Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2014

Supporting Information for

Gold-catalysed Cyclisation of *N*-Propargylic β-enaminones to Form 3-Methylene-1-pyrroline Derivatives[†]‡

Kommuru Goutham,^{a,b} N. S. V. M. Rao Mangina,^{a,b} Surisetti Suresh,^c Pallepogu Raghavaiah,^d and Galla V. Karunakar^{*a,b}

^aCrop protection Chemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India. <u>gallavk@iict.res.in</u> ^bAcademy of Scientific and Innovative Research, New Delhi, 110001, India ^cOrganic and Biomolecular Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India. ^dSchool of Chemistry, University of Hyderabad, Hyderabad, 500046, India.

Contents:

1.1 General	S2
1.2 General procedure for the synthesis of 3-methylene-1-pyrrolines (3a-m)	S3
1.3 Spectroscopic data of propargyl β -enaminones(1a-i)	S4
1.4 Spectroscopic data of 3-methylene-1-pyrrolines (3a-m)	S6
1.5 Copies of ¹ H and ¹³ C NMR spectra	S11
1.6. X-ray crystallography data	S33
Electronic Supplementary Material (ESI) for Chemical Communications	

1.1 General

Reactions were carried out in oven dried reaction flasks under nitrogen atmosphere and also solvents and reagents were transferred by oven-dried syringes to ambient temperature. TLC was performed on Merck silica gel aluminium sheets using UV as a visualizing agent and a 0.5% aqueous potassium permanganate solution and heat as developing agents. Solvents were removed under reduced pressure. Columns were packed as slurry of silica gel in hexane and ethyl acetate solvent mixture. The elution was assisted by applying pressure with an air pump. ¹³C NMR spectra were recorded on 75 and 125 MHz spectrometers. ¹HNMR spectra were recorded on 300 and 500 MHz spectrometers in appropriate solvents using TMS as internal standard. The following abbreviations were used to explain multiplicities: s = singlet, d = doublet, dd = double doublet, t = triplet, m = multiplet. All reactions were performed under nitrogen atmosphere with freshly distilled and dried solvents. All solvents were distilled using standard procedures. Unless otherwise noted, reagents were obtained from Aldrich, Alfa Aesar, and TCI used without further purification. *N*-propargyl β -enaminones (**1a-1**) were prepared by following the reported procedure.¹

^{1.} A. S. Karpov and T. J. J. Muller, Org. Lett., 2003, 5, 3451.

1.2. General procedure for synthesis of 3-methylene-1-pyrrolines 3

In a 25 mL round-bottomed two-neck flask CsF (0.174 mg, 1.149 mmol, 3 equiv.) was evacuated and purged with dry nitrogen. To this reaction flask benzyne precursor 2-(trimethylsilyl) phenyl trifluoromethanesulfonate **2a** (0.093 mL, 0.383 mmol, 1 equiv.) was added and stirred for 10 min in CH₃CN (5 mL). To this reaction mixture a solution of *N*-propargyl β -enaminones **1** (0.383 mmol, 1 equiv) in CH₃CN (1 mL), AuClP(Et)₃ (13.4 mg, 10 mol%) and AgSbF₆ (19.7 mg, 15 mol%) was added. The reaction mixture was allowed to stir at 80 °C for 18 h. The reaction mixture was cooled to room temperature and it was filtered through Celite pad and silica gel. The organic layer was removed under reduced pressure and extracted with ethyl acetate (3 x 5 mL). The combined organic layers were washed with aqueous brine, dried over anhydrous Na₂SO₄, and concentrated under vacuum. The crude residue was purified through a silica gel column using hexane and ethyl acetate as eluent (10/0.7) to give pure 3-methylene-1-pyrrolines **3**.

1.3. Spectroscopic data for propargyl β-enaminones (1a-i)

1,3-diphenyl-3-(prop-2-ynylamino)prop-2-en-1-one

¹H NMR (300 MHz, CDCl₃): δ 11.33 (t, J = 12.1, 6.2 Hz, 1H), 7.93-7.88 (m, 2H), 7.50-7.37 (m, 8H), 5.84 (s, 1H), 3.94 (dd, J = 6.2, 2.3 Hz, 2H), 2.31 (t, J = 2.3 Hz, 1H); ¹³C NMR (75 MHz, CDCl3) : δ 188.9, 165.6, 139.7, 134.7, 130.8, 129.7, 128.5, 128.1, 127.6, 127.0, 94.5, 79.6, 72.3, 34.0; HRMS (ESI): calcd for C₁₈H₁₆NO [M+H]+ 262.1226; found 262.1222.

1-(4-fluorophenyl)-3-phenyl-3-(prop-2-ynylamino)prop-2-en-1-one

¹H NMR (500 MHz, CDCl₃): δ 11.28 (t, J = 12.1, 6.3, Hz, 1H), 7.93-7.89 (m, 2H), 7.48 (s, 5H), 7.10-7.04 (m, 2H), 5.78 (s, 1H), 3.94 (dd, J = 6.3, 2.5 Hz, 2H), 2.31 (t, J = 2.4 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 187.6, 164.5 (d, J = 250.8 Hz, 1C), 136.0 (d, J = 2.7 Hz, 1C), 134.7, 129.8, 129.3 (d, J = 8.7 Hz, 2C), 128.7, 127.7, 115.1 (d, J = 21.4 Hz, 2C), 94.1, 79.6, 72.4, 34.2; HRMS (ESI): calcd for C₁₈H₁₅FNO [M+H]+ 280.1132; found 280.1126.

1-(4-methoxyphenyl)-3-phenyl-3-(prop-2-ynylamino)prop-2-en-1-one

¹H NMR (300 MHz, CDCl₃): δ 11.21 (t, J = 12.1, 6.0, Hz, 1H), 7.90-7.87 (m, 2H), 7.50-7.45 (m, 5H), 6.92-6.88 (m, 2H), 5.80 (s, 1H), 3.92 (dd, J = 6.0, 2.3 Hz, 2H), 3.84 (s, 3H), 2.29 (t, J = 2.3, Hz, 1H); ¹³C NMR (125, CDCl₃): 188.1, 167.3, 165.1, 134.9, 132.4, 129.6, 128.9, 128.7, 128.5, 127.7, 113.3, 94.1, 79.8, 72.2, 55.1, 34.0; HRMS (ESI): calcd for C₁₉H₂₀NO₂ [M+H]+ 292.1360; found 292.1357.

1-(naphthalen-2-yl)-3-phenyl-3-(prop-2-ynylamino)prop-2-en-1-one

¹H NMR (300 MHz, CDCl₃): 11.33 (t, J = 12.1, 6.2 Hz, 1H), 8.53 (d, J = 8.1 Hz, 1H), 7.91-7.82 (m, 2H), 7.69 (d, J = 8.1 Hz, 1H), 7.58-7.41 (m, 8H), 5.66 (s, 1H), 4.01 (dd, J = 6.2, 2.5 Hz, 2H), 2.36 (t, J = 2.5 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): 188.4, 165.5, 136.8, 134.4, 134.3, 132.4, 129.5, 128.8, 128.3, 127.6, 127.4, 127.3, 127.2, 126.9, 125.9, 123.7, 94.5, 79.5, 72.3, 33.8; HRMS (ESI): calcd for C₂₂H₁₈NO [M+H]+

312.1578; found 312.1580.

1-(naphthalen-2-yl)-3-(prop-2-ynylamino)-3-p-tolylprop-2-en-1-one

¹H NMR (300 MHz, CDCl₃): 11.31 (t, J = 12.1, 6.3 Hz, 1H), 8.27 (s, 1H), 7.91-7.86 (m, 1H), 7.77-7.74 (m, 1H), 7.72-7.66 (m, 3H), 7.38-7.30 (m, 3H), 7.15-7.11 (m, 2H), 5.86 (s, 1H), 3.83 (dd, J = 6.3, 2.4 Hz, 2H), 2.26 (s, 3H), 2.19 (t, J = 2.4 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) : 188.6, 166.1, 139.9, 137.1, 134.5, 132.6, 131.8, 129.2, 129.0, 127.7, 127.6, 127.4, 127.1, 126.1, 123.9, 94.6, 79.7, 72.3, 34.1, 21.2; HRMS (ESI): calcd for C₂₃H₂₀NO[M+H]+ 326.1355; found 326.1352.

Me 1f

¹H NMR (300 MHz, CDCl₃): δ 11.23 (t, J = 12.1, 6.4 Hz, 1H), 7.97-7.81 (m, 2H), 7.42-7.36 (m, 2H), 7.30-7.27 (m, 2H), 6.90-6.88 (m, 2H), 5.80 (s, 1H), 3.94 (dd, J = 6.4, 2.5 Hz, 2H), 3.84 (s, 3H), 2.42 (s, 3H), 2.29 (t, J = 2.5 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) : δ 188.1, 165.5, 161.9, 139.8, 132.7, 132.2, 129.2, 129.0, 127.8, 113.4, 94.2, 80.0, 72.2, 55.3, 34.1, 21.3; HRMS (ESI): calcd for C₂₀H₂₀NO₂ [M+H]+ 306.1816; found 306.1811.

¹H NMR (500 MHz, CDCl₃): δ 11.31 (t, *J* = 12.1, 6.3 Hz, 1H), 7.98-7.84 (m, 2H), 7.50-7.40 (m, 2H), 7.11-7.04 (m, 2H), 7.01-6.96 (m, 2H), 5.77 (s, 1H), 3.98 (dd, *J* = 6.3, 2.4 Hz, 2H), 3.87 (s, 3H), 2.32 (t, *J* = 2.4 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): 187.0, 166.0, 164.2 (d, *J* = 250.6 Hz, 1C), 160.7, 136.0 (d, *J* = 2.7 Hz, 1C), 132.3 (d, *J* = 9.9 Hz, 2C),129.1, 126.7, 114.9 (d, *J* = 21.7Hz, 2C), 113.9, 93.9, 79.7, 72.3, 55.1, 34.0; HRMS (ESI): calcd for C₁₉H₁₇FNO₂ [M+H]+ 310.2331; found 310.2337.

¹H NMR (500 MHz, CDCl₃): 11.23 (t, *J* = 12.1, 6.4 Hz, 1H), 7.89 (d, *J* = 8.9 Hz, 2H), 7.45 (d, *J* = 8.9 Hz,

2H), 6.98 (d, J = 8.7 Hz, 2H), 6.90 (d, J = 8.7 Hz, 2H), 5.80 (s, 1H), 3.96 (dd, J = 6.4, 2.4 Hz, 2H), 3.87 (s, 3H), 3.85 (s, 3H), 2.30 (t, J = 2.4 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) : 187.9, 165.2, 161.8, 160.6, 132.6, 129.3, 128.9, 127.2, 113.9, 113.3, 94.0, 80.0, 72.1, 55.2, 55.1, 34.0; HRMS (ESI): calcd for C₂₀H₂₀NO₃ [M+H]+ 322.1772; found 322.1769.

1-(4-fluorophenyl)-3-(prop-2-ynylamino)-3-p-tolylprop-2-en-1-one

¹H NMR (300 MHz, CDCl₃): δ 11.30 (t, J = 12.1, 6.8, Hz, 1H), 7.94-7.87 (m, 2H), 7.40-7.36 (m, 2H), 7.31-7.28 (m, 2H), 7.11-7.03 (m, 2H), 5.77 (s, 1H), 3.96 (dd, J = 6.8, 3.0 Hz, 2H), 2.43 (s, 3H), 2.31 (t, J = 3.0 Hz, 1H); ¹³C NMR (125, CDCl₃): 187.3, 166.1, 164.3 (d, J=251.5Hz, 1C), 140.0, 136.1 (d, J=3.6Hz, 1C), 131.7, 129.3, 129.2 (d, J=2.7Hz, 2C), 127.6, 114.9 (d, J=20.8Hz, 2C), 93.9, 79.7, 72.3, 34.1, 21.2; HRMS (ESI): calcd for C₁₉H₁₇FNO [M+H]+ 294.1288; found 294.1284.

1.4 Spectroscopic data for 3,4 – Dihydro-2H-Pyrroles (3a-m)

(3-methylene-4,5-diphenyl-3,4-dihydro-2*H*-pyrrol-4yl)(phenyl)methanone

3a

R_f: 0.3; Hexane: Ethyl acetate mixture(10:0.7); Yield: 78%; White solid; Melting Point: 168-170 °C; IR (CH₂Cl₂): v = 2962, 2853, 1679, 1600, 1446, 1229, 1028 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.76-7.70 (m, 2H), 7.69-7.64 (m, 2H), 7.43-7.33 (m, 3H), 7.32-7.17 (m, 8H), 5.18 (s, 1H), 5.12 (s, 1H), 4.97(d, *J* =21.1 Hz, 1H); ¹³C NMR (125, CDCl₃) : δ 196.4, 174.1, 153.1, 138.5, 136.7, 133.5, 132.2, 130.5, 129.1, 128.6, 128.2, 128.0, 127.9, 127.2, 109.4, 75.5, 64.6; HRMS (ESI): calcd for C₂₄H₂₀NO [M+H]+ 338.1539; found 338.1533.

R_f: 0.3; Hexane: Ethyl acetate mixture(10:0.7); Yield: 58%; Colourless oil; IR (CH₂Cl₂): v = 2922, 2851, 1637, 1462, 1278, 1157, 875 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.82-7.74 (m, 2H), 7.69-7.63 (m, 2H),

7.40-7.36 (m, 2H), 7.34 -7.17 (m, 6H), 6.96-6.88 (m, 2H), 5.18 (s, 1H), 5.12 (s, 1H), 4.99(d, J = 21.1 Hz, 1H), 4.77 (d, J = 21.1 Hz, 1H);¹³C NMR (75, CDCl₃): δ 194.7, 174.2, 164.8 (d, J = 254.6Hz, 1C), 153.0, 131.8 (d, J = 8.7Hz, 1C), 130.6, 128.5 (d, J = 6.5Hz, 2C), 128.3, 127.8, 127.3, 115.1 (d, J = 21.9Hz, 2C), 109.3, 75.2, 64.4; HRMS (ESI): calcd for C₂₄H₁₉FNO [M+H]+ 356.1445; found 356.1439.

(4-methoxyphenyl)(3-methylene-4,5-diphenyl-3,4dihydro-2*H*-pyrrol-4-yl)methanone

R_f: 0.3; Hexane: Ethyl acetate mixture(10:0.7); Yield: 66%; Pale yellow oil; IR (CH₂Cl₂): v = 2924, 2851, 1599, 1305, 1241, 1170, 1027 cm⁻¹; ¹H NMR (600 MHz, CDCl₃): δ 7.79-7.76 (m, 2H), 7.69-7.65 (m, 2H), 7.38-7.35(m, 2H), 7.29-7.24 (m, 4H), 7.22-7.18 (m, 2H), 6.74-6.70(m, 2H), 5.17 (s, 1H), 5.11 (s, 1H), 4.96(d,*J*=21.0 Hz, 1H), 4.76 (d,*J*=21.0 Hz, 1H); ¹³C NMR (75, CDCl₃) : δ 194.5, 174.7, 162.7, 153.4, 138.5, 133.7, 131.8, 130.5, 129.0, 128.8, 128.6, 128.2, 127.8, 127.1, 113.2, 109.1, 75.3, 64.5, 55.2; HRMS (ESI): calcd for C₂₅H₂₂NO₂ [M+H]+ 368.1645; found 368.1639.

(3-methylene-4,5-diphenyl-3,4-dihydro-2*H*-pyrrol-4yl)(naphthalen-2-yl)methanone

R_f: 0.4; Hexane: Ethyl acetate mixture(10:0.7); Yield: 67%; white solid; Melting Point: 218-200 °C; IR (CH₂Cl₂): v = 2924, 2853, 1588, 1425, 1295, 1122, 1026 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): 8.30 (s, 1H), 7.84-7.78 (m, 2H), 7.72-7.68 (m, 3H), 7.54-7.48 (m, 1H), 7.47-7.41 (m, 3H), 7.34-7.28 (m, 3H), 7.25-7.20 (m, 2H), 7.19-7.15 (m, 2H), 5.19 (s, 1H), 5.15 (s, 1H), 5.05(d, *J* = 21.0 Hz, 1H), 4.84 (d, *J* = 21.0 Hz, 1H); ¹³C NMR (125, CDCl₃): 196.1, 174.4, 153.2, 138.5, 134.8, 133.8, 133.6, 132.0, 130.9, 130.6, 129.7, 128.7, 128.6, 128.3, 127.9, 127.7, 127.4, 127.3, 126.5, 125.1, 109.6, 75.7, 64.7; HRMS (ESI): calcd for C₂₈H₂₂NO[M+H]+ 388.1695, found 388.1692.

R_f: 0.4; Hexane: Ethyl acetate mixture(10:0.7); Yield: 64%; white solid; Melting Point: 208-210 °C; IR (CH₂Cl₂): v = 2923, 2851, 1675, 1494, 1301, 1189, 900 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 8.32 (s, 1H), 7.86-7.78 (m, 2H), 7.76-7.60 (m, 4H), 7.53-7.39 (m, 4H), 7.35-7.26 (m, 3H), 7.01-6.95 (d, J = 9.2 Hz, 2H), 5.17 (s, 1H), 5.12 (s, 1H), 5.03(d, J = 21.1 Hz, 1H), 4.81 (d, J = 21.1 Hz, 1H), 2.19 (s, 3H); ¹³C NMR (75,

CDCl₃): δ 196.2, 174.0, 153.5, 141.0, 138.6, 134.8, 133.9, 132.0, 130.9, 129.7, 129.1, 128.7, 128.6, 128.3, 127.9, 127.7, 127.4, 127.2, 126.4, 125.1, 109.3, 75.5, 64.6, 21.2; HRMS (ESI): calcd for C₂₉H₂₄NO[M+H]+ 402.1852, found 402.1849.

(4-methoxyphenyl)(3-methylene-4-phenyl-5-*p*-tolyl-3,4dihydro-2*H*-pyrrol-4-yl)methanone

R_f: 0.3; Hexane: Ethyl acetate mixture(10:0.7); Yield: 67%; colourless oil; ¹ IR (CH₂Cl₂): \ddot{v} = 2924, 2852, 1601, 1510, 1242, 1171, 1028 cm⁻¹; H NMR (500 MHz, CDCl₃): 7.80-7.76 (m, 2H), 7.60-7.57 (m, 2H), 7.39-7.35 (m, 2H), 7.33-7.21 (m, 3H), 7.05-6.98 (m, 2H), 6.76-6.71 (m, 2H), 5.14 (s, 1H), 5.09 (s, 1H), 4.94(d, *J* = 20.9 Hz, 1H), 4.74 (d, *J* = 20.9 Hz, 1H), 3.77 (s, 3H), 2.26 (s, 3H); ¹³C NMR (75, CDCl₃): 194.5, 174.5, 162.6, 153.5, 140.8, 138.5, 131.7, 128.9, 128.7, 128.5, 127.7, 127.0, 113.1, 108.8, 75.0, 64.2, 55.1, 21.2; HRMS (ESI): calcd for C₂₆H₂₄NO₂ [M+H]+ 382.1801; found 382.1800.

(4-fluorophenyl)(5-(4-methoxyphenyl)-3-methylene-4phenyl-3,4-dihydro-2*H*-pyrrol-4-yl)methanone

R_f: 0.2; Hexane: Ethyl acetate mixture(10:0.7); Yield: 57%; colourless oil; IR (CH₂Cl₂): v = 2928, 2851, 1625, 1503, 1399, 1220, 1023 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) : 7.84-7.75 (m, 2H), 7.69-7.58 (m, 2H), 7.44-7.35 (m, 2H), 7.35-7.27 (m, 3H), 6.99-6.86 (m, 2H), 6.76-6.66 (m, 2H), 5.13 (s, 1H), 5.08 (s, 1H), 4.92(d, *J*=20.9 Hz, 1H), 4.74 (d, *J*=20.9 Hz, 1H), 3.72 (s, 3H); ¹³C NMR (125, CDCl₃): 195.0, 173.3, 164.8 (d, *J*=255.2Hz, 1C), 161.4, 153.5, 138.3, 132.8 (d, *J*=3.63Hz, 1C), 131.8 (d, *J*=9.0Hz, 2C), 130.3, 128.6, 127.9, 127.2, 126.1, 115.1(d, *J*=21.7Hz, 2C), 113.7, 109.0, 75.1, 64.3, 55.1; HRMS (ESI): calcd for $C_{25}H_{21}FNO_2$ [M+H]+ 386.1524, found 386.1521.

R_f: 0.2; Hexane: Ethyl acetate mixture(10:0.7); Yield: 72%; white solid; Melting Point: 252-254 °C; IR (CH₂Cl₂): v = 2918, 2850, 1599, 1420, 1256, 1158, 1030 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): 7.73-7.65(m, 4H), 7.31-7.27(m, 2H), 7.23-7.19 (m, 3H), 6.75-6.59 (m, 4H) 5.10 (d, J = 20.5Hz, 2H), 4.89 (d, J

=20.7 Hz, 1H), 4.68 (d, *J* =20.7 Hz, 1H), 3.77 (s, 3H), 3.73 (s, 3H); ¹³C NMR (125, CDCl₃): 194.8, 173.9, 162.7, 153.8, 141.3, 138.7, 131.7,130.3, 129.1, 128.8, 127.8, 127.1, 113.7, 108.8, 75.0, 64.2, 55.2, 55.1; HRMS (ESI): calcd for C₂₆H₂₄NO₃ [M+H]+ 398.1270, found 398.1267.

(4-fluorophenyl)(3-methylene-4-phenyl-5-*p*-tolyl-3,4dihydro-2*H*-pyrrol-4-yl)methanone

R_f: 0.4; Hexane: Ethyl acetate mixture(10:0.7); Yield: 55%; Yellow oil; IR (CH₂Cl₂): v = 2924, 2854, 1681, 1505, 1234, 1158, 864 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.83-7.75 (m, 2H), 7.56 (d, J = 8.3 Hz, 2H), 7.41-7.36 (m, 2H), 7.33-7.27 (m, 3H), 7.02 (d, J = 8.3 Hz, 2H), 6.96-6.87 (m, 2H), 5.14 (s, 1H), 5.08 (s, 1H), 4.94(d, J = 21.1 Hz, 1H), 4.75 (d, J = 21.1 Hz, 1H), 2.26 (s, 3H); ¹³C NMR (75, CDCl₃): δ 194.7, 173.9, 164.8 (d, J = 255.2Hz, 1C), 153.2, 141.0, 138.2 , 132.9, 132.8, 131.8 (d, J = 8.2Hz, 1C), 130.7, 129.0, 128.5 (d, J = 8.2Hz, 2C), 127.8, 127.2, 115.0 (d, J = 21.4Hz, 2C), 109.1, 75.1, 64.3, 21.2; HRMS (ESI): calcd for C₂₅H₂₁FNO [M+H]+ 370.1601, found 370.1600.

3k

(3-methylene-4-(naphthalen-2-yl)-5-phenyl-3,4-dihydro-2*H* -pyrrol-4-yl)(phenyl)methanone

R_f: 0.4; Hexane: Ethyl acetate mixture(10:0.7); Yield: 66%; white solid; Melting Point: 218-220 °C; IR (CH₂Cl₂): ΰ = 2922, 2851, 1624, 1443, 1359, 1176, 968 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.85-7.60 (m, 8H), 7.51-7.35 (m, 3H), 7.32-7.16 (m, 6H), 5.22 (s, 1H), 5.18 (s, 1H), 5.0 (d, *J* =21.1 Hz, 1H), 4.82 (d, *J* =21.1 Hz, 1H); ¹³C NMR (75, CDCl₃): δ 196.7, 174.2, 152.9, 136.7, 136.1, 133.5, 132.8, 132.3, 130.6, 129.2, 128.7, 128.3, 128.2, 128.0, 127.4, 127.3, 127.1, 127.0, 126.2, 125.8, 109.7, 75.8, 64.6; HRMS (ESI): calcd for C₂₈H₂₂NO [M+H]+ 388.1695, found 388.1698.

(4-fluorophenyl)(3-methylene-4-(naphthalen-2-yl)-5-*p*-tolyl-3,4dihydro-2*H*-pyrrol-4-yl)methanone

R_f: 0.4; Hexane: Ethyl acetate mixture(10:0.7); Yield: 60%; brown oil; IR (CH₂Cl₂): $\hat{\upsilon}$ = 2923, 2853, 1680, 1505, 1234, 1158, 754 cm⁻¹; ⁻¹H NMR (500 MHz, CDCl₃): δ 7.84-7.78 (m, 4H), 7.70-7.61 (m, 5H), 7.47-7.38 (m, 2H), 7.01 (d, *J* = 8.5 Hz, 2H), 6.93 (t, *J* = 8.5 Hz, 2H), 5.19 (s, 1H), 5.15 (s, 1H), 4.96(d, *J* = 21.0

Hz, 1H), 4.79 (d, J =21.0 Hz, 1H), 2.25 (s, 3H); ¹³C NMR (125, CDCl₃): δ 195.1, 174.0, 164.9 (d, J = 255.2 Hz, 1C), 153.1, 141.2, 135.8, 132.8 (d, J = 2.7 Hz, 1C), 132.3, 132.0 (d, J = 9.9 Hz, 2C), 130.7, 129.2, 128.6, 128.2, 127.36, 127.32, 127.1, 127.0, 126.2, 125.9, 115.2 (d, J = 21.7 Hz, 2C), 109.4, 75.4, 64.4, 21.3; HRMS (ESI): calcd for C₂₉H₂₃NOF [M+H]+ 420.1758, found 420.1747.

R_f: 0.4; Hexane: Ethyl acetate mixture(10:0.7); Yield: 64%; pale yellow solid; Melting Point: 133-135 °C; IR (CH₂Cl₂): \ddot{v} = 2923, 2846, 1673, 1446, 1227, 1026, 897 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 7.76-7.62 (m, 4H), 7.40-7.33 (m, 1H), 7.30-7.10 (m, 9H), 5.18 (s, 1H), 5.12 (s, 1H), 4.96(d, *J* =21.1 Hz, 1H), 4.79 (d, *J* =21.1 Hz, 1H), 2.32 (s, 3H); ¹³C NMR (75, CDCl₃): δ 196.5, 174.3, 153.2, 153.1, 138.5, 137.4, 137.0, 136.8, 135.6, 133.6, 132.1, 130.4, 129.3, 129.1, 128.6, 128.5, 128.2, 127.9, 127.7, 125.6, 109.4, 109.2, 75.5, 75.2, 64.6, 21.5, 20.9; HRMS (ESI): calcd for C₂₅H₂₂NO [M+H]+ 352.1695, found 352.1692.

R_f: 0.4; Hexane: Ethyl acetate mixture(10:0.7); Yield: 68%; white solid; Melting Point: 201-203 °C; IR (CH₂Cl₂): $\ddot{v} = 2918$, 2850, 1591, 1423, 1294, 1116, 930 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): 8.30 (s, 1H), 7.98-7.88 (m, 1H), 7.85-7.77 (m, 2H), 7.74-7.68 (m,3H), 7.55-7.42 (m, 2H), 7.34-7.27 (m, 2H), 7.22-7.16 (m, 3H), 7.15-7.10 (m, 2H), 5.18 (s, 1H), 5.11 (s, 1H), 4.97(d, *J* =21.1 Hz, 1H), 4.79 (d, *J* =21.1 Hz, 1H), 2.32 (s, 3H). ¹³C NMR (75, CDCl₃): 196.0, 174.2, 153.2, 153.0, 138.3, 136.8, 135.4, 134.5, 133.6, 133.4, 132.2, 131.8, 130.6, 130.3, 129.4, 129.1, 128.4, 128.0, 127.6, 127.5, 127.1, 126.2, 125.4, 124.9, 109.3, 109.0, 75.5, 75.1, 64.4, 21.3, 20.7. HRMS (ESI): calcd for C₂₉H₂₄NO[M+H]+ 402.1852, found 402.1845.

1.5 Representative spectral data

S29

X-ray crystallography data

Cambridge Crystallographic Data Centre CCDC

This CIF contains data from an original supplementary publication deposited with the CCDC, and may include chemical, crystal, experimental, refinement, atomic coordinates, anisotropic displacement parameters and molecular geometry data, as required by the journal to which it was submitted. This CIF is provided on the understanding that it is used for bona fide research purposes only. It may contain copyright material of the CCDC or of third parties, and may not be copied or further disseminated in any form, whether machine-readable or not, except for the purpose of generating routine backup copies on your local computer system. For further information on the CCDC, data deposition and data retrieval see: www.ccdc.cam.ac.uk

Crystal structure data of 3a: Crystal structure deposition no: CCDC 932648.

Figure 1. ORTEP diagram of the methylene-3,4 -dihydro-2H-pyrrole 3a

Table 1. Crystal data and structure remember of Ja	Table 1.	Crystal data a	and structure	refinement for 3a
--	----------	----------------	---------------	-------------------

Identification code	epr105gk		
Empirical formula	$C_{24} H_{19} N O$		
Formula weight	337.40		
Temperature	293(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P -1		
Unit cell dimensions	a = 9.2718(19) Å	$\Box = 73.388(13)^{\circ}.$	
	b = 9.5841(14) Å	$\Box = 84.716(14)^{\circ}.$	
	c = 10.4920(15) Å	$\Box = 79.196(15)^{\circ}.$	
Volume	876.9(3) Å ³		
Z	2		
Density (calculated)	1.278 Mg/m ³		
Absorption coefficient	0.078 mm ⁻¹	0.078 mm ⁻¹	
F(000)	356		
Crystal size	0.42 x 0.22 x 0.20 mm ³	0.42 x 0.22 x 0.20 mm ³	
Theta range for data collection	2.89 to 25.00°.	2.89 to 25.00°.	
Index ranges	-10<=h<=11, -11<=k<=1	-10<=h<=11, -11<=k<=11, -10<=l<=12	
Reflections collected	5558	5558	
Independent reflections	3086 [R(int) = 0.0332]	3086 [R(int) = 0.0332]	
Completeness to theta = 25.00°	99.9 %	99.9 %	
Absorption correction	Semi-empirical from equ	Semi-empirical from equivalents	
Max. and min. transmission	0.9847 and 0.9682	0.9847 and 0.9682	
Refinement method	Full-matrix least-squares	Full-matrix least-squares on F ²	
Data / restraints / parameters	3086 / 0 / 243	3086 / 0 / 243	
Goodness-of-fit on F ²	0.978	0.978	
Final R indices [I>2sigma(I)]	R1 = 0.0510, $wR2 = 0.08$	R1 = 0.0510, $wR2 = 0.0894$	
R indices (all data)	R1 = 0.0961, wR2 = 0.10	996	
Largest diff. peak and hole	0.138 and -0.185 e.Å ⁻³	0.138 and -0.185 e.Å ⁻³	

	х	у	Z	U(eq)
C(1)	3160(2)	5806(2)	2701(2)	38(1)
C(2)	4311(3)	5508(3)	1824(2)	47(1)
C(3)	4748(3)	6637(3)	805(2)	57(1)
C(4)	4062(3)	8050(3)	647(3)	65(1)
C(5)	2905(3)	8365(3)	1491(3)	74(1)
C(6)	2458(3)	7250(3)	2514(2)	58(1)
C(7)	2652(2)	4698(2)	3902(2)	39(1)
C(8)	3059(2)	3024(2)	4058(2)	34(1)
C(9)	4717(2)	2487(2)	4038(2)	38(1)
C(10)	5019(2)	1525(3)	3106(2)	50(1)
C(11)	2670(2)	2615(2)	2826(2)	34(1)
C(12)	5689(3)	2804(3)	4700(3)	57(1)
C(13)	2389(2)	2126(2)	5362(2)	36(1)
C(14)	2645(3)	2345(3)	6565(2)	53(1)
C(15)	2130(3)	1508(3)	7750(2)	62(1)
C(16)	1347(3)	425(3)	7767(3)	59(1)
C(17)	1115(3)	164(3)	6597(3)	56(1)
C(18)	1636(2)	1002(2)	5402(2)	44(1)
C(19)	1208(2)	3075(2)	2234(2)	33(1)
C(20)	0(2)	3766(2)	2827(2)	40(1)
C(21)	-1347(3)	4125(3)	2244(2)	50(1)
C(22)	-1493(3)	3806(3)	1074(3)	55(1)
C(23)	-299(3)	3138(3)	466(2)	51(1)
C(24)	1044(3)	2772(2)	1039(2)	42(1)
N(1)	3705(2)	1810(2)	2345(2)	43(1)
O(1)	1903(2)	5143(2)	4761(2)	59(1)

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for epr105gk. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(1)-C(6)	1.381(3)
C(1)-C(2)	1.386(3)
C(1)-C(7)	1.500(3)
C(2)-C(3)	1.379(3)
C(2)-H(2)	0.9300
C(3)-C(4)	1.355(4)
C(3)-H(3)	0.9300
C(4)-C(5)	1.372(3)
C(4)-H(4)	0.9300
C(5)-C(6)	1.376(3)
C(5)-H(5)	0.9300
C(6)-H(6)	0.9300
C(7)-O(1)	1.213(2)
C(7)-C(8)	1.542(3)
C(8)-C(9)	1.527(3)
C(8)-C(13)	1.539(3)
C(8)-C(11)	1.544(3)
C(9)-C(12)	1.313(3)
C(9)-C(10)	1.501(3)
C(10)-N(1)	1.458(3)
C(10)-H(10A)	0.9700
C(10)-H(10B)	0.9700
C(11)-N(1)	1.275(3)
C(11)-C(19)	1.481(3)
C(12)-H(12A)	1.01(3)
C(12)-H(12B)	0.99(3)
C(13)-C(18)	1.379(3)
C(13)-C(14)	1.385(3)
C(14)-C(15)	1.371(3)
C(14)-H(14)	0.9300
C(15)-C(16)	1.369(3)
C(15)-H(15)	0.9300
C(16)-C(17)	1.364(3)
C(16)-H(16)	0.9300
C(17)-C(18)	1.381(3)
C(17)-H(17)	0.9300

Table 3. Bond lengths [Å] and angles [°] for epr105gk.

C(18)-H(18)	0.9300
C(19)-C(20)	1.381(3)
C(19)-C(24)	1.393(3)
C(20)-C(21)	1.382(3)
C(20)-H(20)	0.9300
C(21)-C(22)	1.371(3)
С(21)-Н(21)	0.9300
C(22)-C(23)	1.371(3)
С(22)-Н(22)	0.9300
C(23)-C(24)	1.374(3)
С(23)-Н(23)	0.9300
C(24)-H(24)	0.9300
C(6)-C(1)-C(2)	118.4(2)
C(6)-C(1)-C(7)	116.1(2)
C(2)-C(1)-C(7)	125.4(2)
C(3)-C(2)-C(1)	120.3(2)
C(3)-C(2)-H(2)	119.8
C(1)-C(2)-H(2)	119.8
C(4)-C(3)-C(2)	120.6(3)
C(4)-C(3)-H(3)	119.7
C(2)-C(3)-H(3)	119.7
C(3)-C(4)-C(5)	120.0(3)
C(3)-C(4)-H(4)	120.0
C(5)-C(4)-H(4)	120.0
C(4)-C(5)-C(6)	120.1(3)
C(4)-C(5)-H(5)	120.0
C(6)-C(5)-H(5)	120.0
C(5)-C(6)-C(1)	120.7(3)
C(5)-C(6)-H(6)	119.7
C(1)-C(6)-H(6)	119.7
O(1)-C(7)-C(1)	118.6(2)
O(1)-C(7)-C(8)	119.93(19)
C(1)-C(7)-C(8)	121.5(2)
C(9)-C(8)-C(13)	108.11(17)
C(9)-C(8)-C(7)	112.79(16)
C(13)-C(8)-C(7)	111.41(18)
C(9)-C(8)-C(11)	99.60(17)
C(13)-C(8)-C(11)	112.55(15)

C(7)-C(8)-C(11)	111.81(17)
C(12)-C(9)-C(10)	126.7(2)
C(12)-C(9)-C(8)	127.0(2)
C(10)-C(9)-C(8)	106.29(17)
N(1)-C(10)-C(9)	106.92(19)
N(1)-C(10)-H(10A)	110.3
C(9)-C(10)-H(10A)	110.3
N(1)-C(10)-H(10B)	110.3
C(9)-C(10)-H(10B)	110.3
H(10A)-C(10)-H(10B)	108.6
N(1)-C(11)-C(19)	120.9(2)
N(1)-C(11)-C(8)	115.08(19)
C(19)-C(11)-C(8)	124.0(2)
C(9)-C(12)-H(12A)	120.6(15)
C(9)-C(12)-H(12B)	118.5(15)
H(12A)-C(12)-H(12B)	121(2)
C(18)-C(13)-C(14)	117.40(19)
C(18)-C(13)-C(8)	122.34(19)
C(14)-C(13)-C(8)	120.02(18)
C(15)-C(14)-C(13)	121.4(2)
C(15)-C(14)-H(14)	119.3
C(13)-C(14)-H(14)	119.3
C(16)-C(15)-C(14)	120.3(2)
C(16)-C(15)-H(15)	119.9
С(14)-С(15)-Н(15)	119.9
C(17)-C(16)-C(15)	119.3(2)
C(17)-C(16)-H(16)	120.3
C(15)-C(16)-H(16)	120.3
C(16)-C(17)-C(18)	120.5(2)
С(16)-С(17)-Н(17)	119.7
C(18)-C(17)-H(17)	119.7
C(13)-C(18)-C(17)	121.0(2)
C(13)-C(18)-H(18)	119.5
C(17)-C(18)-H(18)	119.5
C(20)-C(19)-C(24)	118.8(2)
C(20)-C(19)-C(11)	122.90(19)
C(24)-C(19)-C(11)	118.3(2)
C(19)-C(20)-C(21)	120.0(2)

C(19)-C(20)-H(20)	120.0
C(21)-C(20)-H(20)	120.0
C(22)-C(21)-C(20)	120.4(2)
C(22)-C(21)-H(21)	119.8
C(20)-C(21)-H(21)	119.8
C(21)-C(22)-C(23)	120.2(2)
C(21)-C(22)-H(22)	119.9
C(23)-C(22)-H(22)	119.9
C(22)-C(23)-C(24)	119.9(2)
C(22)-C(23)-H(23)	120.1
C(24)-C(23)-H(23)	120.1
C(23)-C(24)-C(19)	120.6(2)
C(23)-C(24)-H(24)	119.7
C(19)-C(24)-H(24)	119.7
C(11)-N(1)-C(10)	109.75(19)

Symmetry transformations used to generate equivalent atoms: