## Supporting Information

# Synthesis and biological evaluation of hybrids from farnesylthiosalicylic acid and hydroxylcinnamic acid with dual inhibitory activities of Ras-related signaling and phosphorylated NF-κB

Yong Ling,<sup>a,b</sup> Zhiqiang Wang,<sup>a,b</sup> Xuemin Wang,<sup>a</sup> Ying Zhao,<sup>a</sup> Wei Zhang,<sup>a</sup> Xinyang Wang,<sup>a</sup> Li Chen,<sup>b,c</sup> Zhangjian Huang<sup>b,c,\*</sup> and Yihua Zhang<sup>b,c,\*</sup>

<sup>a</sup> School of Pharmacy, Nantong University, Nantong, 226001, PR China.

<sup>b</sup>State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China.

<sup>c</sup>Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, PR China.

### Table of contents:

| The number of experiments and the related SD values for Figure 1 legend        | S2         |
|--------------------------------------------------------------------------------|------------|
| Table of <b>5f</b> purity by HPLC                                              | S2         |
| The <sup>1</sup> H NMR spectra for <b>5a-5r</b> , <b>6a-6b</b> , <b>7b-7c</b>  | <b>S</b> 3 |
| The <sup>13</sup> C NMR spectra for <b>5a-5r</b> , <b>6a-6b</b> , <b>7b-7c</b> | S14        |
| The HRMS spectra for 5a-5r, 7b-7c                                              | S25        |

| Compound - | In vitro inhibitory activity (%) |                  |                  |
|------------|----------------------------------|------------------|------------------|
|            | Mcf-7                            | SMMC-7721        | SGC-7901         |
| FTS        | $55.16\pm3.23$                   | $45.79 \pm 4.95$ | $57.04 \pm 4.66$ |
| Sorafenib  | $90.35 \pm 4.53$                 | $92.78 \pm 5.28$ | $93.03\pm6.83$   |
| 5a         | $91.32\pm6.06$                   | $93.01 \pm 5.21$ | $94.64 \pm 4.97$ |
| 5b         | $35.70\pm3.28$                   | $43.08\pm2.68$   | $32.69\pm3.55$   |
| 5c         | $93.52 \pm 4.93$                 | $87.98 \pm 6.56$ | $94.96 \pm 4.67$ |
| 5d         | $38.39 \pm 4.16$                 | $39.02\pm3.16$   | $36.49 \pm 4.04$ |
| 5e         | $92.46 \pm 5.47$                 | $89.11 \pm 6.10$ | $87.56\pm5.09$   |
| 5f         | $91.54\pm6.85$                   | $97.43 \pm 4.18$ | $96.21 \pm 6.87$ |
| 5g         | $88.65 \pm 5.92$                 | $87.72\pm6.18$   | $91.58\pm5.65$   |
| 5h         | $12.56\pm2.61$                   | $11.53\pm2.12$   | $8.56 \pm 1.35$  |
| 5i         | $62.76 \pm 4.86$                 | $64.46 \pm 4.62$ | $60.96 \pm 4.16$ |
| 5j         | $28.09 \pm 2.42$                 | $36.55\pm2.78$   | $21.66\pm3.54$   |
| 5k         | $72.03 \pm 5.23$                 | $78.07 \pm 5.64$ | $79.58\pm5.74$   |
| 51         | $11.43 \pm 1.86$                 | $7.42 \pm 1.41$  | $8.81 \pm 1.73$  |
| 5m         | $70.21 \pm 4.68$                 | $75.37\pm3.85$   | $63.04 \pm 4.98$ |
| 5n         | $86.83 \pm 4.29$                 | $87.68 \pm 5.92$ | $84.98\pm5.15$   |
| 50         | $61.99 \pm 4.52$                 | $62.95\pm3.66$   | $51.59\pm3.51$   |
| 5p         | $14.86\pm2.67$                   | $23.40 \pm 1.35$ | $13.66\pm1.69$   |
| 5q         | $61.98 \pm 4.32$                 | $67.21 \pm 4.06$ | $55.09\pm3.93$   |
| 5r         | $49.64\pm2.65$                   | $44.48\pm3.02$   | $42.98 \pm 2.06$ |

Table 1. The number of experiments and the related SD values for Figure 1 legend in the manuscript.

#### HPLC assessment of compound 5f purity.

Compounds (**5f**) with a purity of 99.1% (HPLC analysis) were used for subsequent experiments. We provided the spectra of HPLC assays as below: Column: Shimadzu C18 ( $150mm \times 4.6mm \times 5\mu m$ ); Mobile phase: Methanol: aqueous solution of triethylamine (28.5 mmol/L) = 65: 35; Wavelength: 254 nm; Rate: 1 mL/min; Temperature: 30 °C; Pressure: 85-142 kgf.



# The <sup>1</sup>H NMR spectra for **5a-5r**











**Fig.** 5. The <sup>1</sup>H NMR spectra for **5d** 



**Fig.** 7. The <sup>1</sup>H NMR spectra for **5** $\mathbf{f}$ 





Fig. 9. The <sup>1</sup>H NMR spectra for **5h** 







**Fig.** 11. The <sup>1</sup>H NMR spectra for **5**j



Fig. 13. The <sup>1</sup>H NMR spectra for 5I



Fig. 15. The <sup>1</sup>H NMR spectra for **5n** 







**Fig.** 17. The <sup>1</sup>H NMR spectra for **5p** 



**Fig.** 19. The <sup>1</sup>H NMR spectra for **5r** 



Fig. 21. The <sup>1</sup>H NMR spectra for **6b** 



**Fig.** 23. The <sup>1</sup>H NMR spectra for 7c

# The <sup>13</sup>C NMR spectra for **5a-5r**



Fig. 25. The <sup>13</sup>C NMR spectra for **5b** 



Fig. 27. The <sup>13</sup>C NMR spectra for 5d





Fig. 31. The <sup>13</sup>C NMR spectra for **5h** 











**Fig.** 35. The  ${}^{13}$ C NMR spectra for **5**l



Fig. 37. The <sup>13</sup>C NMR spectra for **5n** 



**Fig.** 39. The  ${}^{13}$ C NMR spectra for **5p** 



Fig. 40. The  ${}^{13}$ C NMR spectra for 5q



Fig. 41. The <sup>13</sup>C NMR spectra for 5r







The HRMS spectra for 5a-5r





Fig. 51 HRMS spectrum of 5f









Fig. 60 HRMS spectrum of 50







Fig. 65 HRMS spectrum of 7c