Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2014

Supporting Information for

Tailoring Fluorescent Strigolactones for *in vivo* Investigations: a computational and experimental study

Cristina Prandi,^a Giovanni Ghigo,^a Ernesto G, Occhiato,^b Dina Scarpi,^b Stefano Begliomini,^bBeatrice Lace,^a Gabriele Alberto,^a Emma Artuso,^a Marco Blangetti^a

^a Dipartimento di Chimica, Università di Torino, via P. Giuria 7-10125 Torino

^b Dipartimento di Chimica "Ugo Schiff", Università di Firenze, via della Lastruccia 13, 50019 Sesto Fiorentino (FI), Italy

Email: cristina.prandi@unito.it

Table of contents

Confocal microscopy observation	S2-S3
Normalized Abs/Emission spectra of compound BL , HR, EG, EGO 9a, BODIPYEGO, BoyPhST, 5-NO ₂ PhBorEGO	S4-S10
Molecular orbitals and electronic transitions in EGO-10, EGO-9a, Tz-EGO10 and J- EGO10	S6-S8
Molecular orbitals and electronic transitions in Ph-Bor-ST, 5-NO ₂ -Ph-Bor-ST, Bor-ST, 3-NO ₂ -Bor-ST, 4-NO ₂ -Bor-ST, and 5-NO ₂ -Bor-ST	S8-S10
Molecular orbitals and electronic transitions in BODIPY-EG , BODIPY-SB , BODIPY-HR , and BODIPY-Et	S11
Calculated vs. experimental electronic transitions for benchmark systems	S12

A. Fluorescence (left) and transmitted light (right) confocal images from a drop of HR 10^{-4} M solution in water. **B**. Fluorescence emission spectrum obtained from Lambda scan in C. **C**. Lambda scan of HR fluorescence in the same solution. Each image shows the fluorescence emission recorded between 505 nm and 705 nm with a 10 nm emission window and step size = 6.66 nm. Maximum emission was recorded at 515-525 nm. The fluorochrome was excited at 476 nm (Ar/Kr laser).

A. Fluorescence (left) and transmitted light (right) confocal images from a drop of EG 10^{-4} M solution in water. **B**. Fluorescence emission spectrum obtained from Lambda scan in C. **C**. Lambda scan of EG fluorescence in the same solution. Each image shows the fluorescence emission recorded between 505 nm and 705 nm with a 10 nm emission window and step size = 6.66 nm. Maximum emission was recorded at 515 nm. The fluorochrome was excited at 476 nm (Ar/Kr laser).

Normalized absorption (blue line) and emission (red line) spectra of **HR** (5×10^{-6} M) in DCM.

Normalized absorption (blue line) and emission (red line) spectra of EG (1×10^{-5} M) in DCM.

λ _{exc} (nm)	$\lambda_{em}(nm)$	τ_1^{f} (ns)	τ ₂ f(ns)
297	495	3.26 (35%)	7.36 (65%)
455	565	0.48 (75%)	3.15 (35%)

S10

B-1. Molecular orbitals and electronic transitions in Ph-Bor-ST and 4-NO₂-Ph-Bor-ST

4-NO₂-Ph-Bor-ST

B-2. Molecular orbitals and electronic transitions in Bor-ST, 3-NO₂-Bor-ST, 4-NO₂-Bor-ST, and 5-NO₂-Bor-ST

C-1. Molecular orbitals and electronic transitions in BODIPY-EG, BODIPY-SB, BODIPY-HR, and BODIPY-Et

600dpi/no-antialiases/crop_1650x2200

600dpi/no-antialiases/crop_1450x2250

- -

S15

T-1. Calculated vs. experimental electronic transitions for benchmark systems

All calculation with 6-31+G(d) basis set.

	exp.	CAM-B3LYP	PBE0	mPWPW91	M06-2X	M06-HF	M06
EGO-9c	320	313	334	343	304	284	350
in CH ₂ Cl ₂	305	283	300	306	277	276	317
<i>EurJOC</i> . 2011 .3781		-7	14	23	-17	-36	30
		-22	-5	1	-28	-29	12
	3.87	3.96	3.71	3.61	4.09	4.37	3.54
	4.06	4.38	4.13	4.05	4.48	4.49	3.91
ε ² =	:	0.007	0.026	0.069	0.044	0.245	0.111
ε ² =	:	0.098	0.005	0.000	0.172	0.184	0.024
		0.053	0.015	0.035	0.108	0.215	0.068
BODIPY 6c	532	513	502	502	515	536	520
in ACN	002	-19	-30	-30	-17	4	-12
JOC. 2011 .76.8168	2.33	2.42	2.47	2.47	2.41	2.32	2.39
ε² =	:	0.008	0.019	0.020	0.006	0.000	0.003
BODIPY 4a	502	468	462	462	472	498	474
in CH.Cl.	001	-24		-40	-20		
<i>Eur.</i> 10C. 2011 .5460	2.47	2.65	2.69	2.69	2.63	2.49	2.62
	2	2100	2.00	2.00	2100		
ε² =		0.032	0.047	0.047	0.025	0.000	0.021
Boranil 5	372	333	374	373	334	291	378
in Toluene		-39	2	1	-38	-81	6
OrgLett. 2011 .13.3414	3.33	3.73	3.31	3.32	3.71	4.26	3.28
ε² =	:	0.155	0.000	0.000	0.144	0.861	0.003
Derevil 10	107	000	100	107	070	0.47	40.4
Boranii 10	427	366	426	427	373	347	424
Oral ett 2011 13 3/1/	1 2 00	3 30	-1 2 01	2 91	-54	-80	-3 2 Q2
OrgLett.2011.10.0414	- 2.30	5.55	2.31	2.31	0.02	5.57	2.52
ε² =		0.236	0.000	0.000	0.176	0.447	0.000
$\Sigma \epsilon^2 =$:	0.536	0.097	0.136	0.567	1.738	0.163
((Σ.ε²)/6) ^½ =		0.30	0 13	0 15	0 31	0 54	0 16
((20))) =		0.00	0.13	0.13	0.51	0.04	0.10
Boranil & EGO	ONLY =	0.35	0.09	0.13	0.37	0.66	0.19
Boranil & BODIPY	ONLY =	0.33	0.13	0.13	0.30	0.57	0.08

Conclusion: For Boranyl use PBE0 or M06 For EGO use PBE0 For BODIPY use M06