in the reference.⁵

3. References

- (1) A. Li, X. Bin, S. Zhu, Q. Huang, J. Liu, J. Fluor. Chem. 1994, 68, 145.
- (2) C. Casey, J. Johnson, J. Am. Chem. Soc. 2005, 127, 1883.
- (3) S. Zhu, S. Zhu, G. Jin, Z. Li, Tetrahedron Lett. 2005, 46, 2713.
- (4) B. Wrackmeyer, Prog. Nucl. Magn. Reson. Spectrosc. 1979, 12, 227.
- (5) J. Zhao, D. Yue, M. A. Campo, R. C. Larock, J. Am. Chem. Soc. 2007, 129, 5288.

~

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2014

1. A. A. A.

____**A**

Parts per mini

e en la construction La construction

X : parts per Million : 1H

a far a sea a

X : parts per

X : parts per Million : 19F

- Free to Pox 1110

and the second second

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2014

X : parts per Million : 1H

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2014

