Supporting Information for:

Carboxy-Directed Asymmetric Hydrogenation of α-Alkyl-α-aryl Terminal Olefins: A Highly Enantioselective and Regioselective Access to Chiral Benzylmethyl Center

CONTENTS:

(A) Preparation and Analytical Data of Unsaturated Carboxylic Acids	2
(B) Asymmetric Hydrogenation and Analytical Data of Products	8
(C) Synthesis of (S)-Curcumene and (S)-Curcudiol	14
(D) NMR Spectra of New Compounds	16
(E) SFC Charts of Hydrogenation Product Derivatives	59

General: All the air or moisture sensitive reactions and manipulations were performed under an nitrogen atmosphere by using standard Schlenk techniques and a Vacuum Atmospheres Drybox (VAC DRI-LAB HE 493). Melting points were measured on a RY-I apparatus and uncorrected. ¹H, ³¹P NMR and ¹³C NMR spectra were recorded on a Brucker AV 400 spectrometers or a Brucker AV 300 spectrometers or a Varian Mercury Plus 400 spectrometer. Chemical shifts were reported in ppm down field from internal Me₄Si. Mass spectra were recorded on IonSpec FT-ICR mass spectrometer with ESI or MAIDI resource. Optical rotations were determined by a Perkin Elmer 341 MC polarimeter. Enantiomeric excesses (ee) of the asymmetric hydrogenation products were determined by chiral SFC. SFC analyses were performed using a Mettler-Toledo Model Analytix SFC. Anhydrous Et₂O, THF and dioxane were distilled from sodium benzophenone ketyl. Anhydrous CH₂Cl₂, NEt₃ were freshly distilled from calcium hydride under nitrogen atmosphere. Anhydrous MeOH was distilled from magnesium under nitrogen atmosphere. [Ir(COD)Cl]₂ was purchased from Aldrich Co. and used as received. Hydrogen gas (99.999%) was purchased from Boc Gas Inc., Tianjin.

(A) Preparation and Analytical Data of Unsaturated Carboxylic Acids

General procedure for the preparation of substrates 2a-2k, 2n-2q:

To a suspension of CdCl₂ (3.7 g, 20 mmol) in THF (10 mL) was added Grignard reagent (40 mmol) at 0 °C. The mixture was stirred at 45 °C for 1 h. Then the system was cooled to 0 °C again and a solution of anhydride **12** (15 mmol) was added to the mixture. The mixture was stirred at 45 °C for 12 h. After evaporation of THF, the mixture was treated with 1N HCl (100 mL). The aqueous layer was extracted with ethyl acetate (3×50 mL). The combined extracts were washed with brine (100 mL), dried over MgSO₄, and concentrated. The residue was used in the following step without further purification.

To a suspension of methyltriphenylphosphonium bromide (20.0 mmol) in THF (100 mL) was added potassium *tert*-butoxide (30.0 mmol) at 0 °C. The mixture was stirred for 30 min. Acid **13** (10.0 mmol) was added to the reaction mixture at 0 °C. The mixture was allowed to warm to room temperature, and stirred for 6 h. After evaporation of THF, the mixture was treated with 10% NaOH (100 mL). The aqueous layer was washed with CH₂Cl₂ (50 mL) and acidified (pH = 1) with 3 N HCl. The aqueous layer was extracted with ether (3 × 50 mL). The combined extracts were washed with brine (100 mL), dried over MgSO₄, and concentrated. The residue was purified by flash chromatography on silica gel (PE/EA = 4:1) to give the product **2**.

General procedure for the preparation of substrates 21, 2m and 9:

To a solution of vinyl bromide **15** (10.0 mmol) in 100 mL of dioxane/THF (1:1). was added boronic acid **14** (15.0 mmol), followed by Pd(PPh₃)₄ (0.5 mmol) and K₃PO₄ (40.0 mmol, 4.0 equiv). The reaction mixture was heated for 12 h under 85 °C. The solvent was removed by rotary evaporation and purified by chromatography on silica gel (PE/EA = 20:1) to give the product **16**.

To the solution of ester **16** (8.0 mmol) in MeOH (50 mL) was added 5% KOH (30 mL). The suspension was stirred at 45 $^{\circ}$ C for 3 h. After evaporation of MeOH, the mixture was treated with 1N HCl (50 mL). The aqueous layer was extracted with ethyl

acetate (3 \times 50 mL). The combined extracts were washed with brine (100 mL), dried over MgSO₄, and concentrated. The residue was purified by flash chromatography on silica gel (PE/EA = 4:1) to give the product.

17 was prepared according to the reported procedure.¹ A mixture of triflates **17** (13.0 mmol), $Pd(OAc)_2$ (1.3 mmol), dppp (1.3 mmol), MeOH (100 mL), DMSO (160 mL), and Et₃N (40 mL) was saturated with CO and stirred under a CO atmosphere at 70 °C. The reaction mixture was monitored by TLC for full conversion. After cooling to room temperature, the mixture was concentrated at reduced pressure. The residue was purified by flash chromatography on silica gel (PE/EA = 16:1) to give the product **18**.

To a suspension of methyltriphenylphosphonium bromide (20.0 mmol) in THF (100 mL) was added potassium *tert*-butoxide (20.0 mmol) at 0 °C. The mixture was stirred for 30 min. and was added **18** (10.0 mmol) at 0 °C. The reaction mixture was allowed to warm to room temperature, and stirred for 6 h. After evaporation of THF, the mixture was purified by flash chromatography on silica gel (PE/EA = 20:1) to give the product **19**.

To the solution of ester **19** (8.0 mmol) in MeOH (50 mL) was added 5% KOH (30 mL). The suspension was stirred at 45 °C for 3 h. After evaporation of MeOH, the mixture was treated with 1N HCl (50 mL). The aqueous layer was extracted with ethyl acetate (3×50 mL). The combined extracts were washed with brine (100 mL), dried over MgSO₄, and concentrated. The residue was purified by flash chromatography on silica gel (PE/EA = 4:1) to give the product **2r**.

2-(Hex-1-en-2-yl)benzoic acid (2a)

COOH Colorless oil, 65 % yield; ¹H NMR (400 MHz, CDCl₃): δ 7.97 (d, J = 7.6 Hz, 1H), 7.50 (t, J = 6.8 Hz, 1H), 7.36 (t, J = 6.8 Hz, 1H), 7.23 (d, J = 7.6 Hz, 1H), 5.12 (s, 1H), 4.92 (s, 1H), 2.41 (t, J = 6.8 Hz, 2H), 1.43–1.28 (m, 4H), 0.88 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, δ 172 2, 151 2, 145 0, 145 0, 120 4, 120 4, 120 1, 127 0, 112 6, 27 4, 20 2

CDCl₃): δ 173.2, 151.2, 145.9, 132.4, 130.8, 130.4, 128.1, 127.0, 112.6, 37.4, 30.3, 22.4, 14.0. HRMS (ESI) Calcd for [C₁₃H₁₅O₂, M – H]⁻: 203.1078, Found: 203.1081.

2-(But-1-en-2-yl)benzoic acid (2b)

COOH Et White solid, 75% yield, m.p.: 45–46 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.97 (d, J = 7.6 Hz, 1H), 7.50 (t, J = 7.6 Hz, 1H), 7.36 (t, J = 7.2 Hz, 1H), 7.23 (d, J = 7.2 Hz, 1H), 5.13 (s, 1H), 4.92 (s, 1H), 2.43 (q, J = 6.8 Hz, 2H), 1.07 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 173.4, 152.5, 146.0, 132.4, 130.8, 130.3, 128.2, 127.0, 111.6, 30.5, 12.6. HRMS (ESI) Calcd for $[C_{11}H_{11}O_2, M - H]^-$: 175.0765, Found: 175.0769.

2-(Hept-1-en-2-yl)benzoic acid (2c)

Colorless oil, 52% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.99 (d, J = СООН 7.6 Hz, 1H), 7.50 (t, J = 7.2 Hz, 1H), 7.36 (t, J = 7.6 Hz, 1H), 7.24 (d, J = 7.6 Hz, 1H), 5.13 (s, 1H), 4.93 (s, 1H), 2.41 (t, J = 7.6 Hz, 2H), ^{'n}Pent 1.43 (t, J = 7.2 Hz, 2H), 1.31–1.27 (m, 4H), 0.87 (t, J = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 173.4, 151.2, 145.9, 132.4, 130.8, 130.4, 128.1, 127.0, 112.6, 37.6, 31.6, 27.8, 22.6, 14.1. HRMS (ESI) Calcd for [C₁₄H₁₇O₂, M - H]⁻: 217.1234, Found: 217.1229.

2-(3-Methylbut-1-en-2-yl)benzoic acid (2d)

White solid, 45% yield, m.p.: 73–74 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.01 (d, J = 7.6 Hz, 1H), 7.50 (t, J = 7.2 Hz, 1H), 7.37 (t, J = 7.2 Hz, 1H), 7.22 (d, J = 7.6 Hz, 1H), 5.13 (s, 1H), 4.91 (s, 1H), 2.62–2.55 (m, 1H), 1.09 (d, J = 6.8 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 173.1, 157.4, 146.4, 132.4, 131.0, 130.8, 128.0, 127.0, 110.0, 34.8, 21.8. HRMS (ESI) Calcd

2-(1-Cyclohexylvinyl)benzoic acid (2e)

for [C₁₂H₁₃O₂, M – H]⁻: 189.0921, Found: 189.0924.

White solid, 42% yield, m.p.: 98–99 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.99 (d, J = 8.0 Hz, 1H), 7.51–7.47 (m, 1H), 7.38–7.34 (m, 1H), 7.20 (d, J = 7.6 Hz, 1H), 5.10 (s, 1H), 4.90 (s, 1H), 2.20–2.15 (m, 1H), 1.86–1.65 (m, 5H), 1.25–1.15 (m, 5H). ¹³C NMR (101 MHz, CDCl₃):

 δ 173.2, 156.5, 146.3, 132.2, 130.9, 130.8, 128.0, 126.9, 110.4, 44.9, 32.4, 26.8, 26.4. HRMS (ESI) Calcd for $[C_{15}H_{17}O_2, M - H]^-$: 229.1234, Found: 229.1236.

2-(4-Phenylbut-1-en-2-yl)benzoic acid (2f)

White solid, 50% yield, m.p.: 95–96 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.01 (d, J = 7.6 Hz, 1H), 7.49 (t, J = 7.2 Hz, 1H), 7.36 (t, J = 7.2 Hz, 1H), 7.23–7.12 (m, 6H), 5.17 (s, 1H), 4.97 (s, 1H), 2.78–2.71 (m, 4H). ¹³C NMR (101 MHz, CDCl₃): δ 173.4, 150.5, 145.7, 142.0, 132.7, 131.1, 130.5, 128.4, 128.3, 128.1, 127.2, 125.9, 113.2, 39.4, 34.7. HRMS (ESI) Calcd for $[C_{17}H_{15}O_2, M - H]^-$: 251.1078, Found:

251.1076.

2-(5-Methoxypent-1-en-2-yl)benzoic acid (2g)

Colorless oil, 56% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.95 (d, J = 8.0 Hz, 1H), 7.49 (t, J = 7.6 Hz, 1H), 7.35 (t, J = 7.6 Hz, 1H), 7.23 (d, J = 8.0 Hz, 1H), 5.15 (s, 1H), 4.95 (s, 1H), 3.41 (t, J = 6.4Hz, 2H), 3.29 (s, 3H), 2.50 (t, J = 7.6 Hz, 2H), 1.76-1.69 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 172.5, 150.2, 145.3, 132.3, 130.8, 130.2, 128.6, 127.1, 113.1, 72.3, 58.4, 34.0, 27.9. HRMS (ESI) Calcd for [C₁₃H₁₅O₃, M – H][–]: 219.1027, Found: 219.1026.

3-(Hex-1-en-2-yl)-2-naphthoic acid (2h)

White solid, 72% yield, m.p.: 89–90 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.58 (s, 1H),

7.94 (d, J = 8.0 Hz, 1H), 7.85 (d, J = 8.0 Hz, 1H), 7.68 (s, 1H), 7.60 (t, J = 7.6 Hz, 1H), 7.53 (t, J = 7.6 Hz, 1H), 5.20 (s, 1H), 5.06 (s, 1H), 2.48 (t, J = 7.2 Hz, 2H), 1.46–1.32 (m, 4H), 0.88 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 172.1, 150.4,

140.3, 134.0, 131.7, 130.4, 128.0, 127.9, 127.6, 126.6, 125.5, 125.4, 111.7, 36.5, 29.5, 21.4, 12.9. HRMS (ESI) Calcd for $[C_{17}H_{17}O_2, M - H]^-$: 253.1234, Found: 253.1236.

5-Bromo-2-(hex-1-en-2-yl)benzoic acid (2i)

White solid, 9% yield, m.p.: 79–80 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.11 (s, 1H), 7.61 (d, J = 8.4 Hz, 1H), 7.11 (d, J = 8.4 Hz, 1H), 5.13 (s, 1H), 4.91 (s, 1H), 2.38 (t, J = 6.8 Hz, 2H), 1.43–1.26 (m, 4H), 0.89 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz,

CDCl₃): δ 172.1, 150.0, 144.8, 135.4, 133.6, 132.0, 129.8, 120.6, 113.2, 37.2, 30.3, 22.4, 14.0. HRMS (ESI) Calcd for [C₁₃H₁₄BrO₂, M - H]⁻: 281.0183, Found: 281.0178.

4-Bromo-2-(hex-1-en-2-yl)benzoic acid (2j)

White solid, 23% yield, m.p.: 90–91 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.85 (d, J = 8.4 Hz, 1H), 7.50 (dd, J = 8.4 and 2.0 Hz, 1H), 7.40 (d, J = 2.0 Hz, 1H), 5.14 (s, 1H), 4.93 (s, 1H), 2.38 (t, J = 6.8 Hz, 2H), 1.45–1.29 (m, 4H), 0.90 (t, J = 7.2 Hz, 3H). ¹³C

NMR (101 MHz, CDCl₃): δ 172.7, 150.0, 147.9, 133.3, 132.4, 130.2, 127.4, 126.9, 113.3, 37.1, 30.2, 22.4, 14.0. HRMS (ESI) Calcd for [C₁₃H₁₄BrO₂, M – H]⁻: 281.0183, Found: 281.0182.

2-(But-1-en-2-yl)-4,5-dichlorobenzoic acid (2k)

White solid, 68% yield, m.p.: 110–111 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.08 (s, 1H), 7.34 (s, 1H), 5.15 (s, 1H), 4.92 (s, 1H), 2.37 (q, *J* = 7.6 Hz, 2H), 1.07 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 171.2, 150.4, 145.8, 137.0, 132.7, 132.2, 131.3,

127.5, 112.8, 30.2, 12.5. HRMS (ESI) Calcd for $[C_{11}H_9Cl_2O_2, M - H]^-$: 242.9985, Found: 242.9986.

2-(But-1-en-2-yl)-5-methoxybenzoic acid (2l)

White solid, 65% yield, m.p.: 87–88 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.50 (d, J = 2.8 Hz, 1H), 7.15 (d, J = 8.4 Hz, 1H), 7.05 (dd, J = 8.4 and 2.8 Hz, 1H), 5.10 (s, 1H), 4.89 (s, 1H), 3.86 (s, 3H), 2.40 (q, J = 7.2 Hz, 2H), 1.06 (t, J = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 173.1, 158.3, 152.2, 138.4, 131.5, 129.0, 118.8, 115.1, 111.6, 55.5, 30.7, 12.7. HRMS (ESI) Calcd for $[C_{12}H_{13}O_3, M - H]^-$: 205.0870, Found: 205.0873.

2-(But-1-en-2-yl)-5-methylbenzoic acid (2m)

173.7, 152.5, 143.1, 136.8, 133.1, 131.2, 130.3, 128.0, 111.4, 30.6, 20.9, 12.6. HRMS (ESI) Calcd for [C₁₂H₁₃O₂, M – H]⁻: 189.0921, Found: 189.0925.

(Z)-2-(Octa-1,5-dien-2-yl)benzoic acid (2n)

Colorless oil, 69% yield; ¹H NMR (400 MHz, CDCl₃): δ 8.00 (d, J = 7.6 Hz, 1H), 7.49 (t, J = 7.6 Hz, 1H), 7.35 (t, J = 7.6 Hz, 1H), 7.23 (d, J = 7.6 Hz, 1H), 5.42–5.32 (m, 2H), 5.15 (s, 1H), Et 4.95 (s, 1H), 2.48 (t, J = 7.2 Hz, 2H), 2.20–2.15 (m, 2H), 2.04–1.97 (m, 2H), 0.94 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 173.4, 150.6, 145.7, 132.5, 132.1, 130.9, 130.5, 128.4, 128.1, 127.1, 112.9, 37.6, 25.8, 20.6, 14.3. HRMS (ESI) Calcd for [C₁₅H₁₇O₂, M – H]⁻: 229.1234, Found: 229.1234.

(E)-2-(Octa-1,5-dien-2-yl)benzoic acid (20)

Colorless oil, 52% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.99 (d, J = 7.6 Hz, 1H), 7.50 (t, J = 7.6 Hz, 1H), 7.36 (t, J = 8.0 Hz, 1H), 7.23 (d, J = 7.6 Hz, 1H), 5.49–5.36 (m, 2H), 5.14 (s, 1H), 4.94 (s, 1H), 2.48 (t, J = 7.2 Hz, 2H), 2.14–2.09 (m, 2H),

2.01–1.94 (m, 2H), 0.94 (t, J = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 172.9, 150.6, 145.7, 132.5, 132.4, 130.9, 130.5, 128.4, 128.0, 127.0, 113.0, 37.6, 31.2, 25.6, 13.9. HRMS (ESI) Calcd for [C₁₅H₁₇O₂, M – H]⁻: 229.1234, Found: 229.1233.

(Z)-2-(Icosa-1,11-dien-2-yl)benzoic acid (2p)

Colorless oil, 50% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.99 (d, J = 7.6 Hz, 1H), 7.50 (t, J = 7.2 Hz, 1H), 7.36 (t, J = 7.6 Hz, 1H), 7.24 (d, J = 7.6 Hz, 1H), 5.39–5.34 (m, 2H), 5.13 (s, 1H), 4.93 (s, 1H), 2.42 (t, J = 7.2 Hz, 2H),

2.02–1.97 (m, 4H), 1.44–1.41 (m, 2H), 1.31–1.27 (m, 22H), 0.89 (t, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 173.3, 151.3, 145.9, 132.4, 130.8, 130.4, 130.3, 129.9, 128.1, 127.0, 112.6, 37.7, 32.7, 32.0, 29.81, 29.75, 29.69, 29.57, 29.54, 29.37, 29.28, 29.23, 29.21, 28.2, 27.2, 22.7, 14.2. HRMS (ESI) Calcd for [C₂₇H₄₁O₂, M – H]⁻: 397.3112, Found: 397.3114.

2-(Octa-1,7-dien-2-yl)benzoic acid (2q)

2.04 (q, J = 6.8 Hz, 2H), 1.44–1.42 (m, 4H). ¹³C NMR (101 MHz, CDCl₃): δ 173.6, 151.0, 145.9, 138.9, 132.5, 130.9, 130.4, 128.2, 127.1, 114.4, 112.7, 37.5, 33.7, 28.6, 27.6. HRMS (ESI) Calcd for [C₁₅H₁₇O₂, M – H]⁻: 229.1234, Found: 229.1233.

8-Methylene-5,6,7,8-tetrahydronaphthalene-1-carboxylic acid (2r)

White solid, 94% yield, m.p.: 120–121 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.58 (t, J = 4.0 Hz, 1H), 7.26 (d, J = 4.0 Hz, 2H), 5.24 (s, 1H), 5.23 (s, 1H), 2.83 (t, J = 6.4 Hz, 2H), 2.68 (t, J = 6.4 Hz, 2H), 2.00–1.94 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 175.6, 141.4,

138.8, 135.9, 129.9, 128.7, 126.3, 125.5, 113.8, 31.0, 28.8, 22.7. HRMS (ESI) Calcd for [C₁₂H₁₁O₂, M – H]⁻: 187.0765, Found: 187.0766.

5-Methyl-2-(6-methylhepta-1,5-dien-2-yl)benzoic acid (9)

Colorless oil, 75% yield; ¹H NMR (400 MHz, CDCl₃): δ 7.86 (s, 1H), 7.35 (d, J = 7.6 Hz, 1H), 7.17 (t, J = 7.6Hz, 1H), 5.19 (t, J = 6.4 Hz, 1H), 5.17 (s, 1H), 4.98 (s, 1H), 2.49 (t, J = 7.6 Hz, 2H), 2.44 (s, 3H), 2.19–2.14 (m, 2H), 1.73 (s, 3H), 1.62 (s, 3H). ¹³C NMR (101 MHz,

CDCl₃): δ 173.8, 150.8, 143.0, 136.8, 133.2, 131.7, 131.3, 130.5, 128.0, 124.1, 112.6, 37.7, 26.8, 25.7, 20.9, 17.7. HRMS (ESI) Calcd for [C₁₆H₁₉O₂, M – H]⁻: 243.1391, Found: 243.1396.

(B) Asymmetric Hydrogenation and Analytical Data of Products

General procedure for asymmetric hydrogenation

A hydrogenation tube was charged with a stirring bar, 2-(hex-1-en-2-yl)benzoic acid **2a** (102 mg, 0.5 mmol), catalyst (S_a)-**1b** (2.3 mg, 0.00125 mmol), NEt₃ (51 mg, 0.5 mmol) and 2 mL MeOH. The hydrogenation tube was then put into an autoclave. The autoclave was sealed and purged five times with hydrogen. The autoclave was then charged with hydrogen to 6 atm, and the reaction mixture was stirred at 45 °C for 3.5 h. After releasing hydrogen, 20 mg of NaOH was added to the reaction mixture, which was then concentrated on a rotary vapor. The mixture was added 25 mL water and washed with Et₂O. The aqueous layer was acidified with conc. HCl, and extracted with Et₂O. The organic layer was dried with Na₂SO₄. The conversion of substrate was determined by ¹H NMR analysis. The crude product **3a** as a colorless oil. The ee value of product was determined by SFC using a Chiralpak AD-H column. The analysis data for hydrogenation products were listed as below.

2-(Hexan-2-yl)benzoic acid (3a)

Colorless oil, 98% yield; 99.1% ee, $[\alpha]_D^{25}$ +41.3 (*c* 1.0, chloroform), SFC condition: Chiralpak AD-H column (25 cm × 0.46 cm ID), sc CO₂/2-propanol = 90:10, flow rate = 2.0 mL/min, 254 nm UV detector, t_R = 5.42 min for minor isomer and t_R = 6.46 min for major isomer. ¹H

NMR (400 MHz, CDCl₃): δ 7.92 (d, J = 7.6 Hz, 1H), 7.51 (t, J = 7.6 Hz, 1H), 7.42 (d, J = 8.0 Hz, 1H), 7.26 (t, J = 7.6 Hz, 1H), 3.83–3.74 (m, 1H), 1.71–1.52 (m, 2H), 1.30–1.23 (m, 6H), 1.20–1.13 (m, 1H), 0.85 (t, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 174.7, 149.8, 132.4, 130.6, 129.6, 126.9, 125.4, 38.1, 34.5, 29.9, 22.9, 22.4, 14.1. HRMS (ESI) Calcd for [C₁₃H₁₇O₂, M – H]⁻: 205.1234, Found: 205.1230.

2-sec-Butylbenzoic acid (3b)²

* Me

COOH Colorless oil, 99% yield; 98 % ee, $[\alpha]_D^{25}$ +22.4 (*c* 1.0, chloroform), SFC condition: Chiralpak AD-H column (25 cm × 0.46 cm ID), sc CO₂/2-propanol = 90:10, flow rate = 2.0 mL/min, 254 nm UV detector, t_R = 5.19 min for minor isomer and t_R = 6.40 min for major isomer. ¹H

NMR (400 MHz, CDCl₃): δ 7.93 (d, J = 7.6 Hz, 1H), 7.51 (t, J = 7.6 Hz, 1H), 7.41 (d, J = 7.6 Hz, 1H), 7.26 (t, J = 7.6 Hz, 1H), 3.73–3.68 (m, 1H), 1.72–1.58 (m, 2H), 1.27 (d, J = 6.4 Hz, 3H), 0.86 (t, J = 7.2 Hz, 3H).

2-(Heptan-2-yl)benzoic acid (3c)

COOH Colorless oil, 98% yield; 99.1% ee, $[\alpha]_D^{25}$ +51.7 (*c* 1.0, chloroform), SFC condition: Chiralpak AD-H column (25 cm × 0.46 cm ID), sc CO₂/2-propanol = 90:10, flow rate = 2.0 mL/min, 254 nm UV detector,

^{*in*}Pent $t_{\rm R} = 6.29$ min for minor isomer and $t_{\rm R} = 7.81$ min for major isomer. ¹H NMR (400 MHz, CDCl₃): δ 7.99 (d, J = 8.0 Hz, 1H), 7.56 (t, J = 7.6 Hz, 1H), 7.47 (d, J = 8.0 Hz, 1H), 7.31 (t, J = 7.2 Hz, 1H), 3.89–3.82 (m, 1H), 1.76–1.58 (m, 2H), 1.34–1.32 (m, 9H), 0.91 (t, J = 5.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 174.7,

150.3, 132.7, 130.8, 129.0, 126.9, 125.5, 38.4, 34.5, 32.0, 27.4, 22.6, 22.3, 14.1. HRMS (ESI) Calcd for $[C_{14}H_{19}O_2, M - H]^-: 219.1391$, Found: 219.1393.

2-(3-Methylbutan-2-yl)benzoic acid (3d)

COOH * Me * Me * Pr * Colorless oil, 98% yield; 99.5% ee, $[\alpha]_D^{25}$ +39.6 (*c* 1.0, chloroform), SFC condition: Chiralpak AD-H column (25 cm × 0.46 cm ID), sc CO₂/2-propanol = 90:10, flow rate = 2.0 mL/min, 254 nm UV detector, t_R = 4.82 min for minor isomer and t_R = 6.49 min for major isomer. ¹H NMR (400 MHz, CDCl₃): δ 9.50 (br, 1H), 7.79 (d, *J* = 7.6 Hz, 1H), 7.44 (t, *J* = 7.2 Hz, 1H), 7.33 (d, *J* = 7.6 Hz, 1H), 7.19 (t, *J* = 7.2 Hz, 1H), 3.46–3.39 (m, 1H), 1.84–1.76 (m, 1H), 1.21 (d, *J* = 6.4 Hz, 3H), 0.93 (d, *J* = 6.8 Hz, 3H), 0.71 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 174.5, 149.7, 132.4, 130.7, 129.4, 127.5, 125.4, 41.0, 34.5, 21.6, 19.9, 19.0. HRMS (ESI) Calcd for [C₁₂H₁₅O₂, M – H]⁻: 191.1078, Found: 191.1080.

2-(1-Cyclohexylethyl)benzoic acid (3e)

Coordination: Colorless oil, 98% yield; 99.6% ee, $[\alpha]_D^{25}$ +80.4 (*c* 1.0, chloroform), SFC condition: Chiralpak AD-H column (25 cm × 0.46 cm ID), sc CO₂/2-propanol = 90:10, flow rate = 2.0 mL/min, 254 nm UV detector, t_R = 7.93 min for minor isomer and t_R = 10.23 min for major isomer. ¹H NMR (400 MHz, CDCl₃): δ 9.23 (br, 1H), 7.82 (d, *J* = 7.6 Hz, 1H), 7.46 (t, *J* = 7.2 Hz, 1H), 7.35 (d, *J* = 8.0 Hz, 1H), 7.21 (t, *J* = 7.2 Hz, 1H), 3.50–3.46 (m, 1H), 1.92 (d, *J* = 12.0 Hz, 1H), 1.73 (d, *J* = 11.6 Hz, 3H), 1.45–0.83 (m, 12H). ¹³C NMR (101 MHz, CDCl₃): δ 174.6, 148.9, 131.9, 130.6, 130.2, 127.4, 125.3, 44.3, 40.1, 31.6, 30.4, 26.6, 26.5, 19.2. HRMS (ESI) Calcd for [C₁₅H₁₉O₂, M – H]⁻: 231.1391, Found: 231.1389.

2-(4-Phenylbutan-2-yl)benzoic acid (3f)

White solid, 98% yield, m.p.: 66–67 °C; 99.1% ee, $[\alpha]_D^{25}$ +94.4 (*c* 1.0, chloroform), SFC condition: Chiralpak AD-H column (25 cm × 0.46 cm ID), sc CO₂/2-propanol = 80:20, flow rate = 2.0 mL/min, 254 nm UV detector, t_R = 5.46 min for major isomer and t_R = 7.39 min for minor isomer. ¹H NMR (400 MHz, CDCl₃): δ 7.96 (d, *J* = 6.4 Hz, 1H), 7.52–7.46 (m, 2H), 7.27–7.12 (m, 6H), 3.88–3.86 (m, 1H), 2.60 (s,

1H), 2.51 (s, 1H), 2.00–1.92 (m, 2H), 1.33 (d, J = 5.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 174.5, 149.6, 142.5, 132.9, 131.0, 129.2, 128.4, 128.3, 127.0, 125.8, 125.7, 40.2, 34.3, 34.1, 22.5. HRMS (ESI) Calcd for [C₁₇H₁₇O₂, M – H]⁻: 253.1234, Found: 253.1237.

2-(5-Methoxypentan-2-yl)benzoic acid (3g)

Colorless oil, 98% yield; 99.2% ee, $[\alpha]_D^{25}$ +33.3 (*c* 1.0, chloroform), SFC condition: Chiralpak AD-H column (25 cm × 0.46 cm ID), sc CO₂/2-propanol = 90:10, flow rate = 2.0 mL/min, 254 nm UV detector, t_R = 7.13 min for minor isomer and t_R = 8.61 min for major isomer. ¹H NMR (400 MHz, CDCl₃): δ 7.91 (d, *J* = 8.0 Hz, 1H), 7.50 (t, *J* = 7.2 Hz, 1H), 7.42 (d, *J* = 7.6 Hz, 1H), 7.25

(t, J = 7.2 Hz, 1H), 3.87–3.78 (m, 1H), 3.41–3.34 (m, 2H), 3.31 (s, 3H), 1.77–1.41 (m,

4H), 1.28 (d, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 173.7, 149.5, 132.6, 130.8, 129.2, 126.9, 125.6, 72.9, 58.4, 34.7, 34.2, 27.6, 22.4. HRMS (ESI) Calcd for [C₁₃H₁₇O₃, M – H]⁻: 221.1183, Found: 221.1185.

3-(Hexan-2-yl)-2-naphthoic acid (3h)

White solid, 98% yield, m.p.: 72–73 °C; 99.4% ee, $[\alpha]_D^{25}$ +13.2 (*c* 1.0, chloroform), SFC condition: Chiralpak AD-H column (25 cm × 0.46 cm ID), sc CO₂/2-propanol = 70:30, flow rate = 2.0 mL/min, 254 nm UV detector, t_R = 4.60 min for minor isomer

and $t_{\rm R} = 14.41$ min for major isomer. ¹H NMR (400 MHz, CDCl₃): δ 8.60 (s, 1H), 7.93–7.85 (m, 3H), 7.59–7.51 (m, 2H), 3.94 (d, J = 5.6 Hz, 1H), 1.84–1.69 (m, 2H), 1.42–1.29 (m, 7H), 0.91 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 174.4, 145.7, 135.5, 132.5, 130.7, 128.8, 128.3, 127.8, 127.4, 126.0, 125.7, 38.5, 34.4, 30.0, 22.9, 22.5, 14.1. HRMS (ESI) Calcd for [C₁₇H₁₉O₂, M – H]⁻: 255.1391, Found: 255.1391.

5-Bromo-2-(hexan-2-yl)benzoic acid (3i)

White solid, 98% yield, m.p.: 65–66 °C; 98% ee, $[\alpha]_D^{25}$ +25.6 (*c* 1.0, chloroform), SFC condition: Chiralpak AD-H column (25 cm × 0.46 cm ID), sc CO₂/2-propanol = 90:10, flow rate = 2.0 mL/min, 254 nm UV detector, t_R = 8.97 min for minor isomer and

 $t_{\rm R}$ = 12.02 min for major isomer. ¹H NMR (400 MHz, CDCl₃): δ 8.05 (s, 1H), 7.62 (d, J = 8.0 Hz, 1H), 7.29 (d, J = 8.4 Hz, 1H), 3.75–3.70 (m, 1H), 1.59–1.57 (m, 2H), 1.25–1.14 (m, 7H), 0.85 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 172.7, 149.2, 135.7, 133.4, 130.6, 128.9, 118.9, 37.9, 34.2, 29.8, 22.8, 22.2, 14.0. HRMS (ESI) Calcd for [C₁₃H₁₆BrO₂, M – H]⁻: 283.0339, Found: 283.0336.

4-Bromo-2-(hexan-2-yl)benzoic acid (3j)

	СООН
Br	Me *
	 ⁿ Bu

White solid, 98% yield, m.p.: 75–76 °C; 99% ee, $[\alpha]_D^{25}$ +9.17 (*c* 1.0, chloroform), SFC condition: Chiralpak AD-H column (25 cm × 0.46 cm ID), sc CO₂/2-propanol = 90:10, flow rate = 2.0 mL/min, 254 nm UV detector, t_R = 6.70 min for minor isomer and

 $t_{\rm R}$ = 14.66 min for major isomer. ¹H NMR (400 MHz, CDCl₃): δ 7.85 (d, *J* = 8.4 Hz, 1H), 7.59 (s, 1H), 7.44 (d, *J* = 8.4 Hz, 1H), 3.86–3.81 (m, 1H), 1.66–1.58 (m, 2H), 1.34–1.22 (m, 7H), 0.91 (t, *J* = 6.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 173.6, 152.7, 132.5, 130.4, 128.9, 128.1, 127.5, 38.0, 34.5, 29.9, 22.8, 22.1, 14.0. HRMS (ESI) Calcd for [C₁₃H₁₆BrO₂, M – H]⁻: 283.0339, Found: 283.0338.

2-sec-Butyl-4,5-dichlorobenzoic acid (3k)

White solid, 98% yield, m.p.: 108–109 °C; 99.8% ee, $[\alpha]_D^{25}$ +5.14 (*c* 1.0, chloroform), SFC condition: Chiralpak AD-H column (25 cm × 0.46 cm ID), sc CO₂/2-propanol = 90:10, flow rate = 2.0 mL/min, 254 nm UV detector, t_R = 8.09 min for minor isomer and

 $t_{\rm R} = 12.22$ min for major isomer. ¹H NMR (400 MHz, CDCl₃): δ 8.04 (s, 1H), 7.46 (s, 1H), 3.73–3.65 (m, 1H), 1.67–1.55 (m, 2H), 1.24 (d, J = 6.8 Hz, 3H), 0.86 (t, J = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 172.4, 150.4, 137.6, 132.8, 129.8, 129.3, 128.3, 35.8, 31.0, 21.6, 12.1. HRMS (ESI) Calcd for [C₁₁H₁₁Cl₂O₂, M – H]⁻:

2-sec-Butyl-5-methoxybenzoic acid (3l)

2-sec-Butyl-5-methylbenzoic acid (3m)

Colorless oil, 99% yield; 99.1% ee, $[\alpha]_D^{25}$ +18.5 (*c* 1.0, chloroform), SFC condition: Chiralpak AD-H column (25 cm × 0.46 cm ID), sc CO₂/2-propanol = 90:10, flow rate = 2.0 mL/min, 254 nm UV detector, t_R = 6.02 min for minor isomer and t_R =

7.86 min for major isomer. ¹H NMR (400 MHz, CDCl₃): δ 7.74 (s, 1H), 7.32–7.23 (m, 2H), 3.69–3.63 (m, 1H), 2.35 (s, 3H), 1.70–1.56 (m, 2H), 1.25 (d, J = 6.4 Hz, 3H), 0.85 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 174.7, 146.9, 135.0, 133.5, 131.2, 128.9, 126.8, 35.8, 31.2, 22.0, 20.8, 12.3. HRMS (ESI) Calcd for [C₁₂H₁₅O₂, M – H]⁻: 191.1078, Found: 191.1076.

(Z)-2-(Oct-5-en-2-yl)benzoic acid (3n)

Colorless oil, 99% yield; 98% ee, $[\alpha]_D^{25}$ +51.1 (*c* 1.0, chloroform), SFC condition: Chiralpak AD-H column (25 cm × 0.46 cm ID), sc CO₂/2-propanol = 90:10, flow rate = 2.0 mL/min, 254 nm UV detector, t_R = 7.30 min for minor isomer

and $t_{\rm R} = 10.98$ min for major isomer. ¹H NMR (400 MHz, CDCl₃): δ 7.75 (d, J = 7.2 Hz, 1H), 7.32 (t, J = 7.2 Hz, 1H), 7.23 (d, J = 7.6 Hz, 1H), 7.07 (t, J = 7.2 Hz, 1H), 5.21–5.09 (m, 2H), 3.68–3.56 (m, 1H), 1.93–1.72 (m, 4H), 1.59–1.39 (m, 2H), 1.10 (d, J = 6.8 Hz, 3H), 0.72 (t, J = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 174.3, 149.9, 132.7, 131.9, 130.9, 129.0, 128.8, 126.9, 125.6, 38.3, 34.2, 25.4, 22.2, 20.5, 14.4. HRMS (ESI) Calcd for [C₁₅H₁₉O₂, M – H]⁻: 231.1391, Found: 231.1391.

(E)-2-(Oct-5-en-2-yl)benzoic acid (30)

Colorless oil, 99% yield; 97% ee, $[\alpha]_D^{25}$ +43.2 (*c* 1.0, chloroform), SFC condition: Chiralpak AD-H column (25 cm × 0.46 cm ID), sc CO₂/2-propanol = 85:15, flow rate = 2.0 mL/min, 254 nm UV detector, t_R = 4.37 min for minor isomer

and $t_{\rm R} = 5.36$ min for major isomer. ¹H NMR (400 MHz, CDCl₃): δ 7.73 (d, J = 8.0 Hz, 1H), 7.33 (t, J = 7.6 Hz, 1H), 7.23 (d, J = 8.0 Hz, 1H), 7.07 (t, J = 8.4 Hz, 1H), 5.25–5.14 (m, 2H), 3.67–3.59 (m, 1H), 1.82–1.68 (m, 4H), 1.60–1.41 (m, 2H), 1.09 (d, J = 6.8 Hz, 3H), 0.75 (t, J = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 174.2, 149.8, 132.7, 132.2, 130.8, 129.0, 128.8, 127.0, 125.5, 38.1, 33.9, 30.6, 25.6, 22.3, 13.9.

HRMS (ESI) Calcd for [C₁₅H₁₉O₂, M – H]⁻: 231.1391, Found: 231.1390.

(Z)-2-(Icos-11-en-2-yl)benzoic acid (3p)

Colorless oil, 99% yield; 99.7% ee, $[\alpha]_D^{25}$ +56.5 (*c* 1.0, chloroform), SFC condition: Chiralpak AD-H column (25 cm × 0.46 cm ID), sc CO₂/2-propanol = 85:15, flow rate = 2.0 mL/min, 254 nm UV detector, t_R = 8.02 min for minor

isomer and $t_{\rm R}$ = 9.98 min for major isomer. ¹H NMR (400 MHz, CDCl₃): δ 7.92 (d, *J* = 6.8 Hz, 1H), 7.51 (t, *J* = 7.2 Hz, 1H), 7.41 (d, *J* = 7.6 Hz, 1H), 7.25 (t, *J* = 6.8 Hz, 1H), 5.37–5.32 (m, 2H), 3.84–3.74 (m, 1H), 2.00–1.94 (m, 4H), 1.68–1.51 (m, 2H), 1.31–1.23 (m, 27H), 0.87 (m, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 174.0, 150.2, 132.6, 130.7, 130.3, 129.9, 128.9, 126.9, 125.4, 38.3, 34.4, 32.6, 31.9, 29.78, 29.71, 29.67, 29.65, 29.54, 29.51, 29.3, 29.19, 29.17, 27.7, 27.2, 22.7, 22.3, 14.1. HRMS (ESI) Calcd for [C₂₇H₄₃O₂, M – H]⁻: 399.3269, Found: 399.3266.

2-(Oct-7-en-2-yl)benzoic acid (3q)

Colorless oil, 83% yield (with 17% over hydrogenation product); 99.6% ee, SFC condition for the corresponding over hydrogenation product: Chiralpak AD-H column (25 cm \times 0.46 cm ID), sc CO₂/2-propanol = 90:10, flow rate =

2.0 mL/min, 254 nm UV detector, $t_{\rm R} = 5.23$ min for minor isomer and $t_{\rm R} = 6.65$ min for major isomer. ¹H NMR (400 MHz, CDCl₃): δ 7.93 (d, J = 9.2 Hz, 1H), 7.51 (t, J = 7.2 Hz, 1H), 7.41 (d, J = 7.6 Hz, 1H), 7.25 (t, J = 7.2 Hz, 1H), 5.82–5.72 (m, 1H), 4.99–4.88 (m, 2H), 3.83–3.78 (m, 1H), 2.03–1.98 (m, 2H), 1.70–1.55 (m, 2H), 1.41–1.34 (m, 2H), 1.28–1.20 (m, 2H), 1.27 (d, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 174.4, 150.1, 139.1, 132.7, 130.8, 129.0, 126.9, 125.5, 114.2, 38.2, 34.4, 33.7, 29.0, 27.2, 22.3. HRMS (ESI) Calcd for [C₁₅H₁₉O₂, M – H]⁻: 231.1391, Found: 231.1389.

8-Methyl-5,6,7,8-tetrahydronaphthalene-1-carboxylic acid (3r)

White solid, 99% yield, m.p.: 115–116 °C; 91% ee, $[\alpha]_D^{25}$ -90.5 (*c* 1.0, chloroform), SFC condition: Chiralpak AD-H column (25 cm × 0.46 cm ID), sc CO₂/2-propanol = 80:20, flow rate = 2.0 mL/min, 254 nm UV detector, t_R = 7.27 min for major isomer and t_R = 8.44 min for minor isomer. ¹H NMR (400 MHz, CDCl₃): δ 7.80 (d, J = 7.6

Hz, 1H), 7.26 (d, J = 7.2 Hz, 1H), 7.16 (t, J = 7.6 Hz ,1H), 4.05–4.00 (m, 1H), 2.90–2.77 (s, 2H), 1.94–1.73 (m, 4H), 1.24 (d, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 174.2, 144.7, 137.7, 134.2, 129.3, 128.7, 125.1, 30.1, 29.9, 28.8, 23.4, 17.6. HRMS (ESI) Calcd for [C₁₂H₁₃O₂, M – H]⁻: 189.0921, Found: 189.0923.

(S)-5-Methyl-2-(6-methylhept-5-en-2-yl)benzoic acid (10)

Colorless oil, 98% yield; 96% ee, $[\alpha]_D^{25}$ -37.4 (*c* 1.0, chloroform), SFC condition: Chiralpak AD-H column (25 cm × 0.46 cm ID), sc CO₂/2-propanol = 85:15, flow rate = 2.0 mL/min, 254 nm UV detector, $t_R = 5.37$ min

for S isomer and $t_{\rm R}$ = 6.69 min for R isomer. ¹H NMR (400 MHz, CDCl₃): δ 7.80 (s,

1H), 7.37 (s, 2H), 5.16 (t, J = 6.8 Hz, 1H), 3.87–3.79 (m, 1H), 2.42 (s, 3H), 2.03–1.91 (m, 2H), 1.80–1.60 (m, 2H), 1.72 (s, 3H), 1.56 (s, 3H), 1.32 (d, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 173.6, 145.8, 133.9, 132.5, 130.4, 130.1, 127.8, 125.8, 123.4, 37.2, 32.7, 25.1, 24.6, 21.3, 19.7, 16.5. HRMS (ESI) Calcd for [C₁₆H₂₁O₂, M – H]⁻: 245.1547, Found: 245.1546.

(C) Synthesis of (S)-Curcumene and (S)-Curcudiol

(S)-Curcumene³

Copper powder (96 mg, 1.5 mmol) was added to a solution of **10** (122 mg, 0.50 mmol) in quinoline (3 mL) under nitrogen atmosphere. The mixture was heated at 220 °C for

Me <u><u>.</u> <u>Me</u> Me</u> 3 h. After cooling, the reaction mixture was diluted with 3 N HCl (15 mL) and extracted with Et_2O (3 × 15 mL). The organic phase was washed with brine (20 mL) and dried over MgSO₄. The solvent was removed under

reduced pressure. The residue was chromatographied on silica gel (PE) to give (*S*)-curcumene (90 mg, 89 % yield) as a colorless oil. $[\alpha]_D^{25}$ +44.6 (*c* 1.0, chloroform). ¹H NMR (400 MHz, CDCl₃): δ 7.10–7.05 (m, 4H), 5.09 (t, *J* = 7.2 Hz, 1H), 2.69–2.61 (m, 1H), 2.31 (s, 3H), 1.93–1.82 (m, 2H), 1.67 (s, 3H), 1.65–1.54 (m, 2H), 1.52 (s, 3H), 1.21 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 144.7, 135.2, 131.4, 129.0, 127.0, 124.6, 39.1, 38.5, 26.2, 25.8, 22.6, 21.1, 17.7.

(S)-(5-Methyl-2-(6-methylhept-5-en-2-yl)phenyl)methanol

To a suspension of LiAlH₄ (87 mg, 2.3 mmol) in 2 mL of anhydrous THF was added a solution of of **10** (114 mg, 0.46 mmol) in 2 mL THF at 0 $^{\circ}$ C over a period of 15 min.

The resulting mixture was stirred at 0 °C for 2 h, and quenched with saturated NaHCO₃ and 10% NaOH at 0 °C. The mixture was filtered through Celite and washed thoroughly with ethyl acetate. The organic layer was

separated and the aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with water and brine, dried over anhydrous Na₂SO₄ and concentrated. The residue was chromatographied on silica gel (PE/EA = 8:1) to give desired product (102 mg, 96 % yield) as a colorless oil. $[\alpha]_D^{25}$ +23.4 (*c* 1.0, chloroform). ¹H NMR (400 MHz, CDCl₃): δ 7.19–7.11 (m, 3H), 5.10 (t, *J* = 7.2 Hz, 1H), 4.71–4.64 (m, 2H), 3.08–2.99 (m, 1H), 2.33 (s, 3H), 2.00–1.82 (m, 2H), 1.67 (s, 3H), 1.66–1.53 (m, 2H), 1.49 (s, 3H), 1.22 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz,

CDCl₃): δ 142.9, 137.7, 135.3, 131.8, 129.2, 129.0, 125.9, 124.5, 63.4, 38.1, 33.1, 26.2, 25.7, 22.8, 21.0, 17.7. HRMS (ESI) Calcd for [C₁₆H₂₄ONa, M + Na]⁺: 255.1719, Found: 255.1718.

(S)-5-Methyl-2-(6-methylhept-5-en-2-yl)benzaldehyde (11)

Dess-Martin periodinane (254 mg, 0.6 mmol) was added to a solution of the alcohol (90 mg, 0.4 mmol) in CH_2Cl_2 (4 mL) under nitrogen atmosphere. The reaction

mixture was stirred at room temperature for 0.5 h. The reaction was quenched by adding saturated NaHCO₃ (4 mL) and saturated NaHSO₃ (4 mL). The layers were separated and the aqueous layer was extracted with

CH₂Cl₂ (2 × 10 mL). The combined organic extracts were dried over MgSO₄, and concentrated. The residue was chromatographied on silica gel (PE/EA = 20:1) to afford the product **11** (81 mg, 93% yield) as a colorless oil. $[\alpha]_D^{25}$ -14.5 (*c* 1.0, chloroform). ¹H NMR (400 MHz, CDCl₃): δ 10.34 (s, 1H), 7.63 (s, 1H), 7.36 (d, *J* = 8.0 Hz, 1H), 7.30 (d, *J* = 8.0 Hz, 1H), 5.07 (t, *J* = 6.0 Hz, 1H), 3.80–3.71 (m, 1H), 2.37 (s, 3H), 1.93–1.87 (m, 2H), 1.74–1.61 (m, 2H), 1.65 (s, 3H), 1.46 (s, 3H), 1.27 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 192.2, 147.6, 135.7, 134.9, 133.4, 131.9, 130.7, 126.7, 124.1, 38.1, 31.7, 26.0, 25.7, 22.4, 20.7, 17.6.

(S)-Curcudiol⁴

m-CPBA (241 mg, 1.4 mmol) was added to a solution of aldehyde **11** (81 mg, 0.35 mmol) and KHCO₃ (14 mg, 0.14 mmol) in CH_2Cl_2 (3 mL) under nitrogen atmosphere.

The reaction mixture was stirred at room temperate overnight. The reaction was quenched by adding saturated NaHCO₃ (10 mL) and CH₂Cl₂ (10 mL). The layers were separated and the aqueous layer was

further extracted with CH_2Cl_2 (2 ×10 mL). The combined organic extracts were dried over MgSO₄, and concentrated to get epoxide which was used immediately in the following step without further purification. To a suspension of LiAlH₄ (133 mg, 3.5 mmol) in 2 mL of anhydrous THF was added a solution of epoxide in 2 mL THF at 0 °C over a period of 15 min. The resulting mixture was stirred at the same temperature for 2 h, and quenched with H₂O at 0 °C. The mixture was filtered through Celite and washed thoroughly with ether. The organic layer was separated and the aqueous layer was extracted with ether. The combined organic layers were washed with water and brine, dried over anhydrous Na₂SO₄ and concentrated. The residue was chromatographied on silica gel (PE/EA = 4:1) to give (S)-curcudiol (67 mg, 81 % yield) as a colorless oil. 96% ee, $\left[\alpha\right]_{D^{25}}$ +10.7 (c 5.0, chloroform), SFC condition: Chiralpak AD-H column (25 cm \times 0.46 cm ID), sc CO₂/2-propanol = 80:20, flow rate = 2.0 mL/min, 220 nm UV detector, $t_{\rm R}$ = 9.17 min for R isomer and $t_{\rm R}$ = 10.55 min for S isomer. ¹H NMR (400 MHz, CDCl₃): δ 7.03 (d, J = 7.6 Hz, 1H), 6.72 (d, J = 8.0 Hz, 1H), 6.58 (s, 1H), 5.34 (s, 1H), 3.12–3.04 (m, 1H), 2.26 (s, 3H), 1.68–1.29 (m, 8H), 1.22 (d, J = 7.2 Hz, 3H), 1.20 (s, 3H), 1.18 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 151.9, 135.4, 129.5, 125.8, 120.6, 115.3, 70.4, 42.3, 36.7, 30.3, 28.6, 27.8, 21.1, 19.9, 19.8. HRMS (ESI) Calcd for [C₁₅H₂₃O₂, M – H]⁻: 235.1704, Found: 235.1710.

(D) NMR Spectra of New Compounds

2-(Hex-1-en-2-yl)benzoic acid (2a)

2-(But-1-en-2-yl)benzoic acid (2b)

17

2-(3-Methylbut-1-en-2-yl)benzoic acid (2d)

2-(1-Cyclohexylvinyl)benzoic acid (2e)

2-(4-Phenylbut-1-en-2-yl)benzoic acid (2f)

2-(5-Methoxypent-1-en-2-yl)benzoic acid (2g)

3-(Hex-1-en-2-yl)-2-naphthoic acid (2h)

5-Bromo-2-(hex-1-en-2-yl)benzoic acid (2i)

4-Bromo-2-(hex-1-en-2-yl)benzoic acid (2j)

2-(But-1-en-2-yl)-4,5-dichlorobenzoic acid (2k)

2-(But-1-en-2-yl)-5-methoxybenzoic acid (2l)

2-(But-1-en-2-yl)-5-methylbenzoic acid (2m)

(Z)-2-(Octa-1,5-dien-2-yl)benzoic acid (2n)

(E)-2-(Octa-1,5-dien-2-yl)benzoic acid (20)

(Z)-2-(Icosa-1,11-dien-2-yl)benzoic acid (2p)

2-(Octa-1,7-dien-2-yl)benzoic acid (2q)

32

Methyl 8-methylene-5,6,7,8-tetrahydronaphthalene-1-carboxylate (19)

8-Methylene-5,6,7,8-tetrahydronaphthalene-1-carboxylic acid (2r)

5-Methyl-2-(6-methylhepta-1,5-dien-2-yl)benzoic acid (9)
2-(Hexan-2-yl)benzoic acid (3a)

2-(3-Methylbutan-2-yl)benzoic acid (3d)

2-(1-Cyclohexylethyl)benzoic acid (3e)

2-(5-Methoxypentan-2-yl)benzoic acid (3g)

3-(Hexan-2-yl)-2-naphthoic acid (3h)

5-Bromo-2-(hexan-2-yl)benzoic acid (3i)

4-Bromo-2-(hexan-2-yl)benzoic acid (3j)

2-sec-Butyl-5-methoxybenzoic acid (3l)

(E)-2-(Oct-5-en-2-yl)benzoic acid (30)

(Z)-2-(Icos-11-en-2-yl)benzoic acid (3p)

2-(Oct-7-en-2-yl)benzoic acid (3q) (with 13% over hydrogenation product)

8-Methyl-5,6,7,8-tetrahydronaphthalene-1-carboxylic acid (3r)

(S)-5-Methyl-2-(6-methylhept-5-en-2-yl)benzoic acid (10)

(S)-Curcumene

(S)-(5-Methyl-2-(6-methylhept-5-en-2-yl)phenyl)methanol

(S)-5-Methyl-2-(6-methylhept-5-en-2-yl)benzaldehyde (11)

(S)-Curcudiol

(E) SFC Charts of Hydrogenation Product Derivatives

Peak	RetTime	Туре	Width	A	rea	Area	Name	
#	[min]		[min]	mAU	*s	8		
								 -
1	5.125	BV	0.1724	3057.	.36646	49.7568	?	
2	6.298	VV	0.2138	3087.	.24902	50.2432	?	

6144.61548

Totals :

1.61089e4

2-sec-Butylbenzoic acid (3b)

Signal 1: VWD1 A, Wavelength=254 nm

1.09705e4

Signal 1: VWD1 A, Wavelength=254 nm

2-(Heptan-2-yl)benzoic acid (3c)

Peak	RetTime	Туре	Width	Ar	ea	Area	Name
#	[min]		[min]	mAU	*s	90	
1	6.214	BB	0.3162	3674.	57251	49.9630	?
2	8.012	VB	0.4018	3680.	00928	50.0370	?

7354.58179

Signal 1: VWD1 A, Wavelength=254 nm

Peak RetTime Type Width Area Name Area [min] mAU *s # [min] 90 ----|-----|-----|-----| -----6.286 VV 0.4352 ? 1 0.3012 37.62837 2 7.813 BB 0.3497 8609.28711 99.5648 ? Totals : 8646.91548

Peak	RetTime	Туре	Width	Aı	rea	Area	Name
#	[min]		[min]	mAU	*s	8	
1	4.748	VB	0.1837	2752.	.78174	50.2841	?
2	6.634	VB	0.2456	2721.	67920	49.7159	?

5474.46094

Signal 1: VWD1 A, Wavelength=254 nm

Peak #	RetTime [min]	Туре	Width [min]	Area mAU *s	Area %	Name
1 2	4.815 6.486	BV BV BV	0.1860 0.2264	21.44241 8972.39453	0.2384 99.7616	? ?

Totals :

8993.83694

Signal 1: VWD1 A, Wavelength=254 nm

Uncalibrated Peaks: Peak RetTime Type Width Area Area Name [min] mAU *s # [min] 옹 ---------| 0.1703 7.77363 1 7.925 MM 0.1989 ? 2 10.226 BB 0.2731 3900.66846 99.8011 ? 3908.44208 100.0000 Uncalib. totals :

2-(4-Phenylbutan-2-yl)benzoic acid (3f)

Signal 1: VWD1 A, Wavelength=254 nm

Peak	RetTime	Туре	Width	Aı	rea	Area	Name
#	[min]		[min]	mAU	*s	90	
1	5.658	VB	0.2697	7575.	72461	50.1764	?
2	7.271	BB	0.3548	7522.	47266	49.8236	?

1.50982e4

Signal 1: VWD1 A, Wavelength=254 nm

Peak #	RetTime [min]	Туре	Width [min]	Area mAU *s	Area %	Name
1	5.462	VV	0.2865	2.64569e4	99.5516	?
2	7.385	VV	0.3710	119.16550	0.4484	?
Total	s:			2.65760e4		

2-(5-Methoxypentan-2-yl)benzoic acid (3g)

Peak	RetTime	Туре	Width	A	rea	Area	Name
#	[min]		[min]	mAU	*s	S	
1	7.124	VV	0.3336	4397.	.14941	50.1009	?
2	9.001	BB	0.4413	4379.	.44336	49.8991	?

8776.59277

Signal 1: VWD1 A, Wavelength=254 nm

Peak Ret	lime Type	Width	Area	Area	Name
# [mi	.n]	[min]	mAU *s	%	
1 7.	130 BV	0.2993	63.11938	0.4031	?
2 8.	605 VV	0.4018	1.55965e4	99.5969	?

Totals :

1.56596e4

3-(Hexan-2-yl)-2-naphthoic acid (3h)

Signal 1: VWD1 A, Wavelength=254 nm

Peak	RetTime	Туре	Width	Ar	rea	Area	Name
#	[min]		[min]	mAU	*s	00	
1	4.578	VV	0.1059	5004.	74072	51.2803	?
2	14.445	VV	0.3694	4754.	82910	48.7197	?

Totals :

9759.56982

Signal 1: VWD1 A, Wavelength=254 nm

Peak #	RetTime [min]	Туре	Width [min]	Area mAU *s	Area %	Name
1	4.601	VV	0.1025	15.10795	0.3272	?
2	14.407	VB	0.3604	4601.66650	99.6728	?

Totals :

4616.77445

Signal 1: VWD1 A, Wavelength=254 nm

Peak	RetTime	Туре	Width	Aı	rea	Area	Name
#	[min]		[min]	mAU	*s	00	
1	8.980	VB	0.4228	2677.	66992	51.1677	?
2	12.352	BB	0.5564	2555.	45435	48.8323	?

5233.12427

Signal 1: VWD1 A, Wavelength=254 nm

Peak #	RetTime [min]	Туре	Width [min]	Area mAU *s	Area %	Name
1 2	8.968 12.016	 VV BB	0.4947 0.5324	56.10809 6899.94287	0.8066 99.1934	? ?

Totals :

4-Bromo-2-(hexan-2-yl)benzoic acid (3j)

Peak	RetTime	Туре	Width	Are	a	Area	Name
#	[min]		[min]	mAU	*s	8	
1	6.771	BB	0.3181	4413.3	9746	50.8186	?
2	15.460	BB	0.7231	4271.2	1924	49.1814	?

8684.61670

Signal 1: VWD1 A, Wavelength=254 nm

Peak RetTime Type Width Area Name Area [min] mAU *s # [min] 응 ----____| ____ ---|-----|-----| _____| _____ 6.703 VB 0.2975 331.25906 0.7356 ? 1 2 14.658 VB 0.6853 4.46996e4 99.2644 ?

Totals :

4.50308e4

2-sec-Butyl-4,5-dichlorobenzoic acid (3k)

Signal 1: VWD1 A, Wavelength=254 nm

Peak	RetTime	Туре	Width	A	rea	Area	Name
#	[min]		[min]	mAU	*s	00	
1	8.268	BB	0.2807	8389.	72852	50.5023	?
2	12.340	VB	0.3884	8222.	.82813	49.4977	?

Totals :

1.66126e4

Signal 1: VWD1 A, Wavelength=254 nm

Peak #	RetTime [min]	Туре	Width [min]	Area mAU *s	Area %	Name
1	8.092	VV	0.1689	81.63694	0.1037	?
2	12.222	VB	0.4294	7.86683e4	99.8963	?

Totals :

7.87499e4

Signal 1: VWD1 A, Wavelength=254 nm

Uncal Peak #	Librated RetTime [min]	Peaks: Type	Width [min]	Area mAU *s	Area %	Name
1	6 070	סס	0 2604	0500 02422	10 5011	2
T	6.970	DD	0.3004	9590.02422	49.0044	:
2	10.318	BB	0.4907	9751.60742	50.4156	?
Uncal	lib. tota	als :		1.93424e4	100.0000	

Signal 1: VWD1 A, Wavelength=254 nm

...

Uncal Peak #	ibrated RetTime [min]	Peaks: Type	Width [min]	Area mAU *s	Area %	Name
1	7.100	VB	0.3649	65.08276	0.3667	?
2	10.097	BB	0.5465	1.76832e4	99.6333	

Uncalibrated Peaks: Peak RetTime Type Width Area Area Name [min] mAU *s # [min] 8 ----------| ----6.020 BB 0.3026 89.23031 1 0.4300 ? 2 7.860 VV 0.3876 2.06610e4 99.5700 ? 2.07502e4 100.0000 Uncalib. totals :

Signal 1: VWD1 A, Wavelength=254 nm

Peak	RetTime	Туре	Width	Aı	rea	Area	Name
#	[min]		[min]	mAU	*s	90	
1	7.309	BV	0.1658	1993.	.92395	49.9590	?
2	11.045	VB	0.2471	1997.	.20044	50.0410	?

```
Totals :
```

3991.12439

Signal 1: VWD1 A, Wavelength=254 nm

Peak #	RetTime [min]	Туре	Width [min]	Area mAU *s	Area %	Name
1	7.302	BV	0.1649	206.34799	0.9590	?
2	10.980	VV	0.2709	2.13112e4	99.0410	?

Totals :

2.15176e4

Signal 1: VWD1 A, Wavelength=254 nm

Peak #	RetTime [min]	Туре	Width [min]	Area mAU *s	Area %	Name
1	4.438	BB	0.1188	7902.92920	48.4847	?
2	5.350	VV	0.1322	8396.89551	51.5153	?

1.62998e4

Signal 1: VWD1 A, Wavelength=254 nm

Peak RetTime Type Width Area Name Area [min] mAU *s # [min] 8 -----4.373 VV 0.1143 287.70035 1.4762 ? 1 2 5.355 VB 0.1475 1.92013e4 98.5238 ? 1.94890e4 Totals :

(Z)-2-(Icos-11-en-2-yl)benzoic acid (3p)

Signal 1: VWD1 A, Wavelength=254 nm

Uncal Peak #	librated RetTime [min]	Peaks: Type	Width [min]	Area mAU *s	Area %	Name
1 2	7.877 10.145	VB BB	0.2620 0.3358	1.22345e4 1.25178e4	49.4278 50.5722	? ?
Uncal	lib. tota	als :		2.47522e4	100.0000	

Signal 1: VWD1 A, Wavelength=254 nm

Uncalibrated Peaks: Peak RetTime Type Width Name Area Area # [min] [min] mAU *s 8 --- | ---- | ---------| ____| __ _____ 35.68493 1 8.018 BV 0.2641 0.1626 ? 9.982 VB 0.3414 2.19112e4 2 99.8374 ? Uncalib. totals : 2.19469e4 100.0000

2-(Octan-2-yl)benzoic acid (3q-H2)

Signal 1: VWD1 A, Wavelength=254 nm

Uncal Peak #	Librated RetTime [min]	Peaks: Type	Width [min]	Area mAU *s	Area %	Name
1 2	5.137 6.543	VB BB	0.1630 0.2396	8514.82324 8503.20605	50.0341 49.9659	? ?
Uncal	lib. tota	als :		1.70180e4	100.0000	

Signal 1: VWD1 A, Wavelength=254 nm

Uncal Peak #	ibrated RetTime [min]	Peaks: Type	Width [min]	Area mAU *s	Area %	Name
1	5.229	VB	0.1690	78.47623	0.2126	?
2	6.647	BV	0.2348	3.68358e4	99.7874	?
Uncal	ib. tota	als :		3.69142e4	100.0000	

Signal 1: VWD1 A, Wavelength=254 nm

2

4

200

100

0

Uncalibrated Peaks: Peak RetTime Type Width Area Name Area [min] mAU *s # [min] S --- | -----|-----| -----1 7.269 VV 0.1520 4265.25244 95.6783 ? 2 8.440 VB 0.1665 192.65872 4.3217 ? Uncalib. totals : 4457.91116 100.0000

6

8.440

8

10

12

min

(S)-5-Methyl-2-(6-methylhept-5-en-2-yl)benzoic acid (10)

Totals :

1.72963e4

(S)-Curcudiol

Signal 1: VWD1 A, Wavelength=220 nm

Peak #	RetTime [min]	Туре	Width [min]	Area mAU *s	Area %	Name
1 2	9.230 10.701	BB BB	0.2038	1.12945e4 1.06484e4	51.4722 48.5278	? ?
Uncal	lib. tota	als :		2.19429e4	100.0000	

Signal 1: VWD1 A, Wavelength=220 nm

Peak RetTime Type Width Name Area Area # [min] [min] mAU *s S 0.2140 460.19891 1 9.174 VB 1.9449 ? 2 10.548 VB 0.2848 2.32020e4 98.0551 ? Uncalib. totals : 2.36622e4 100.0000

¹ J. D. Clark, J. M. Davis, D. Favor, L. K. Fay, L. Franklin, K. E. Henegar, D. S. Johnson, B. J. Nichelson, L. Ou, J. T. Repine, M. A. Walters, A. D. White and Z. Zhu, *US 2005/0043309 A1*. ² V. B. Phapale, M. Guisan-Ceinos, E. Bunuel and D. J. Cardenas, *Chem. Eur. J.*, 2009, **15**, 12681.

³ T. Nishimura, Y. Yasuhara, T. Sawano and T. Hayashi, J. Am. Chem. Soc., 2010, 132, 7872.
⁴ A. E. Wright, S. A. Pomponi, O. J. McConnell, S. Kohmoto and P. McCarthy, J. Nat. Prod., 1987, **50**, 976.