SUPPLEMENTARY MATERIAL

An Ebselen-like Catalyst with Enhanced GPx Activity via a Selenol Intermediate

Shah Jaimin Balkrishna,[†] Shailesh Kumar,[†] Gajendra Kumar Azad,^{††} Bhagat Singh Bhakuni,[†]Piyush Panini,[†] NavjeetAhalawat,[†] Raghuvir Singh Tomar,^{††} Michael R. Detty,[‡] Sangit Kumar^{*†}

[†]Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, MP, India 462 023

^{††}Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, MP, India 462 023

[‡]Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States

sangitkumar@iiserb.ac.in

Contents

Experimental procedure and characterization data for isoselenazolones 1a-1r	S2-S20
77 Se NMR and mass spectrometry study of isoselenazolone 1b and	
intermediates 2b, 3b and 5b	S20-S22
¹ H, ¹³ C, ⁷⁷ Se NMR and Mass spectra for isoselenazolones 1a-1r	
and their substrates	S24-S125
⁷⁷ Se NMR and Mass spectra describing mechanistic aspects	S126-S147
Geometry optimization and co-ordinates for 1b, 1c, 1e, 1f, 1n,	
selenenyl sulphides 2b, 2c, 2e, 2f, 2n and selenol3b	S148-S160
Procedure for thiol peroxidase like activity, tables and Lineweaver Burk plots	
for calculation of initial reduction rates	S161-S172
Procedure for growth sensitivity assay and growth curve analysis	S174-S179

Crystallographic details for compounds 1b, 1c and 1e	S180-S184
Characterization of potassium tert-butoxyselenolate	S185-S188
References	S189

General experimental details

All NMR experiments were carried out on 400 or 500 MHz spectrometers in DMSO-d₆ or CDCl₃ and NMR chemical shifts are reported in ppm referenced to the solvent peaks of CDCl₃ (7.26 ppm for ¹H and 77.0 (\pm 0.1) ppm for ¹³C, respectively) or DMSO-d₆ (2.50 ppm for ¹H and 39.50 ppm for ¹³C, respectively). Some of ⁷⁷Se NMR spectra were recorded in CD₃OD solvent. High resolution mass spectra (HRMS) are reported for ions of ⁸⁰Se. Mass analysis is performed on quadruple-time of flight (Q-TOF) mass spectrometer equipped with an ESI source (+ve). Melting points are uncorrected. DMF with sure seal septa, selenium powder (60 mesh size), copper iodide, and 1, 10-phenanthroline were used as received from Aldrich. Grinded anhydrous K₂CO₃ powder was used which was grinded using mortar, dried in oven at 160 °C for 6 h and stored in a desiccator. Selenium- nitrogen coupling reactions were carried out under nitrogen atmosphere. Substituted benzoyl chlorides were prepared from respective benzoic acids by refluxing with excess of thionyl chloride otherwise prepared according to reported procedure. Excess of thionyl chloride was removed under vacuo and resulted residue was used for amide preparation without further purification. Silica gel (60-120 mesh size) was used for column chromatography. TLC analysis of reaction mixtures was performed using silica gel plates. Se-N heterocycles 1a, 1e, 1g-1i, 1n, 1p-1r were prepared according to our previously reported method.^{1, 2}

2-phenylbenzo[d][1,2]selenazol-3(2H)-one (1a):¹ Yield 82%, mp 180-182 °C (180-181

°C).¹Please see figures S1-S4 for characterization data.

Scheme 1. Synthesis of Quininamine, and Corresponding 2-Iodo-benzamides

(1S)-(6-Methoxyquinolin-4-yl)((2S,4S,5R)-5-vinylquinuclidin-2-yl) methanamine

(Quininamine), A Typical Procedure:³In a 100 mL capacity round bottom flask, quinine (3.0 g, 9.2 mmol) was dissolved in 60 mL of dry THF. Reaction mixture was cooled to 0 °C in an ice-bath. Then, triethylamine (2.3 g, 23.1 mmol) was added to the reaction mixture and stirred for 15 minutes. Then, mesyl chloride (1.6 g, 13.8 mmol) diluted with 15 mL of dry THF was added drop wise through dropping funnel to the reaction mixture. Reaction mixture was maintained at 0-5 °C for 4h. After this, reaction mixture was added to 60 mL of distilled water and was extracted with ethyl acetate (50 mL x 3). Ethyl acetate layer was dried over Na₂SO₄ and evaporated under reduced pressure to obtain crude product which was purified by column chromatography over silica gel (mobile phase: ethyl acetate). Yield 3.35 g (90%).

Prepared mesylate compound (1.5 g, 3.7 mmol) was dissolved in 15 mL of anhydrous DMF followed by addition of sodium azide (0.3 g, 4.5 mmol). Reaction mixture was

maintained at 60 °C for 20h. Then, reaction mixture was added into 80 mL of saturated aqueous sodium bicarbonate solution and stirred for 6h. Reaction mixture was extracted with ethyl acetate (40 mL x 3). Ethyl acetate layer was dried over Na_2SO_4 and evaporated under reduced pressure to give corresponding azide. Yield 1.10 g (85%).

Formed azide derivative (1.0 g, 2.86 mmol) was exposed to Staudinger reduction by treating with triphenyl phosphine (0.9 g, 3.4 mmol) in THF (25 mL). Reaction mixture was maintained at 60 °C for 4h followed by addition of water (7 mL). Then it was stirred for 10h at room temperature. Completion of reaction was monitored by TLC (mobile phase: ethyl acetate). The reaction mixture was concentrated *in vacuo* and the residue was partitioned between CH₂Cl₂ and 2N HCl (1:1, 80 mL). The mixture was vigorously shaken and the aqueous phase was separated and washed with CH₂Cl₂ (40 x 2 mL). The aqueous layer was basified with conc. NaOH solution and extracted with ethyl acetate (50 mL x 3). Ethyl acetate layer was dried over Na₂SO₄ and evaporated under reduced pressure to give corresponding amine. Yield 0.74 g (80%). ¹H NMR (400 MHz, CDCl₃) δ 8.64 (d, *J* = 4.5 Hz, 1H), 7.94 (d, *J* = 9.2 Hz, 1H), 7.56 (s, 1H), 7.36 (s, 1H), 7.28 (dd, *J* = 9.2, 2.5 Hz, 1H), 5.70 (quintet, *J* = 8.8 Hz, 1H), 4.90 (m, 2H), 4.50 (s, 1H) 3.86 (s, 3H), 3.09 (m, 3H), 2.70 (m, 2H), 2.24 (m, 4H), 1.48 (m, 3H), 1.33 (t, *J* = 11.8 Hz, 1H) ¹³C NMR (100 MHz, CDCl₃) δ 157.6, 147.9, 147.1, 144.0, 141.7, 131.7, 128.8, 121.2, 119.9, 114.3, 101.9, 62.3, 56.3, 55.5, 40.9, 39.8, 29.6, 28.1, 27.5, 26.0. HRMS-ES⁺m/z; 324.2078 (Calculated for C₂₀H₂₅N₃O + H⁺: 324.2070).

2-Iodo-N-((1S)-(6-methoxyquinolin-4-yl)((2S,4S,5R)-5-vinylquinuclidin-2-yl)methyl)-3methylbenzamide (Substrate for 1b): In a 100 mL capacity round bottom flask, 2-iodo-3-

methylbenzoyl chloride (0.3 g, 1.0 mmol) was dissolved in 40 mL of dry dichloromethane. Reaction mixture was cooled to 0-5 °C. To this, quininamine (0.38 g, 1.1 mmol) and triethylamine (0.32 g, 3.2 mmol) in 40 mL of dry dichloromethane was added drop wise. Reaction mixture was maintained at room temperature for 3h and then poured in 50 mL of distilled water. After vigorous shaking, dichloromethane layer was separated, dried over Na₂SO₄ and then solvent was evaporated under reduced pressure at 40 °C to obtain light yellow solid. Yield 0.55 g (91%), mp above 225 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.72 (s, 1H), 8.02 (d, *J* = 9.2 Hz, 1H), 7.74 (bs, 1H), 7.45 (d, *J* = 4.1 Hz, 1H), 7.37 (dd, *J* = 9.2, 2.5 Hz, 1H), 7.25-7.15 (m, 3H), 7.01 (bs, 1H), 5.75-5.63 (m, 1H), 5.06-4.76 (m, 3H), 4.03- 3.89 (m, 3H), 3.28-3.17 (m, 2H), 2.83-2.58 (m, 4H), 2.42 (s, 3H), 2.32-2.25 (m, 1H), 1.72-1.54 (m, 4H) ¹³C NMR (100 MHz, CDCl₃) δ 170.1, 157.9, 147.8, 147.5, 144.8, 143.7, 142.7, 141.5, 141.2, 131.8, 130.3, 128.0, 125.2, 121.7, 118.9, 114.7, 102.3, 99.0, 56.0, 55.8, 53.4, 46.1, 41.3, 39.5, 29.1, 27.9, 27.4, 10.5. HRMS-ES⁺m/z: 568.1468 (Calculated for C₂₈H₃₀IN₃O₂ + H⁺: 568.1455).

2-((1S)-(6-Methoxyquinolin-4-yl)((2S,4S,5R)-5-vinylquinuclidin-2-yl)methyl)-7methylbenzo[d][1,2]selenazol-3(2H)-one (1b): Isoselenazolone 1b was synthesized from 2iodo-N-((1S)-(6-methoxyquinolin-4-yl)((2S,4S,5R)-5-vinylquinuclidin-2-yl)methyl)-3methylbenzamide (0.4 g, 0.7 mmol), KO^tBu (0.12 g, 1.05 mmol), selenium powder (67 mg, 0.8 mmol) in DMF (7 mL) and refluxed for 10h at 110 °C under nitrogen atmosphere. Progress of reaction was monitored by TLC. Standard workup gave dark brown colored oil, which was purified by column chromatography by using ethyl acetate over silica gel gave

brown solid. Yield 0.26 g (71%), mp decomposed after 155 °C. ¹H NMR (400 MHz, CDCl₃) $\delta 8.78$ (d, J = 4.4 Hz, 1H), 7.97 (d, J = 9.2 Hz, 2H), 7.81 (s, 1H), 7.38-7.23 (m, 4H), 6.38 (s, 1H), 5.94 (q, J = 8.4 Hz, 1H), 5.14-5.03 (m, 2H), 3.98 (s, 3H), 3.67-3.44 (m, 2H), 3.27 (t, J = 12.0 Hz, 1H), 2.84-2.67 (m, 2H), 2.38-2.28 (m, 1H), 2.2 (s, 3H), 2.03-1.79 (m, 3H), 1.68-1.49 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 167.6, 162.5, 158.5, 147.1, 144.9, 142.7, 141.6, 132.7, 131.9, 131.6, 127.3, 126.7, 126.1, 122.7, 118.5, 114.6, 101.8, 58.5, 56.0, 53.7, 41.6, 39.5, 36.4, 31.4, 29.7, 28.2, 27.6, 20.2. ⁷⁷Se NMR δ 835.1 ppm. HRMS-ES⁺*m*/*z*: 520.1484 (Calculated for C₂₈H₂₉N₃O₂Se + H⁺: 520.1499).

2-Iodo-N-((1S)-(6-methoxyquinolin-4-yl)((2S,4S,5R)-5-vinylquinuclidin-2-

yl)methyl)benzamide (Substrate for 1c): In a 100 mL capacity round bottom flask, 2iodobenzoyl chloride (0.34 g, 1.3 mmol) was dissolved in a 20 mL of dry dichloromethane. Reaction mixture was cooled to 0 °C. To this, quininamine (0.5 g, 1.5 mmol) and triethyl amine (0.4 g, 3.8 mmol) in 20 mL of dry dichloromethane was added drop wise. Reaction mixture was maintained at room temperature for 3h and then poured in 40 mL of distilled water. After vigorous shaking, dichloromethane layer was separated, dried over Na₂SO₄ and solvent was evaporated under reduced pressure at 40 °C to obtain light brown solid. Yield 0.65 g (92 %), mp 94-96 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.77 (s, 1H), 8.06 (d, *J* = 9.2 Hz, 1H), 7.80 (d, *J* = 7.5 Hz, 1H), 7.76 (s, 1H), 7.50 (s, 1H), 7.42 (d, *J* = 9.3 Hz, 1H), 7.33 (s, 2H), 7.20 (s, 1H) 7.09 (t, *J* = 6.1 Hz, 1H), 5.75 (quintet, *J* = 8.5 Hz, 1H), 5.0 (m, 2H), 4.01 (s, 3H), 3.25 (m, 3H), 2.74 (m, 3H), 2.74 (m, 3H), 2.32 (s, 2H), 1.70 (m, 3H), 1.52 (t, *J* = 11.0 Hz, 1H) ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 157.8, 147.5, 144.9, 141.9, 141.2, 139.9, 135.3, 131.9, 131.04, 128.9, 128.4, 128.0, 121.6,115.0, 114.7, 102.2, 92.3, 56.0, 55.8, 45.97, 41.3, 39.3, 29.7, 27.9, 27.4, 26.3. HRMS-ES⁺*m*/*z*: 554.1300 (Calculated for C₂₇H₂₈IN₃O₂ + H⁺: 554.1299).

2-((1S)-(6-Methoxyquinolin-4-yl)((2S,4S,5R)-5-vinylquinuclidin-2-

yl)methyl)benzo[d][1,2]selenazol-3(2H)-one (1c): In a 25 mL capacity round bottom flask DMF (7 mL) was taken followed by sequential addition of KO^tBu (0.12 g, 1.1 mmol) and selenium powder (0.068 g, 0.9 mmol) at 0-5 °C. Then, reaction mixture was brought to room temperature and stirred for 15 minutes which resulted in a brownish-green colored solution of potassium tert-butoxyselenolate (KSeO^tBu). After that, 2-iodo-N-((1S)-(6-methoxyquinolin-4-yl)((2S,4S,5R)-5-vinylquinuclidin-2-yl)methyl)benzamide (0.4 g, 0.7 mmol) was added in a lot and reaction mixture was refluxed at 110 °C for 20h. Progress of reaction was monitored by TLC. Reaction mixture was poured into saturated aqueous sodium bicarbonate solution (70 mL) and stirred for 3h. Product was extracted by ethyl acetate (30.0 mL x 3). Combined ethyl acetate layer was washed with distilled water (50 mL), dried over sodium sulphate and ethyl acetate was distilled under reduced pressure at 40 °C. Resulted dark brown colored oil was purified by column chromatography using ethyl acetate over silica gel. Yield 0.3 g (84%) mp 214-216 °C.¹H NMR (400 MHz, CDCl₃) δ 8.77 (d, J = 4.5 Hz, 1H), 8.06-7.84 (m, 3H), 7.64-7.54 (m, 1H), 7.46 (t, J = 7.5 Hz, 1H), 7.39-7.27 (m, 3H), 6.49-6.25 (m, 1H), 6.04-5.79 (m, 1H), 5.20-5.01 (m, 2H), 3.97 (s, 3H), 3.79-3.55 (m, 2H), 3.28 (t, J = 12 Hz, 1H), 2.83-2.74 (m, 2H), 2.42-2.30 (m, 1H), 2.07-1.88 (m, 2H), 1.81-1.73 (m, 1H), 1.71-1.56 (m, 2H) ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 166.9, 158.5, 147.1, 144.9, 142.9, 141.7, 139.1, 131.8,

131.6, 128.8, 127.6, 126.0, 124.0, 122.8, 118.5, 114.6., 101.8, 58.6, 56.2, 56.0, 53.8, 41.5, 39.5, 29.7, 27.7, 27.6. ⁷⁷Se NMR δ 858.1 ppm. HRMS-ES⁺*m*/*z*: 506.1352 (Calculated for C₂₇H₂₇N₃O₂⁸⁰Se + H⁺: 506.1343).

2-Bromo-5-methoxy-N-((1S)-(6-methoxyquinolin-4-yl)((2S,4S,5R)-5-vinylquinuclidin-2vl)methyl)benzamide (Substrate for 1d): In a 100 mL capacity round bottom flask, 2bromo-5-methoxybenzoyl chloride (0.4 g, 1.6 mmol) was dissolved in 30 mL of dry dichloromethane. Reaction mixture was cooled to 0-5 °C. To this, mixture of quininamine (0.6 g, 1.9 mmol) and triethyl amine (0.48 g, 4.8 mmol) diluted with 30 mL of dry dichloromethane was added drop wise. Then, Reaction mixture was maintained at room temperature for 3 hours and then poured in 50 mL of distilled water. After vigorous shaking, dichloromethane layer was separated, dried over Na₂SO₄ and then solvent was evaporated under reduced pressure at 40 °C to obtain light brown viscous oil. Yield 0.77 g (90%), ¹H NMR (400 MHz, CDCl₃) $\delta 8.69$ (d, J = 4.5 Hz, 1H), 7.98 (d, J = 9.2 Hz, 1H), 7.66 (s, 1H), 7.42 (d, J = 4.5 Hz, 1H), 7.38-7.30 (m, 2H), 6.97 (s, 1H), 6.72 (dd, J = 8.8, 3.1 Hz, 1H), 5.65 (quintet, J = 8.6 Hz, 1H), 5.12-4.77 (m, 3H), 3.93 (s, 3H), 3.67 (s, 3H), 3.37-3.16 (m, 3H), 2.80-2.66 (m, 2H), 2.33-2.25 (m, 1H), 1.71-1.58 (m, 3H), 1.52-1.40 (m, 1H), 1.05 (s, 1H) ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 158.8, 157.8, 147.8, 147.6, 144.8, 141.5, 141.2, 138.1, 134.1, 131.7, 121.6, 117.7, 115.0, 114.7, 114.5, 109.5, 102.1, 56.0, 55.7, 55.6, 46.0, 41.1, 39.7, 39.5, 27.9, 27.5, 27.4. HRMS-ES⁺m/z: 536.1538 (Calculated for C₂₈H₃₀BrN₃O₃ + H⁺: 536.1543).

5-Methoxy-2-((1S)-(6-methoxyquinolin-4-yl)((2S,4S,5R)-5-vinylquinuclidin-2-

yl)methyl)benzo[d][1,2]selenazol-3(2H)-one (1d): Isoselenazolone 1d was synthesized from 2-bromo-5-methoxy-N-((1S)-(6-methoxyquinolin-4-yl)((2S,4S,5R)-5-vinylquinuclidin-2-yl)methyl)benzamide (0.5 g, 0.9 mmol), KO'Bu (0.15 g, 1.35 mmol), selenium powder (85 mg, 1.08 mmol) in DMF (8 mL) and refluxed for 12h at 110 °C under nitrogen atmosphere. Progress of reaction was monitored by TLC. Standard workup gave dark brown colored oil, which was purified by column chromatography using ethyl acetate: hexane (9:1) over silica gel gave off white solid. Yield 0.35 g (70%), mp 190-192 °C. ¹H NMR (400 MHz, CDCl₃) $\delta 8.77$ (s, 1H), 8.05-7.85 (m, 2H), 7.45-7.30 (m, 4H), 7.15-7.02 (s, 1H), 6.50-6.20 (m, 1H), 6.05-5.80 (m, 1H), 5.20-5.0 (m, 2H), 4.0 (s, 3H), 3.80 (s, 3H), 3.60 (s, 2H), 3.27 (t, J = 12.0Hz, 1H), 2.85-2.70 (m, 2H), 2.35 (s, 1H), 1.90 (s, 1H), 1.80-1.50 (m, 4H) ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 158.8, 147.2, 144.9, 142.7, 141.4, 132.2, 132.1, 131.6, 128.6, 128.4, 124.9, 122.7, 121.7, 118.4, 114.8, 110.7, 101.8, 60.4, 58.8, 56.0, 55.6, 53.9, 41.6, 39.4, 31.9,<math>29.7, 27.6. ⁷⁷Se NMR δ 867.6 ppm. HRMS-ES⁺m/z: 536.1451

2-benzyl-7-methylbenzo[d][1,2]selenazol-3(2H)-one (**1e**):¹ Yield (85%), mp 74-76 °C.(74-76 °C).¹ Please see figures S29-S32 for characterization data.

N-(3-hydroxypropyl)-2-iodo-3-methylbenzamide (Substrate for 1f): 2-Iodo-3methylbenzoyl chloride (0.4 g, 1.4 mmol) was dissolved in dry CH₂Cl₂ (30 mL) in a single neck flask and cooled to 0 °C. 3-amino-1-propanol (0.13 g, 1.7 mmol) and triethylamine (0.42 g, 4.2 mmol) in 30 mL CH₂Cl₂ were slowly added to 2-iodo-3-methylbenzoyl chloride solution by dropping funnel. Resulted reaction mixture stirred for 1 h at 0 °C and 3 h at room temperature. After this water (50 mL) was added to reaction flask and stirred for 30 min. CH₂Cl₂ (50 mL) was added to reaction mixture and water layer separated by separating funnel. CH₂Cl₂ layer was washed with 10% HCl (25 mL), and then with water (25 mL). Dichloromethane layer dried over Na₂SO₄, evaporated on rotary evaporator under vacuo. Resulted solid was passed through silica gel using CH₂Cl₂ to obtain pure amide. Yield 0.42 g (92%). mp 88-90 °C.¹H NMR (400 MHz, CDCl₃) δ7.24-7.11 (m, 2H), 7.09-6.97 (m, 1H), 6.62-6.12 (m, 1H), 3.79-3.66 (m, 2H), 3.59-3.46 (m, 2H), 3.08 (bs, 1H), 2.43 (s, 3H), 1.80-1.70 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 143.6, 143.0, 130.5, 128.1, 125.1, 99.3, 59.7, 36.9, 31.9, 29.2. HRMS-ES⁺m/z: 320.0163 (Calculated for C₁₁H₁₄INO₂ + H⁺: 320.0142).

2-(3-hydroxypropyl)-7-methylbenzo[d][1,2]selenazol-3(2H)-one (1f): Isoselenazolone **1f** was synthesized from corresponding N-(3-hydroxypropyl)-2-iodo-3-methylbenzamide (0.4 g, 1.25 mmol), CuI (60 mg, 0.3 mmol), 1,10-phenanthroline (56 mg, 0.3 mmol), selenium powder (0.12 g, 1.5 mmol), and K₂CO₃ (0.52 g, 3.75 mmol) in DMF (7 mL) and refluxing for 24 h at 110° C under nitrogen atmosphere. Progress of reaction was monitored by TLC. After

this, reaction mixture was poured over dilute HCl (40 mL) and stirred for 5 h. Product was extracted by using ethyl acetate (40.0 mL x 3). Combined ethyl acetate layer was washed with distilled water (40 mL x 2), dried over sodium sulphate and ethyl acetate was distilled under reduced pressure at 40° C. resulted crude product was purified by column chromatography using [dichloromethane : methanol (95:5)] over silica gel to get colourless viscous oil. Yield 0.30 g (88%). ¹H NMR (400 MHz, CDCl₃) δ 7.84-7.79 (m, 1H), 7.36-7.31 (m, 2H), 3.97 (t, *J* = 6.2 Hz, 2H) 2H), 3.88 (bs, 1H), 3.54 (t, *J* = 5.6 Hz, 2H), 2.30 (s, 3H), 1.84 (quartet, *J* = 6.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 139.2, 132.9, 132.2, 127.1, 126.6, 126.2, 57.9, 41.3, 32.7, 20.4. ⁷⁷Se NMR δ 878.7 ppm. HRMS-ES⁺*m*/*z*: 272.0207 (Calculated for C₁₁H₁₃NO₂Se + H⁺: 272.0185).

2-benzyl-5, 6-difluorobenzo[d][1,2]selenazol-3(2H)-one (1g):¹ Yield (85%), mp 187-188 °C(187-188 °C).¹Please see figures S40-S43 for characterization data.

2-benzyl-5-fluorobenzo[d][1,2]selenazol-3(2H)-one (**1h**):¹Yield (87%), mp 177-179°C.(177-179°C).¹Please see figures S44-S47 for characterization data.

7-methoxy-2-phenylbenzo[d][1,2]selenazol-3(2H)-one (1i):² Yield (55%), mp 137-139°C.(138-141 °C).² Please see figures S48-S51 for characterization data.

2-Chloro-N-(2-fluorophenyl)-3-methoxybenzamide (Substrate for 1j): 2-Chloro-3methoxybenzoyl chloride (0.5 g, 2.4 mmol) was dissolved in dry CH₂Cl₂ (25 mL) in a single neck flask and cooled to 0 °C. 2-Fluoro aniline (0.32 g, 2.9 mmol) and triethylamine (0.73 g, 7.2 mmol) in 40 mL CH₂Cl₂ were slowly added to 2-Chloro-3-methoxybenzoyl chloride solution by dropping funnel. Resulted reaction mixture stirred for 1 h at 0 °C and 3 h at room temperature. After this water (50 mL) was added to reaction flask and stirred for 30 min. CH₂Cl₂ (50 mL) was added to reaction mixture and water layer separated by separating funnel. CH₂Cl₂ layer was washed with 10% HCl (25 mL), and then with water (25 mL). Dichloromethane layer dried over Na₂SO₄, evaporated on rotary evaporator under *vacuo*. Resulted solid was passed through silica gel using CH₂Cl₂ to obtain pure amide. Yield 0.63 g (92%). mp 112-114 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.47 (t, *J* = 7.9 Hz, 1H), 8.05 (s, 1H), 7.35-7.27 (m, 2H), 7.21-7.15 (m, 1H), 7.12-7.07 (m, 2H), 7.06-7.01 (m, 1H), 3.93 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.5, 155.5, 153.8, 151.4, 136.6, 128.0, 126.2, 126.1, 124.85, 124.77, 124.71, 124.68, 121.9, 121.4, 119.5, 115.0, 114.8, 113.9, 56.4. HRMS-ES⁺m/z: 280.0554 (Calculated for C₁₄H₁₁CIFNO₂ + H⁺: 280.0535)

2-(2-Fluorophenyl)-7-methoxybenzo[d][1,2]selenazol-3(2H)-one (1j): Se-N heterocycle **1j** was synthesized from corresponding 2-chloro-N-(2-fluorophenyl)-3-methoxybenzamide (0.3 g, 1.0 mmol), CuI (100 mg, 0.5 mmol), 1,10-phenanthroline (95 mg, 0.5 mmol), selenium powder (0.1 g, 1.3 mmol), and K₂CO₃ (0.36 g, 2.6 mmol) in DMF (5 mL) and refluxing for 16 h at 110°C under nitrogen atmosphere. Progress of reaction was monitored by TLC. After this, reaction mixture poured over brine solution (60 mL) and stirred for 3 h. Product was extracted by using ethyl acetate (40.0 mL x 3). Combined ethyl acetate layer was washed with distilled water (40 mL x 2), dried over sodium sulphate and ethyl acetate was distilled under reduced pressure at 40° C. resulted light brown colored oil, which was purified by column chromatography using hexane : ethyl acetate (8:2) over silica gel gave white colored crystalline compound. Yield 0.24 g (71%). mp 140-142 °C. ¹H NMR (400 MHz, CDCl₃) δ 130.0, 129.84, 129.76, 128.3, 128.2, 127.2, 126.2, 126.1, 124.63, 124.59, 121.3, 116.96, 116.77, 112.4, 56.2. ⁷⁷Se NMR δ 976.2 ppm. HRMS-ES⁺*m/z*: 323.9947 (Calculated for C₁₄H₁₀FNO₂⁸⁰Se + H⁺: 323.9934).

2-Chloro-N-(2-chlorophenyl)-3-methoxybenzamide (Substrate for 1k): 2-Chloro-3methoxybenzoyl chloride (0.5 g, 2.4 mmol) was dissolved in dry CH_2Cl_2 (25 mL) in a single neck flask and cooled to 0 °C. 2-Chloro aniline (0.37 g, 2.9 mmol) and triethylamine (0.73 g, 7.2 mmol) in 40 mL CH_2Cl_2 were slowly added to 2-Chloro-3-methoxybenzoyl chloridesolution by dropping funnel. Resulted reaction mixture stirred for 1 h at 0 °C and 3 h at room temperature. After this water (50 mL) was added to reaction flask and stirred for 30 min. CH₂Cl₂ (50 mL) was added to reaction mixture and water layer separated by separating funnel. CH₂Cl₂ layer was washed with 10% HCl (25 mL), and then with water (25 mL). Dichloromethane layer dried over Na₂SO₄, evaporated on rotary evaporator under *vacuo*. Resulted solid was passed through silica gel using CH₂Cl₂ to obtain pure amide. Yield 0.68 g (95%). mp 126-128 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.55 (t, *J* = 8.2 Hz, 1H), 8.32 (s, 1H), 7.41-7.36 (m, 1H), 7.35-7.27 (m, 3H), 7.11-7.02 (m, 2H), 3.93 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.5, 155.5, 136.7, 134.5, 129.1, 128.0, 127.8, 125.1, 123.1, 121.8, 121.4, 119.6, 113.9, 56.4. HRMS-ES⁺m/z: 296.0252 (Calculated for C₁₄H₁₁Cl₂NO₂ + H⁺: 296.0240)

2-(2-Chlorophenyl)-7-methoxybenzo[d][1,2]selenazol-3(2H)-one (1k): Se-N heterocycle 1k synthesized corresponding was from 2-chloro-N-(2-chlorophenyl)-3methoxybenzamide(0.4 g, 1.3 mmol), CuI (130 mg, 0.7 mmol), 1,10-phenanthroline (120 mg, 0.7 mmol), selenium powder (0.13 g, 1.6 mmol), and K₂CO₃ (0.47 g, 3.4 mmol) in DMF (7 mL) and refluxing for 16 h at 110°C under nitrogen atmosphere. Progress of reaction was monitored by TLC. After this, reaction mixture poured over brine solution (80 mL) and stirred for 3 h. Product was extracted by using ethyl acetate (50.0 mL x 3). Combined ethyl acetate layer was washed with distilled water (50 mL x 2), dried over sodium sulphate and ethyl acetate was distilled under reduced pressure at 40° C. resulted light brown colored oil, which was purified by column chromatography using hexane : ethyl acetate (8:2) over silica gel gave white colored crystalline compound. Yield 0.35 g (76%). mp 176-178 °C. ¹H NMR (400 MHz, CDCl₃) δ7.7 (d, *J* = 7.8 Hz, 1H), 7.4-7.52 (m, 2H), 7.34 (m, 2H), 7.07 (d, *J* = 7.95 Hz, 2H), 3.96 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 153.8, 135.9, 133.9, 131.0, 130.7, 130.0, 128.3, 127.7, 127.2, 121.3, 112.4, 56.2. ⁷⁷Se NMR δ 966.7 ppm. HRMS-ES⁺*m*/*z*: 339.9651 (Calculated for C₁₄H₁₀ClNO₂⁸⁰Se + H⁺: 339.9636).

2-Chloro-3-methoxy-N-(2-methoxyphenyl) benzamide (Substrate for 11): 2-Chloro-3methoxybenzoyl chloride (0.5 g, 2.4 mmol) was dissolved in dry CH₂Cl₂ (25 mL) in a single neck flask and cooled to 0 °C. 2-Methoxy aniline (0.35 g, 2.9 mmol) and triethylamine (0.73 g, 7.2 mmol) in 40 mL CH₂Cl₂ were slowly added to 2-Chloro-3-methoxybenzoyl chloride solution by dropping funnel. Resulted reaction mixture stirred for 1 h at 0 °C and 3 h at room temperature. After this water (50 mL) was added to reaction flask and stirred for 30 min. CH₂Cl₂ (50 mL) was added to reaction mixture and water layer separated by separating funnel. CH₂Cl₂ layer was washed with 10% HCl (25 mL), and then with water (25 mL). Dichloromethane layer dried over Na₂SO₄, evaporated on rotary evaporator under *vacuo*. Resulted solid was passed through silica gel using CH₂Cl₂ to obtain pure amide. Yield 0.65 g (92%). mp 108-110 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, *J* = 8.0 Hz, 1H), 8.41 (s, 1H), 7.35-7.25 (m, 2H), 7.11-6.97 (m, 3H), 6.89 (d, *J* = 8.1 Hz, 1H), 3.93 (s, 3H), 3.85 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.4, 155.4, 148.2, 137.5, 127.8, 127.6, 124.2, 121.4, 121.2, 120.0, 119.6, 113.5, 110.1, 56.5, 55.8. HRMS-ES⁺m/z: 292.0745 (Calculated for C₁₅H₁₄ClNO₃ + H⁺: 292.0735)

7-Methoxy-2-(2-methoxyphenyl)benzo[d][1,2]selenazol-3(2H)-one (11): Se-N heterocycle **11** was synthesized from corresponding 2-chloro-3-methoxy-N-(2-methoxyphenyl)benzamide (0.3 g, 1.0 mmol), CuI (98 mg, 0.5 mmol), 1,10-phenanthroline (93 mg, 0.5 mmol), selenium powder (0.097 g, 1.2 mmol), and K₂CO₃ (0.36 g, 2.6 mmol) in DMF (5 mL) and refluxing for 12 h at 110°C under nitrogen atmosphere. Progress of reaction was monitored by TLC. After this, reaction mixture poured over brine solution (60 mL) and stirred for 3 h. Product was extracted by using ethyl acetate (40.0 mL x 3). Combined ethyl acetate layer was washed with distilled water (40 mL x 2), dried over sodium sulphate and ethyl acetate was distilled under reduced pressure at 40° C. resulted light brown colored oil, which was purified by column chromatography using hexane : ethyl acetate (8:2) over silica gel gave white colored crystalline compound. Yield 0.21 g (61%). mp 151-153 °C. ¹H NMR (400 MHz, CDCl₃) δ7.75 (d, *J* = 7.7 Hz, 1H), 7.5 (m, 3H), 7.05 (m, 3H), 4.0 (s, 3H), 3.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 155.4, 154.2, 129.9, 129.6, 128.5, 127.93, 127.87, 127.13, 121.2, 120.8, 112.3, 112.0, 56.2, 30.1. ⁷⁷Se NMR δ 958.7 ppm. HRMS-ES⁺*m/z*: 336.0147 (Calculated for C₁₅H₁₃NO₃⁸⁰Se + H⁺: 336.0134).

2-Chloro-N-(3, 5-dimethoxyphenyl)-3-methoxybenzamide (Substrate for 1m): 2-Chloro-3-methoxybenzoyl chloride (0.5 g, 2.4 mmol)was dissolved in dry CH_2Cl_2 (25 mL) in a single neck flask and cooled to 0 °C. 3, 5-Dimethoxy aniline (0.44 g, 2.9 mmol) and triethylamine (0.73 g, 7.2 mmol) in 40 mL CH₂Cl₂ were slowly added to 2-Chloro-3methoxybenzoyl chloride solution by dropping funnel. Resulted reaction mixture stirred for 1 h at 0 °C and 3 h at room temperature. After this water (50 mL) was added to reaction flask and stirred for 30 min. CH₂Cl₂ (50 mL) was added to reaction mixture and water layer separated by separating funnel. CH₂Cl₂ layer was washed with 10% HCl (25 mL), and then with water (25 mL). Dichloromethane layer dried over Na₂SO₄, evaporated on rotary evaporator under *vacuo*. Resulted solid was passed through silica gel using CH₂Cl₂ to obtain pure amide. Yield 0.75 g (96%). mp 52-54 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.81 (s, 1H), 7.30-7.15 (m, 2H), 6.98 (d, *J* = 8.0 Hz, 1H), 6.86 (d, *J* = 2.0 Hz, 2H), 6.26 (t, *J* = 2.1 Hz, 1H), 3.90 (s, 3H), 3.77 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 164.7, 161.1, 155.4, 139.4, 137.1, 127.9, 121.1, 119.3, 113.6, 98.2, 97.2, 56.5, 55.4. HRMS-ES⁺m/z: 322.0854 (Calculated for C₁₆H₁₆ClNO₄ + H⁺: 322.0841).

2-(3,5-Dimethoxyphenyl)-7-methoxybenzo[d][1,2]selenazol-3(2H)-one (1m): Se-N heterocycle 1m was synthesized from corresponding 2-chloro-N-(3,5-dimethoxyphenyl)-3-methoxybenzamide (0.35 g, 1.1 mmol), CuI (104 mg, 0.55 mmol), 1,10-phenanthroline (98 mg, 0.55 mmol), selenium powder (0.103 g, 1.3 mmol), and K₂CO₃ (0.38 g, 2.7 mmol) in DMF (6 mL) and refluxing for 16 h at 110°C under nitrogen atmosphere. Progress of reaction was monitored by TLC. After this, reaction mixture poured over brine solution (80 mL) and stirred for 3 h. Product was extracted by using ethyl acetate (40.0 mL x 3). Combined ethyl acetate layer was washed with distilled water (40 mL x 2), dried over sodium sulphate and ethyl acetate was distilled under reduced pressure at 40° C. resulted light brown colored oil, which was purified by column chromatography using hexane : ethyl acetate (8:2) over silica

gel gave white colored crystalline compound. Yield 0.26 g (65%). mp 88-90 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 7.8 Hz, 1H), 7.46 (t, J = 7.9 Hz, 2H), 7.09 (m, 1H), 6.9 (d, J = 2.2 Hz, 2H), 6.4 (t, J = 2.2 Hz, 1H), 4.0 (s, 3H), 3.84 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 166.0, 161.1, 154.1, 141.0, 129.1, 128.3, 127.0, 121.1, 112.3, 103.5, 99.2, 56.0, 55.5. ⁷⁷Se NMR δ 947.6 ppm. HRMS-ES⁺m/z: 366.0237 (Calculated for C₁₆H₁₅NO₄⁸⁰Se + H⁺: 366.0240).

2-benzyl-7-methoxybenzo[d][1,2]selenazol-3(2H)-one (1n):² Yield 67%, mp 66-68 °C (66-68 °C).² Please see figures S80-S83 for characterization data.

2-Chloro-N-(3,4-dimethoxybenzyl)-3-methoxybenzamide (Substrate for 1o):

2-Chloro-3-methoxybenzoyl chloride (0.3 g, 1.5 mmol) was dissolved in dry CH_2Cl_2 (20 mL) in a single neck flask and cooled to 0 °C. (3,4-dimethoxyphenyl)methanamine (0.29 g, 1.7 mmol) and triethylamine (0.45 g, 4.5 mmol) in 30 mL CH_2Cl_2 were slowly added to 2-Chloro-3-methoxybenzoyl chloride solution by dropping funnel. Resulted reaction mixture stirred for 1 h at 0 °C and 3 h at room temperature. After this water (50 mL) was added to reaction flask and stirred for 30 min. CH_2Cl_2 (50 mL) was added to reaction mixture and water layer separated by separating funnel. CH_2Cl_2 layer was washed with 10% HCl (25 mL), and then with water (25 mL). Dichloromethane layer dried over Na₂SO₄, evaporated on rotary evaporator under *vacuo*. Resulted solid was passed through silica gel using CH_2Cl_2 to obtain pure amide. Yield 0.46 g (94%). mp 126-128 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.23 (t, *J* = 8.0 Hz, 1H), 7.17-7.09 (m, 1H), 6.94 (d, *J* = 8.1 Hz, 1H), 6.90 (s, 1H), 6.88-6.83 (m, 1H), 6.81-6.77 (m, 1H), 6.36 (s, 1H), 4.55 (d, *J* = 5.7 Hz, 2H), 3.87 (s, 3H), 3.84 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 155.3, 149.2, 148.5, 137.0, 130.3, 127.8, 121.1, 120.1, 119.3, 113.3, 111.2, 111.1, 56.4, 55.94, 55.89, 43.5. HRMS-ES⁺*m*/*z*: 336.1009 (Calculated for C₁₇H₁₈ClNO₄ + H⁺: 336.0997).

2-(3,4-Dimethoxybenzyl)-7-methoxybenzo[d][1,2]selenazol-3(2H)-one (10): Se-N heterocycle 10 was synthesized from corresponding 2-chloro-N-(3,4-dimethoxybenzyl)-3methoxybenzamide (0.4 g, 1.2 mmol), CuI (113 mg, 0.6 mmol), 1,10-phenanthroline (107 mg, 0.6 mmol), selenium powder (0.113 g, 1.4 mmol), and K_2CO_3 (0.41 g, 3.0 mmol) in DMF (8 mL) and refluxing for 24 h at 110°C under nitrogen atmosphere. Progress of reaction was monitored by TLC. After this, reaction mixture was poured over brine solution (80 mL) and stirred for 3 h. Product was extracted by using ethyl acetate (40.0 mL x 3). Combined ethyl acetate layer was washed with distilled water (40 mL x 2), dried over sodium sulphate and ethyl acetate was distilled under reduced pressure at 40° C. resulted light brown colored oil, which was purified by column chromatography using hexane : ethyl acetate (6:4) over silica gel gave light brown heavy oil. Yield 0.39 g (86%).¹H NMR (400 MHz, CDCl₃) δ7.63 (d, J = 7.8 Hz, 1H), 7.36 (t, J = 7.8 Hz, 1H), 6.9 (m, 4H), 4.9 (s, 2H), 3.85 (d, J = 4.8 Hz, 10.1 Hz)6H), 3.82 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.3, 154.3, 149.3, 149.2, 129.8, 129.0, 127.9, 127.5, 121.2, 120.5, 111.8, 111.6, 111.0, 55.93, 55.88, 55.86, 43.8. ⁷⁷Se NMR δ 862.4 ppm. HRMS-ES⁺m/z: 380.0396 (Calculated for C₁₇H₁₇NO₄⁸⁰Se + H⁺: 380.0396).

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2014

2-benzyl-5-methoxybenzo[d][1,2]selenazol-3(2H)-one (**1p**):² Yield 76%, mp 124-126 °C (124-126 °C).² Please see figures S91-S94 for characterization data.

2-benzyl-5-(methylthio) benzo[d][1,2]selenazol-3(2H)-one (1q):² Yield 35%, mp 138-140 °C (139-141 °C).² Please see figures S95-S98 for characterization data.

2-benzyl-7-nitrobenzo[d][1,2]selenazol-3(2H)-one (**1r**):¹ Yield 87%, mp 110-112 °C (110-111 °C).¹ Please see figures S99-S102 for characterization data.

⁷⁷Se NMR study of isoselenazolone 1b and intermediates 2b, 3b and 5b

⁷⁷Se is a very sensitive NMR active nucleus and it is easily influenced by the chemical environment. Moreover, isoselenazolones and all other intermediates, i.e. RSeSPh, RSeH, RSeOH are expected to show large differences in their chemical shift values. Therefore, ⁷⁷Se NMR technique was used for mechanistic investigation. Stock solution for PhSH was made by dissolving 200 mg of PhSH in 10 mL of CD₃OD.

Isoselenazolone 1b: In a clean and dry NMR tube isoselenazolone **1b** was dissolved in 0.6 mL of deuterated methanol and resulting solution was monitored for 15 hours by ⁷⁷Se NMR spectroscopy. A peak was observed at 851 ppm (See Figure S106)

Reaction of isoselenazolone 1b with one equivalent of PhSH: In a clean and dry NMR tube **1b** (30 mg, 0.06 mmol) was dissolved in 0.3 mL CD₃OD. To that PhSH (0.3 mL in CD₃OD, 0.06 mmol) was added in a lot. NMR tube was shaken well and resulting solution was monitored for 10 hours by ⁷⁷Se NMR spectroscopy. A peak was observed at -0.3 ppm (See Figure S107).

Reaction of isoselenazolone 1b with two equivalent of PhSH: In a NMR tube containing **1b** (30 mg, 0.06 mmol), solution of PhSH (0.6 mL, 0.12 mmol) in deuterated methanol was added and ⁷⁷Se NMR was recorded with 10000 scans. A peak was observed at 4.8 ppm (See Figure S109)

Detection of selenenic acid intermediate 5b: Isoselenazolone **1b**, PhSH and H_2O_2 were mixed in a (1:2:1) stoichiometry in CD₃OD and NMR spectrum was recorded for 10 hours. Peaks observed at 1093 ppm and 851 ppm (See Figures S115-S116)

Mass spectrometry study of isoselenazolone 1b and intermediates 2b, 3b and 5b

Isoselenazolone **1b** and intermediates **2b**, **3b** and **5b** were analysed by mass (LCMS) spectrometry. HPLC grade methanol was used as solvent medium for experiments. All the experiments were performed by direct injection method in ESI mode.

Isoselenazolone 1b: Freshly prepared solution of **1b** in methanol was analysed by mass spectrometry and peak observed at m/z: 520.1484(Calculated for C₂₈H₂₉N₃O₂Se + H⁺) (See Figure S14)

Reaction of isoselenazolone 1b with one equivalent of PhSH: A freshly prepared (1:1) mixture of **1b** and PhSH in methanol was analysed mass spectrometrically and peaks were observed at m/z: 630.1726 (Calculated for C₃₄H₃₅N₃O₂SSe + H⁺) and m/z: 520.1540 (Calculated for C₂₈H₃₁N₃O₂Se - H⁺) attributed to selenenylsulfide **2b** and selenol **3b** respectively. (See Figure S108)

Reaction of isoselenazolone 1b with two equivalent of PhSH: A freshly prepared (1:2) mixture of **1b** and PhSH in methanol was analysed mass spectrometrically and peaks were observed at m/z: 520.1546 (Calculated for C₂₈H₃₁N₃O₂Se - H⁺) attributed to selenol **3b**. (See Figure S110)

Reaction of isoselenazolone 1b with two equivalent of PhSH and one equivalent of hydrogen peroxide: A freshly prepared (1:2:1) mixture of 1b, PhSH and H_2O_2 in methanol was analysed mass spectrometrically and peaks were observed at m/z: 536.1489 (Calculated for $C_{28}H_{31}N_3O_2Se-H^+$) attributed to selenenic acid 5b. (See Figure S117)

⁷⁷Se NMR and mass spectrometric study of methyl selenide obtained by reaction of 1b, two equivalent of PhSH and excess of methyl iodide:

Isoselenazolone **1b** (30 mg, 0.06 mmol) and solution of PhSH (0.6 mL, 0.12 mmol) in deuterated methanol was mixed thoroughly. To this freshly prepared solution, excess of methyl iodide (24 mg, 0.17 mmol) was added in a lot. Resulted reaction mixture was shaken well and monitored by ⁷⁷Se NMR spectroscopy for 10 hours. A peak was observed at 124.8 ppm (See Figure S113). Similarly, mass spectrometric analysis in methanol gave peak at m/z: 536.1930 (Calculated for C₂₉H₃₃N₃O₂Se + H⁺) attributed to methyl selenide. (See Figure S114).

⁷⁷Se NMR chemical shift comparison for organoselenium analogues having Se...X (X= N or O) interaction either via conjugation or non-conjugation with each other⁴

625 ppm

660 ppm

571.5 ppm

Figure S2 ¹³C NMR for **1a**

Figure S3 ⁷⁷Se NMR for **1a**

Figure S4 HRMS (ESI) spectrum of 1a

27

Figure S5 1 H NMR of (1S)-(6-methoxyquinolin-4-yl)((2S,4S,5R)-5-vinylquinuclidin-2-yl)methanamine

Figure S6¹³C NMR of (1S)-(6-methoxyquinolin-4-yl)((2S,4S,5R)-5-vinylquinuclidin-2-yl)methanamine

Figure S7 HRMS (ESI) of (1S)-(6-methoxyquinolin-4-yl)((2S,4S,5R)-5-vinylquinuclidin-2-yl)methanamine

Figure S9¹³C NMR of precursor of **1b**

Figure S10HRMS (ESI) of precursor of 1b

ruker Compass DataAnalysis 4.0 printed: 10/12/2012 4:11:43 AM Page 1 of 1

Figure S11¹H NMR of **1b**

Figure S12¹³C NMR of **1b**

Figure S13⁷⁷Se NMR **1b**

Figure S14 HRMS (ESI) of 1b

Figure S15¹H NMR of precursor of **1c**

Figure S16¹³C NMR of precursor of 1c

Figure S17 HRMS (ESI) of precursor of 1c

Figure S18¹H NMR of **1c**

Figure S19¹³C NMR of **1c**

Figure S20⁷⁷Se NMR of **1c**

Figure S21 HRMS (ESI) of 1c

Figure S23¹³C NMR of precursor of **1d**

Figure S24 HRMS (ESI) of precursor of 1d

Figure S25¹H NMR of **1d**

Figure S26¹³C NMR of **1d**

Figure S27 HRMS (ESI) of 1d

Figure S28⁷⁷Se NMR of **1d**

Figure S29¹H NMR of **1e**

Figure S30¹³C NMR of **1e**

Figure S31⁷⁷Se NMR of **1e**

f1 (ppm)

Figure S32 HRMS of 1e

55

Figure S33 ¹H NMR of precursor of **1f**

Figure S35 HRMS of precursor of 1f

58

Figure S36¹H NMR of **1f**

Figure S37¹³C NMR of **1f**

Figure S38⁷⁷Se NMR of **1f**

Figure S39 HRMS of **1f**

62

Figure S40¹H NMR of **1g**

Figure S41¹³C NMR of **1g**

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2014

Figure S42⁷⁷Se NMR of **1g**

Figure S44 ¹H NMR of **1h**

Figure S45¹³C NMR of **1h**

Figure S46⁷⁷Se of **1h**

-863.64

MSO 13-09-25T06:46:4	nrsu MSO 113-09-25T06:46:4	mrsu MISO 9 1013-09-25T06:46:4 198.7	2013-09-25T06;46;4 298.7 512	nmrsu DMSO 2g 2013-09-25T06;46;4 298,7 512 512 512	nmrsu DMSO 2g 2013-09-25T06;46;4 298.7 512 512 7 76.31 49342.1	nmrsu DMSO 2013-09-25T06;46;4 298.7 512 512 49342.1 26838.7	nmrsu DMSO zg 2013-09-25T06:46:4 298.7 298.7 512 2976.31 49342.1 49342.1 26838.7
09-25T06;46:40	09-25T06:46:40	09-25T06:46:40	09-25T06:46:40	09-25T06:46:40	09-25T06:46:40	09-25T06;46:40 2.1 3.7	09-25T06:46:40 2.1
13-09-25T06:46:40	13-09-25T06:46:40	13-09-25T06:46:40 3.7	13-09-25T06:46:40 8.7 2	13-09-25T06:46:40 3.7 2 31	13-09-25T06:46:40 3.7 2 31 342.1	13-09-25T06:46:40 8.7 2 31 342.1 388.7	13-09-25T06:46:40 3.7 31 32.2 33.7
		8.7	8.7 2	8.7 2 ,31	8.7 2 ;31 ;32	8.7 2 ;31 342.1 838.7	8.7 2 .31 342.1 838.7

Figure S47 LRMS of **1h**

Bruker Compass DataAnalysis 4.0 printed: 9/17/2013 1:35:12 PM Page 1 of 1

Figure S48¹H NMR of **1i**

Figure S49¹³C NMR of **1i**

Figure S50⁷⁷Se NMR of **1i**

Figure S51 HRMS of 1i

9/16/2013 4:11:57 PM printed: Bruker Compass DataAnalysis 4.0

Figure S53 ¹³C NMR of precursor of **1j**

Figure S54 HRMS of precursor for 1j

Figure S55 ¹H NMR of **1j**

Figure S56¹³C NMR of **1j**

Figure S57⁷⁷Se NMR of **1j**

Figure S58 HRMSof1j

7.05

1

-

N

ώ

Figure S60¹³C NMR of precursor of **1k**

Figure S61 HRMS of precursor of 1k

Figure S62¹H NMR of **1k**

Figure S63¹³C NMR of **1k**

Figure S64⁷⁷Se NMR of **1k**

Figure S65 HRMS of 1k

Figure S66¹H NMR of precursor of **1**l

Figure S67 ¹³C NMR of precursor of **11**

Figure S68 HRMS of precursor of 11

Figure S69¹H NMR of **11**

Figure S70¹³C NMR of **11**

Figure S71⁷⁷Se NMR of **11**

f1 (ppm)

15		14	13	12	11	10	9	00	7	σ	S	4	ω	1	3		-		
Chartral Cize	Acquired Size	Nudeus	Lowest Frequency	Spectral Width	Spectrometer Frequency	Number of Scans	Temperature	Modification Date	Acquisition Date	Pulse Sequence	Solvent	Owner	Origin	Ĭ	1		Data File Name	Parameter	
65536	32768		53448.3	45454.5	76.31	401	298.2		2011-12-05T07:16:53	βz	CDCl3	nmrsu	Bruker BioSpin GmbH	nmrsu	02-12-2011/02-12-11-sangit Sangit-JS-101/JS-101 Se NMR/ 3/ fid	Documents/ Jaimin/ NMR (IISER)/ Se-N Heterocycle/	C:/Users/selenium/	Value	

-958.678

Figure S72 HRMS of **1**

Figure S73 ¹H NMR of precursor of **1m**

Figure S74¹H NMR of precursor of **1m**

Figure S75 HRMS of precursor of 1m

Figure S76¹H NMR of **1m**

Figure S77¹³C NMR of **1m**

Figure S78⁷⁷Se NMR of **1m**

Figure S79 HRMS of **1m**

Figure S80 ¹H NMR of **1n**

Figure S81¹³C NMR of **1n**

Figure S82⁷⁷Se NMR of **1n**

Figure S83 HRMS of **1n**

Figure S84¹H NMR of precursor of **10**

Figure S85¹³C NMR of precursor of **10**

Figure S86 LRMS of precursor of **10**

Figure S87¹H NMR of **10**

Figure S88¹³C NMR of **10**

111

Figure S89⁷⁷Se NMR of **10**

Figure S90 HRMS of **10**

Figure S91 ¹H NMR of **1p**

Figure S92¹³C NMR of **1p**

Figure S93⁷⁷Se NMR of **1p**

Figure S94 HRMS of **1p**

Bruker Compass DataAnalysis 4.0 printed: 9/16/2013 4:12:44 PM Page 1 of 1

Figure S95¹H NMR of**1q**

Figure S96¹³C NMR of **1q**

Figure S97⁷⁷Se NMR of **1q**

Figure S98 LRMS of 1q

Figure S99¹H NMR of **1r**

Figure S100¹³C NMR of 1r

Figure S101⁷⁷Se NMR of **1r**

Figure S102 HRMS of **1r**

Reaction of Isoselenazolones with PhSH Investigated by ⁷⁷Se NMR and Mass Spectrometry

Figure S103⁷⁷Se NMR of **1a**

Figure S106⁷⁷Se NMR of **1b**

Figure S107 ⁷⁷Se NMR of selenol **3b** obtained by the reaction of 1b + one quiv of **PhSH**

Figure S108 Mass spectra of 2b obtained by the reaction of 1b + one equiv of PhSH

Figure S109⁷⁷Se NMR of selenol**3b** obtained by the reaction of **1b** + **two equiv of PhSH**

Figure S110 Mass spectra of selenol 3b obtained by the reaction of 1b + two equiv of PhSH

Figure S111 Mass spectra of selenol 3b + Na

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2014

Figure S113 ⁷⁷Se NMR on the reaction of selenol **3b** with CH_3I (**1b** + **2PhSH** + **CH_3I**)

Figure S114 Mass spectra of on the reaction of selenol 3b with CH_3I (1b + 2PhSH + CH_3I)

Bruker Compass DataAnalysis 4.0 printed: 8/21/2013 1:52:35 PM Page 1 of 1

138

Figure S117 LRMS for **5b**

Bruker Compass DataAnalysis 4.0 printed: 9/24/2013 5:07:29 PM Page 1 of 1

Figure S119 ⁷⁷Se NMR of (1c + 2PhSH)

Figure S123 ⁷⁷Se NMR of (1n + 2PhSH)

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2014

2 J 3	Compo	pund 1b	لمر	Con	npound 2b	Ų,	
с	-0.6659	-0.02306	0.62636	с	0.22704	-2.10346	3.09684
с	-1.74775	0.0191	-0.48274	с	1.16013	-1.19547	3.59079
N	-1.98475	-1.33422	-1.03075	С	1.84187	-0.31366	2.74155
с	-2.71221	-1.17132	-2.30196	С	1.55693	-0.36368	1.36138
с	-4.03246	-0.36486	-2.08873	С	0.58377	-1.24741	0.86148
с	-2.7921	-2.17126	-0.13167	С	-0.05645	-2.13645	1.73393
С	-4.2182	-1.5682	0.14877	Se	2.41263	0.85011	0.12366
С	-5.32806	-2.49578	-0.26199	N	-0.40845	-0.58415	-1.38706
С	-6.3019	-2.92901	0.541	С	0.35095	-1.43394	-0.6204
С	-4.24683	-0.18895	-0.56964	ο	0.88822	-2.39311	-1.17272
н	-5.20416	0.30612	-0.37283	S	4.58871	0.33785	0.37201
С	-3.08675	0.64891	0.01068	С	5.01133	-0.92661	-0.83659
С	-0.43226	1.29698	1.36353	С	4.07277	-1.73499	-1.47907
С	0.09397	2.49377	0.76663	С	4.50468	-2.72375	-2.36394
С	0.50305	2.60461	-0.58265	С	5.86454	-2.91224	-2.61467
С	0.9922	3.80327	-1.07958	С	6.79972	-2.09809	-1.97159
0	1.35592	3.79934	-2.39457	С	6.37962	-1.10467	-1.08751
С	1.88997	4.98443	-2.96134	С	-1.42444	0.47545	-1.2266
С	1.09649	4.94306	-0.24291	С	-1.42632	1.25059	0.11052
С	0.71378	4.85388	1.07601	N	-0.16137	2.00114	0.29695
С	0.21097	3.64746	1.61995	С	-0.12142	2.51127	1.6849
Ν	-0.13496	3.65579	2.94142	С	-1.3377	3.43473	1.98594
С	-0.59753	2.53638	3.45007	С	-0.03973	3.15505	-0.61479
С	-0.76116	1.34504	2.70283	С	-1.22053	4.17544	-0.44542
С	4.12499	-2.86319	-2.07797	С	-0.7316	5.57535	-0.19111

Optimized geometry and co-ordinates for 1b and 2b

С	4.49321	-3.3589	-0.8179	С	-1.05042	6.64189	-0.92631
С	3.7847	-3.03094	0.34095	С	-2.13372	3.61048	0.67946
С	2.68158	-2.18493	0.17892	н	-2.98111	4.28717	0.8336
С	2.30001	-1.67971	-1.06424	С	-2.64254	2.2313	0.21688
С	3.02824	-2.01862	-2.20736	С	-2.79265	-0.04847	-1.69166
Se	1.54041	-1.55533	1.54675	С	-3.59676	-1.00982	-0.991
Ν	0.59738	-0.64862	0.19194	С	-3.25166	-1.5828	0.25247
С	1.11562	-0.78915	-1.08274	С	-4.07106	-2.51502	0.86809
0	0.67623	-0.23473	-2.08959	0	-3.62331	-3.00801	2.0598
С	4.16411	-3.54878	1.70378	С	-4.41472	-3.9699	2.74349
Н	-1.0596	-0.70389	1.39081	С	-5.28992	-2.90795	0.2604
Н	-1.36406	0.60544	-1.31445	С	-5.6516	-2.35916	-0.94911
Н	-2.91976	-2.17334	-2.69541	С	-4.83223	-1.41009	-1.60838
Н	-2.04191	-0.67641	-3.01112	Ν	-5.27184	-0.92785	-2.80769
Н	-3.96827	0.6233	-2.56137	С	-4.50615	-0.05366	-3.42072
Н	-4.88905	-0.87318	-2.54568	С	-3.26975	0.40598	-2.90447
Н	-2.24699	-2.32723	0.80539	Н	-0.27997	-2.78763	3.77132
Н	-2.87837	-3.1585	-0.59993	н	1.37227	-1.16537	4.65694
Н	-4.32632	-1.37757	1.22521	н	-0.76365	-2.86075	1.3437
Н	-5.31071	-2.84274	-1.29676	н	-0.3849	-0.93168	-2.34154
Н	-7.07604	-3.60662	0.19052	н	3.01484	-1.60621	-1.29111
Н	-6.36219	-2.62189	1.58365	н	3.76231	-3.3512	-2.85016
Н	-3.15483	0.65621	1.10642	н	6.1943	-3.68526	-3.30364
Н	-3.15645	1.69359	-0.31387	н	7.86221	-2.22997	-2.16086
Н	0.47038	1.75752	-1.25929	н	7.11105	-0.4685	-0.59536
Н	2.11632	4.73957	-4.00069	н	-1.15738	1.21986	-1.98548
Н	1.16702	5.81084	-2.93584	н	-1.46342	0.54297	0.94132
Н	2.81317	5.2974	-2.45563	н	-0.09372	1.65147	2.3595
Н	1.47835	5.88133	-0.62877	н	0.82747	3.04377	1.80281
Н	0.78805	5.70741	1.74235	н	-1.01096	4.40411	2.37803
Н	-0.86571	2.55065	4.50626	н	-1.98642	2.991	2.75099
Н	-1.15507	0.4626	3.20179	н	0.92294	3.62753	-0.39221
Н	4.7048	-3.14208	-2.95305	н	0.03177	2.80195	-1.64724
Н	5.35418	-4.01811	-0.73415	н	-1.81626	4.19428	-1.368
Н	2.7175	-1.61292	-3.16522	Н	-0.05482	5.70463	0.65535

н	3.34543	-4.13234	2.14709	Н	-0.66253	7.63124	-0.6993
н	4.38236	-2.72181	2.39362	н	-1.71225	6.56621	-1.78716
н	5.04827	-4.19095	1.65992	н	-3.1507	2.33852	-0.74804
				н	-3.3854	1.83543	0.91865
				н	-2.33179	-1.31836	0.75325
				н	-3.86511	-4.21181	3.65474
				н	-5.39907	-3.56579	3.0127
				н	-4.5468	-4.88287	2.14882
				н	-5.93677	-3.63613	0.73582
				н	-6.57801	-2.64146	-1.43887
				н	-4.86229	0.32399	-4.37867
				н	-2.69737	1.12798	-3.48233
				С	2.8437	0.65421	3.32091
				н	3.86189	0.25506	3.2477
				н	2.8376	1.59645	2.76538
				Н	2.63137	0.8521	4.37643

Optimized geometry and co-ordinates for 1c and 2c

Compound 1c					Compaund 2c				
с	3.02348	4.43865	1.37123	с	1.54499	-2.48336	3.26467		
с	3.06842	4.92423	0.05537	с	2.57696	-1.54568	3.18232		
С	2.44639	4.23803	-0.98632	С	2.73789	-0.79509	2.0192		
С	1.77016	3.05562	-0.6864	с	1.87008	-0.97508	0.93632		
С	1.71989	2.56033	0.61989	С	0.83712	-1.91802	1.00694		
С	2.35113	3.25458	1.65525	С	0.69403	-2.67713	2.17918		
Se	0.84902	1.91087	-1.8734	Se	2.08341	0.11445	-0.636		
N	0.45786	0.84358	-0.37436	Ν	-1.09773	-1.57125	-0.60862		
С	0.97815	1.29436	0.82098	С	-0.03281	-2.3327	-0.16086		

0	0.86694	0.71609	1.90453	0	0.11622	-3.46349	-0.60999
С	-0.50482	-0.2476	-0.62617	С	-1.32773	-0.1116	-0.70917
С	-1.45545	-0.51684	0.56709	С	-1.23437	0.63261	0.67425
Ν	-2.09661	0.73807	1.01622	N	0.03044	1.41923	0.73125
С	-2.72701	0.47386	2.32107	С	0.3272	1.74594	2.14114
С	-3.76643	-0.68697	2.21863	С	-0.85934	2.50558	2.80201
С	-3.13031	1.20841	0.08287	С	-0.07336	2.67964	-0.03146
С	-4.2793	0.15565	-0.13297	С	-1.16746	3.64287	0.55015
С	-5.63948	0.72023	0.17023	С	-0.59981	4.97052	0.97458
С	-6.66538	0.74913	-0.68258	С	-1.03432	6.1572	0.54709
С	-3.89945	-1.0805	0.73173	С	-1.8691	2.85873	1.6938
Н	-4.66101	-1.85852	0.60954	н	-2.68935	3.46085	2.09913
С	-2.53511	-1.59218	0.22334	С	-2.42698	1.55623	1.08304
С	0.15759	-1.48107	-1.24572	С	-2.62239	0.09416	-1.48916
С	1.07622	-2.35433	-0.57627	С	-3.88694	-0.46538	-1.11096
С	1.53352	-2.16508	0.75724	С	-4.08209	-1.28498	0.03664
С	2.41999	-3.0632	1.32456	С	-5.33867	-1.77501	0.33933
0	2.92162	-2.96789	2.58488	0	-5.62888	-2.57272	1.40325
С	2.48629	-1.88492	3.40103	С	-4.56611	-2.96441	2.25979
С	2.88489	-4.18792	0.58984	С	-6.45511	-1.46278	-0.48442
С	2.46513	-4.3854	-0.69804	С	-6.29082	-0.67885	-1.59448
С	1.55982	-3.48304	-1.32279	С	-5.01286	-0.15956	-1.94559
Ν	1.20649	-3.75007	-2.61149	Ν	-4.93488	0.60939	-3.06753
С	0.3757	-2.91398	-3.19727	С	-3.7522	1.08814	-3.39356
С	-0.16783	-1.77903	-2.55644	С	-2.57851	0.85518	-2.64154
Н	3.51681	4.98929	2.16669	S	3.58306	-1.13847	-1.74133
н	3.59555	5.84978	-0.15968	С	5.20362	-0.55354	-1.21393
н	2.48963	4.62191	-2.00137	С	5.41618	0.58594	-0.43124
н	2.29822	2.84874	2.66105	С	6.71588	0.97025	-0.09772
н	-1.14998	0.14287	-1.42144	С	7.8127	0.22953	-0.54
Н	-0.86487	-0.85909	1.41416	С	7.59878	-0.90655	-1.32351
Н	-1.93163	0.2459	3.03782	С	6.30405	-1.30052	-1.65888
Н	-3.20336	1.40376	2.65253	н	1.41517	-3.07689	4.16541
Н	-4.73776	-0.39013	2.63041	н	3.257	-1.40291	4.0177
Н	-3.43773	-1.56063	2.79523	Н	3.54366	-0.07298	1.9414

Н	-3.53678	2.13815	0.49745	н	-0.0782	-3.43966	2.22087
н	-2.66299	1.48356	-0.86879	н	-1.53471	-2.07991	-1.37235
н	-4.28151	-0.16937	-1.18231	н	-0.52769	0.30113	-1.33191
н	-5.77367	1.1478	1.1656	н	-1.12218	-0.14399	1.43587
Н	-7.6263	1.17765	-0.41024	н	0.55384	0.81605	2.66901
н	-6.58305	0.34394	-1.68957	н	1.24222	2.34853	2.14599
н	-2.59442	-1.77775	-0.85679	н	-0.51245	3.40648	3.31955
Н	-2.27887	-2.55017	0.69025	н	-1.35075	1.87973	3.55718
Н	1.21186	-1.29482	1.31421	н	0.91704	3.1474	-0.01669
Н	3.01994	-1.99554	4.34674	н	-0.28866	2.44143	-1.07731
Н	2.72034	-0.9155	2.94873	н	-1.9213	3.83597	-0.22404
Н	1.40485	-1.93281	3.57961	н	0.23701	4.94048	1.67482
Н	3.57736	-4.86761	1.07672	н	-0.58467	7.08749	0.88364
Н	2.80967	-5.23047	-1.28542	н	-1.85831	6.24412	-0.15873
Н	0.10567	-3.13309	-4.22993	н	-3.05519	1.8078	0.22347
Н	-0.85263	-1.14027	-3.10966	н	-3.07354	1.0405	1.80166
				н	-3.22636	-1.54225	0.64537
				н	-5.01558	-3.60583	3.01963
				н	-4.10179	-2.09547	2.74473
				н	-3.79795	-3.52639	1.71336
				н	-7.42341	-1.86838	-0.20857
				н	-7.12486	-0.42998	-2.24264
				н	-3.70161	1.69287	-4.29825
				н	-1.63826	1.28029	-2.98313
				н	4.56321	1.16601	-0.09201
				н	6.86779	1.85913	0.5099
				н	8.82233	0.53263	-0.27714
				н	8.44281	-1.49534	-1.67365
				н	6.14522	-2.19015	-2.26289

		13	×		J.		¥
Compound 1e					Com	pound 2e	
C	-4.29262	0.94333	0.76664	С	-0.94244	3.79874	-1.63632
С	-4.2691	-0.44854	0.58928	С	0.40197	3.44249	-1.68847
С	-3.11657	-1.12217	0.17632	С	0.93008	2.42861	-0.87502
С	-1.98128	-0.33573	-0.05369	С	0.05197	1.7508	-0.01095
С	-1.98423	1.04965	0.12006	С	-1.29971	2.13606	0.08135
C	-3.14981	1.69989	0.53316	С	-1.79272	3.15461	-0.73975
Se	-0.28382	-0.97071	-0.60475	Se	0.62842	0.30814	1.15546
Ν	0.26544	0.82308	-0.52193	Ν	-3.38322	1.06844	0.87799
С	-3.07024	-2.61508	-0.02031	С	2.40337	2.12446	-0.92975
С	-0.70754	1.74374	-0.16121	С	-2.158	1.59085	1.19385
0	-0.50454	2.95209	-0.093	0	-1.77831	1.68633	2.35911
С	1.59762	1.21283	-0.95322	С	-3.78909	0.46775	-0.39329
С	2.71651	0.49169	-0.22453	С	-3.75372	-1.05177	-0.37601
С	3.89899	0.17784	-0.90424	С	-4.85524	-1.79091	-0.81838
С	4.9611	-0.43662	-0.23951	С	-4.81599	-3.18705	-0.83103
С	4.84774	-0.75374	1.11491	С	-3.67241	-3.85597	-0.3946
С	3.66744	-0.45278	1.79807	С	-2.56994	-3.12319	0.05358
С	2.60871	0.16601	1.13373	С	-2.60892	-1.7299	0.06406
н	-5.21056	1.42644	1.08849	S	1.38808	-1.18332	-0.31611
н	-5.17167	-1.02562	0.77692	С	3.18479	-1.20979	-0.17767
н	-3.13226	2.77805	0.66055	С	3.86188	-1.90407	-1.19043
н	-2.82686	-2.86971	-1.06103	С	5.24925	-2.03543	-1.13706
н	-4.02686	-3.08485	0.22496	С	5.97226	-1.47179	-0.0839
н	-2.29751	-3.07215	0.61329	С	5.29432	-0.77828	0.91961
н	1.64073	2.29266	-0.76773	С	3.90505	-0.64903	0.88118
н	1.701	1.06056	-2.03621	н	-1.32088	4.59468	-2.27156
Н	3.98941	0.41785	-1.96167	н	1.07241	3.97085	-2.36183

Optimized geometry and co-ordinates for $1e\ \mbox{and}\ 2e$

н	5.87287	-0.67345	-0.78153	Н	-2.83258	3.45622	-0.65139
н	5.67148	-1.23652	1.63383	Н	-3.86603	0.72522	1.70284
Н	3.57011	-0.70041	2.85185	Н	2.95548	2.95997	-1.37061
Н	1.6881	0.3912	1.66443	Н	2.79499	1.93378	0.07393
				Н	2.61286	1.23018	-1.52643
				Н	-4.79936	0.81231	-0.64562
				Н	-3.11965	0.85674	-1.1655
				Н	-5.75055	-1.27215	-1.15543
				Н	-5.68018	-3.74899	-1.17558
				Н	-3.63991	-4.94223	-0.39977
				Н	-1.67454	-3.63578	0.39433
				Н	-1.75112	-1.16458	0.41957
				Н	3.30566	-2.33798	-2.01752
				Н	5.76494	-2.57462	-1.92742
				Н	7.05328	-1.5721	-0.04632
				Н	5.84587	-0.33664	1.74557
				Н	3.38206	-0.11128	1.66611

Optimized geometry and co-ordinates for $\mathbf{1}\mathbf{f}$ and $\mathbf{2}\mathbf{f}$

					Je de la construction de la cons		
С	-3.60847	1.62012	0.55746	С	-2.32357	-2.86739	1.86062
С	-3.88002	0.24379	0.59172	С	-0.93245	-2.89302	1.91101
С	-2.89653	-0.71097	0.31996	С	-0.14759	-2.14259	1.02308
С	-1.62172	-0.22261	0.01052	С	-0.80783	-1.33417	0.08055
С	-1.33155	1.14223	-0.03078	с	-2.21233	-1.34082	-0.00865
С	-2.33236	2.07646	0.24718	с	-2.96615	-2.1006	0.89058
Se	-0.09798	-1.27079	-0.39982	Se	0.13022	-0.21203	-1.19944

Ν	0.80366	0.36001	-0.62831	Ν	-3.85563	0.26841	-0.90594
С	-3.16627	-2.19275	0.35287	С	1.35292	-2.24444	1.08554
С	0.06625	1.50188	-0.36051	С	-2.90457	-0.68286	-1.17853
0	0.53557	2.6353	-0.40786	0	-2.66885	-1.06395	-2.32078
С	2.2417	0.39198	-0.85452	С	-3.78975	1.18497	0.23542
С	3.05341	0.02147	0.3932	С	-2.74495	2.29112	0.03112
С	4.5551	0.06277	0.13933	С	-2.52844	3.14563	1.27258
0	5.20568	-0.33475	1.34053	0	-1.58911	4.15883	0.93611
Н	-4.40283	2.32783	0.77601	S	1.30083	1.16365	0.10423
Н	-4.88334	-0.09617	0.83778	С	3.02153	0.63282	0.01926
Н	-2.08621	3.13351	0.21494	С	3.87664	1.18112	0.98573
Н	-2.52316	-2.6949	1.0888	С	5.24025	0.88927	0.95652
Н	-2.96128	-2.65335	-0.62343	С	5.7608	0.04411	-0.02521
Н	-4.20614	-2.40825	0.61389	С	4.90506	-0.50411	-0.98186
Н	2.48097	-0.27846	-1.69015	С	3.54082	-0.21021	-0.96802
Н	2.46233	1.41675	-1.16859	н	-2.9051	-3.46363	2.55834
Н	2.80682	0.71625	1.20378	н	-0.43261	-3.52045	2.645
Н	2.78073	-0.98429	0.73716	н	-4.04948	-2.10368	0.8095
Н	4.81389	-0.61217	-0.69488	н	-4.23099	0.66274	-1.76381
Н	4.85467	1.08081	-0.15991	н	1.65865	-3.15176	1.61532
Н	6.1619	-0.27113	1.19696	н	1.77987	-2.26389	0.07832
				н	1.79913	-1.38745	1.60158
				Н	-4.79094	1.60443	0.38824
				Н	-3.55194	0.59611	1.12589
				Н	-1.8019	1.81821	-0.26379
				Н	-3.04416	2.94428	-0.79891
				Н	-3.48653	3.58459	1.60209
				Н	-2.15784	2.51441	2.09725
				Н	-1.38742	4.65992	1.74056
				Н	3.47663	1.83283	1.75841
				н	5.89426	1.31942	1.71059
				н	6.82245	-0.18531	-0.04376
				н	5.29834	-1.16254	-1.75213
				н	2.87955	-0.63848	-1.71508

	L.	55	<	Jos Jos			
	X		$\overline{}$		The second		
С	-3.97377	1.46676	0.73903	С	-0.64171	3.73176	-1.43221
с	-4.08564	0.07969	0.53107	С	3.72242	-2.36243	-0.88169
с	-2.97631	-0.66043	0.12075	н	3.22919	0.08522	1.43002
С	-1.7656	0.0128	-0.07603	н	5.70344	-0.06981	1.53149
С	-1.65614	1.3842	0.13233	н	6.92044	-1.68457	0.07767
С	-2.76852	2.12784	0.54349	н	5.63175	-3.15298	-1.46878
Se	-0.14336	-0.78409	-0.61114	н	3.16559	-3.00895	-1.55569
Ν	0.57073	0.95131	-0.48306	н	2.95953	1.99179	-2.61166
С	-0.31271	1.95638	-0.11841	н	3.4521	3.14249	-1.32947
0	0.00304	3.13876	-0.02497	н	4.13709	1.49083	-1.36393
С	1.93558	1.22246	-0.90317	н	-2.01746	-1.12428	0.31218
С	2.97543	0.36472	-0.20605	н	-2.19362	-3.57946	0.11477
С	2.83401	-0.00229	1.13859	н	-4.281	-4.62381	-0.74936
С	3.82395	-0.75146	1.77422	н	-6.19332	-3.18104	-1.42191
С	4.96819	-1.14316	1.07591	н	-6.01332	-0.71732	-1.23063
С	5.11451	-0.7851	-0.26507	н	-4.85671	1.21978	-0.6049
С	4.12075	-0.04	-0.90127	н	-3.17519	1.13286	-1.11204
ο	-2.94393	-2.0034	-0.11688	н	-3.97869	0.90444	1.73558
С	-4.14135	-2.74683	0.06443	н	-2.56826	3.62435	-0.46712
н	-4.85239	2.01998	1.05794	н	1.36785	3.64691	-2.18334
н	-5.04139	-0.40672	0.69189	н	-0.90331	4.58802	-2.04754
н	-2.66149	3.19665	0.69759	С	3.76064	-0.62467	0.80525
н	2.08794	2.28485	-0.67865	С	5.15305	-0.71383	0.84998
н	2.02455	1.10044	-1.99141	С	5.83679	-1.6189	0.03581
н	1.94019	0.29318	1.68036	С	5.11385	-2.44235	-0.82976
н	3.70089	-1.03029	2.81746	С	3.042	-1.45031	-0.06325
Н	5.738	-1.72777	1.57248	S	1.24639	-1.46619	-0.20687

Optimized geometry and co-ordinates for $\mathbf{1n}$ and $\mathbf{2n}$

Н	5.99787	-1.09152	-0.81916	C	3.24599	2.08876	-1.55703
н	4.23563	0.23129	-1.94873	0	2.24467	1.56024	-0.698
н	-3.89015	-3.78128	-0.17473	С	-2.93014	-1.57043	-0.07581
н	-4.49465	-2.68737	1.10176	С	-3.03289	-2.95652	-0.18236
н	-4.93316	-2.39797	-0.61064	С	-4.20439	-3.54268	-0.66942
				С	-5.27599	-2.73406	-1.04767
				С	-5.17398	-1.34533	-0.93832
				С	-4.00274	-0.75209	-0.45662
				С	-3.88822	0.76125	-0.37127
				0	-1.81038	1.58423	2.47776
				С	-2.17342	1.59661	1.30359
				Ν	-3.44257	1.23606	0.93944
				Se	0.46042	-0.00066	1.26275
				С	-1.57835	3.18802	-0.55856
				С	-1.2317	2.08475	0.23219
				С	0.05075	1.52271	0.14661
				С	1.00371	2.10534	-0.71303
				С	0.64449	3.19923	-1.51192

Optimized geometry and co-ordinates for 3b

	Comp	ound 3b	
С	-0.89083	-1.78421	2.74265
С	0.28839	-2.46507	3.02904
С	1.15801	-2.87731	2.01046
С	0.81239	-2.58424	0.67845
с	-0.36957	-1.87932	0.3793
С	-1.22128	-1.49491	1.41988

Se	2.06757	-3.06997	-0.70213
Ν	-0.82764	-0.41869	-1.59844
С	-0.81338	-1.67192	-1.05154
0	-1.19985	-2.63263	-1.7207
С	-0.32692	0.88509	-1.12499
С	1.18788	0.6976	-0.67406
Ν	2.10466	1.31051	-1.67749
С	3.36378	0.536	-1.6424
С	3.92961	0.46435	-0.19234
С	2.42788	2.7116	-1.3699
С	3.13776	2.87704	0.02506
С	4.50335	3.49667	-0.09345
С	4.90072	4.6016	0.54031
С	3.1403	1.465	0.68008
Н	3.57834	1.5298	1.68212
С	1.67095	0.99635	0.77458
С	-1.31044	1.70798	-0.2583
С	-2.71836	1.45248	-0.05879
С	-3.47039	0.38074	-0.63269
С	-4.81343	0.20815	-0.3551
0	-5.5837	-0.79238	-0.86181
С	-4.98583	-1.72776	-1.75242
С	-5.49772	1.1032	0.50891
С	-4.81985	2.16044	1.04846
С	-3.43893	2.38203	0.77638
Ν	-2.89615	3.50073	1.32809
С	-1.63478	3.74648	1.04899
С	-0.82717	2.89327	0.27242
Н	-1.55526	-1.47904	3.54585
Н	0.54393	-2.69415	4.06062
Н	-2.14579	-0.97571	1.19226
Н	1.01878	-3.46771	-1.67429
н	-1.12878	-0.45504	-2.56583
н	-0.22944	1.45779	-2.05369
Н	1.35323	-0.36655	-0.82063

н	3.16285	-0.47046	-2.02361
н	4.06862	1.01888	-2.32887
н	5.00401	0.67785	-0.16653
Н	3.79501	-0.55037	0.2047
Н	3.07226	3.0842	-2.17433
Н	1.5104	3.30757	-1.41695
Н	2.5331	3.53319	0.66628
Н	5.20514	2.99682	-0.76359
Н	5.90023	5.00857	0.41204
Н	4.23927	5.14375	1.21376
н	1.07473	1.75025	1.2934
н	1.59838	0.08286	1.37403
н	-2.98706	-0.30663	-1.30238
н	-5.77151	-2.44305	-2.00087
н	-4.63842	-1.23595	-2.67038
н	-4.14278	-2.25365	-1.28859
Н	-6.55085	0.93072	0.70713
н	-5.31072	2.88072	1.69487
Н	-1.20801	4.65962	1.46299
Н	0.19686	3.1947	0.10052
С	2.42469	-3.62521	2.35308
Н	2.48623	-4.56523	1.79279
н	3.32336	-3.04816	2.09967
н	2.46769	-3.8509	3.42258

Table 1.Summary of DFT calculations on **1b**, **1c**, **1e** at the B3LYP/6-31G(d) level and ⁷⁷Se NMR chemical shift calculated at the GIAO-B3LYP/6-311+G(d,p)//B3LYP/6-311+G(d,p) level along with experimental ⁷⁷Se NMR chemical shifts.

Isoselenazolone	r _{Se-N [Å]}	⁷⁷ Se δ[ppm] ^a	⁷⁷ Se δ[ppm] ^b	
1b	1.883 (1.855)	908.3	851.0	
1c	1.881 (1.863)	972.7	858.1	
1e	1.878 (1.859)	847.1	858.8	

^[a] Theoretical ⁷⁷Se NMR value referenced to the peak for Me₂Se. ^[b] Experimental ⁷⁷Se NMR value. The experimental values for Se-N bond length are given in parentheses.

Table 2.⁷⁷Se NMR chemical shift calculated at the GIAO-B3LYP/6-311+G(d,p)//B3LYP/6-311+G(d,p) level along with experimental ⁷⁷Se NMR chemical shifts for selenenyl sulphides **2b**, **2c** and **2e**.

Selenenylsulfide	⁷⁷ Se δ[ppm] ^a	⁷⁷ Se δ[ppm] ^b
2b	686.4	-
2c	761.5	591.3
2e	648.7	495.0

^[a] Theoretical ⁷⁷Se NMR value referenced to the peak for Me₂Se. ^[b] Experimental ⁷⁷Se NMR value.

Procedure for thiol-peroxidase like activity

The thiol-peroxidase like activity was followed spectrophotometrically. The test mixture contained benzenethiol (1mM), organoselenium catalyst (0.01mM) and hydrogen peroxide (3.75mM). Reaction of model compound with PhSH and H_2O_2 were studied in methanol by following the appearance of diphenyl disulfide absorption at 305nm at 25 °C. Each initial reduction rate was measured at least three times by using 1.24mM⁻¹cm⁻¹ as the molar extinction coefficient for PhSSPh. Initial reduction rate for most active compounds **1b** was measured fifteen times.

Table 3.Reduction rates (v_0) obtained at the concentrations of catalyst 1b , PhSH
and H_2O_2 were fixed to 0.01 mM, 1.0 mM and 3.75 mM respectively.

Time	Absorbance	Ct	С	1/C	V	1/V
(Sec)		(mM)	(mM)	(mM^{-1})	$(\mathrm{mM.min}^{-1})$	(mM ⁻¹ .min)
0	0.05766	0.907		-	-	-
5	0.0862	0.860967742	0.883983871	1.13124236	0.276193548	3.620649381
10	0.11315	0.8175	0.839233871	1.191562965	0.260806452	3.834260977
15	0.13875	0.776209677	0.796854839	1.254933711	0.247741935	4.036458333
20	0.16337	0.7365	0.756354839	1.322130763	0.238258065	4.197129705
25	0.18714	0.69816129	0.717330645	1.394057269	0.230032258	4.347216379
30	0.20942	0.662225806	0.680193548	1.470169781	0.215612903	4.637941352
35	0.23067	0.627951613	0.64508871	1.550174395	0.205645161	4.862745098
40	0.25043	0.596080645	0.612016129	1.633943866	0.191225806	5.229419703
45	0.26929	0.56566129	0.580870968	1.721552729	0.182516129	5.478967833
50	0.28692	0.537225806	0.551443548	1.81342225	0.170612903	5.861221403
55	0.3031	0.511129032	0.524177419	1.907751008	0.156580645	6.386485373
60	0.31795	0.487177419	0.499153226	2.003392843	0.143709677	6.958473625

Figure S125. Lineweaver-Burk plots obtained for **1b**. The initial concentration of H_2O_2 was fixed to 3.75 mM. The initial PhSH concentration was 1 mM. (See Table 3)

Best Fit: 3.62461x + (-0.60177)

Adj-R-Square = 0.98015

 $v_o = 330.8147 \ \mu Mmin^{-1}$

Table 4.Reduction rates (v_o) obtained at the concentrations of catalyst **1b**, PhSH and H₂O₂werefixed to 0.01 mM, 1.0 mM and 3.75 mM respectively.

Time	Absorbance	Ct	С	1/C	V	1/V
(Sec)		(mM)	(mM)	(mM^{-1})	(mM.min ⁻¹)	(mM ⁻¹ .min)
0	0.07556	0.878129032		-	-	-
5	0.10364	0.83283871	0.855483871	1.16892911	0.271741935	3.679962013
10	0.13033	0.789790323	0.811314516	1.232567617	0.258290323	3.871612339
15	0.1559	0.748548387	0.769169355	1.300103799	0.247451613	4.041194108
20	0.18032	0.70916129	0.728854839	1.372015313	0.236322581	4.231504232
25	0.20355	0.671693548	0.690427419	1.448378167	0.224806452	4.448270914
30	0.22597	0.635532258	0.653612903	1.529957556	0.216967742	4.608980077
35	0.24709	0.601467742	0.6185	1.616814875	0.204387097	4.892676768
40	0.26712	0.56916129	0.585314516	1.70848317	0.19383871	5.158928274
45	0.28595	0.538790323	0.553975806	1.805132983	0.182225806	5.487696938
50	0.30342	0.510612903	0.524701613	1.905845104	0.169064516	5.914901736
55	0.31977	0.484241935	0.497427419	2.010343542	0.158225806	6.320081549
60	0.33462	0.460290323	0.472266129	2.11745018	0.143709677	6.958473625

Figure S126. Lineweaver-Burk plots obtained for **1b**. The initial concentration of H_2O_2 was fixed to 3.75 mM. The initial PhSH concentration was 1 mM. (See Table 4)

Best Fit: 3.26531x + (-0.26101)

Adj-R-Square = 0.9807

 $v_{\rm o} = 332.8562 \mu Mmin^{-1}$

Table 5.Reduction rates (v_o) obtained at the concentrations of catalyst **1b**, PhSH and H₂O₂werefixed to 0.01 mM, 1.0 mM and 3.75 mM respectively.

Time	Absorbance	Ct	С	1/C	V	1/V
(Sec)		(mM)	(mM)	(mM^{-1})	(mM.min ⁻¹)	(mM ⁻¹ .min)
0	0.02114	0.965903226		-	-	-
5	0.05047	0.918596774	0.94225	1.061289467	0.28383871	3.523127628
10	0.07801	0.874177419	0.896387097	1.115589463	0.266516129	3.752118131
15	0.10441	0.831596774	0.852887097	1.172488133	0.255483871	3.914141414
20	0.129	0.791935484	0.811766129	1.231881898	0.237967742	4.202250237
25	0.15296	0.753290323	0.772612903	1.294309215	0.231870968	4.312743461
30	0.17687	0.714725806	0.734008065	1.362382852	0.231387097	4.321762164
35	0.19834	0.680096774	0.69741129	1.43387412	0.207774194	4.812917249
40	0.21841	0.647725806	0.66391129	1.506225326	0.194225806	5.148646404
45	0.23727	0.617306452	0.632516129	1.580987352	0.182516129	5.478967833
50	0.25478	0.589064516	0.603185484	1.657864831	0.169451613	5.901389682
55	0.27048	0.563741935	0.576403226	1.734896606	0.151935484	6.581740977
60	0.28499	0.54033871	0.552040323	1.811461879	0.140419355	7.121525385

Figure S127.Lineweaver-Burk plots obtained for **1b**.The initial concentration of H_2O_2 was fixed to 3.75 mM. The initial PhSH concentration was 1 mM. (See Table 5)

Best Fit: 4.53264x + (-1.48475)

Adj-R-Square = 0.95732

 $v_{o} = 328.0960 \mu Mmin^{-1}$

Table 6.Reduction rates (v_o) obtained at the concentrations of catalyst **1b**, PhSH and H₂O₂werefixed to 0.01 mM, 1.0 mM and 3.75 mM respectively.

Time	Absorbance	Ct	С	1/C	V	1/V
(Sec)		(mM)	(mM)	(mM^{-1})	(mM.min ⁻¹)	(mM ⁻¹ .min)
0	0.06562	0.89416129		-	-	-
5	0.093299	0.849517742	0.871839516	1.147000086	0.26786129	3.733275528
10	0.11973	0.806887097	0.828202419	1.20743429	0.255783871	3.909550654
15	0.14486	0.766354839	0.786620968	1.271260291	0.243193548	4.111951187
20	0.16929	0.726951613	0.746653226	1.339309823	0.236419355	4.229772138
25	0.19262	0.689322581	0.708137097	1.412155929	0.225774194	4.429204172
30	0.2148	0.653548387	0.671435484	1.489346369	0.214645161	4.658851818
35	0.23582	0.619645161	0.636596774	1.570853075	0.203419355	4.915953061
40	0.25601	0.587080645	0.603362903	1.657377334	0.195387097	5.118045237
45	0.27481	0.556758065	0.571919355	1.748498266	0.181935484	5.496453901
50	0.29245	0.528306452	0.542532258	1.843208372	0.170709677	5.857898715
55	0.30893	0.501725806	0.515016129	1.941686762	0.159483871	6.270226537
60	0.32407	0.477306452	0.489516129	2.042833608	0.146516129	6.825187142

Figure S128.Lineweaver-Burk plots obtained for **1b**.The initial concentration of H_2O_2 was fixed to 3.75 mM. The initial PhSH concentration was 1 mM. (See Table 6)

Best Fit: 3.29305x + (-0.16066)

Adj-R-Square = 0.98294

 $v_{o} = 319.245 \mu Mmin^{-1}$

Table 7.Reduction rates (v_0) obtained at the concentrations of catalyst 1b , PhSH
and H ₂ O ₂ werefixed to 0.01 mM, 1.0 mM and 3.75 mM respectively.

Time	Absorbance	Ct	С	1/C	V	1/V
(Sec)		(mM)	(mM)	(mM^{-1})	(mM.min ⁻¹)	(mM ⁻¹ .min)
0	0.05139	0.917112903		-	-	-
5	0.078299	0.87371129	0.895412097	1.116804211	0.260409677	3.840103063
10	0.10399	0.832274194	0.852992742	1.172342918	0.248622581	4.022160809
15	0.12847	0.792790323	0.812532258	1.230720368	0.236903226	4.221132898
20	0.15221	0.7545	0.773645161	1.292582246	0.229741935	4.352709913
25	0.17459	0.718403226	0.736451613	1.357862462	0.216580645	4.617217754
30	0.19589	0.684048387	0.701225806	1.426074156	0.206129032	4.851330203
35	0.2162	0.651290323	0.667669355	1.49774734	0.196548387	5.087805679
40	0.23525	0.620564516	0.635927419	1.572506499	0.184354839	5.42432196
45	0.25306	0.59183871	0.606201613	1.649616198	0.172354839	5.801983904
50	0.27004	0.564451613	0.578145161	1.72966941	0.164322581	6.085590891
55	0.28538	0.539709677	0.552080645	1.811329574	0.148451613	6.736201651
60	0.29983	0.516403226	0.528056452	1.893736923	0.13983871	7.151095732

Figure S129.Lineweaver-Burk plots obtained for **1b**.The initial concentration of H_2O_2 was fixed to 3.75 mM. The initial PhSH concentration was 1 mM. (See Table 7)

Best Fit: 4.16162x + (-0.97343)

Adj-R-Square = 0.97997

 $v_{o} = 313.666 \mu Mmin^{-1}$

Figure S130.Graph representing linear dependency between initial reduction rates (v_0) and concentration of catalyst **1b**. Concentration of catalyst varied from 0.001mM to 0.009mM

Chart1. Reduction rates (v_0) obtained for various isoselenazolone catalysts (0.01mM), PhSH (1.0 mM) and H₂O₂(3.7mM) respectively.

-R

R, Benz 0.4(0.03)

R₁, CH₃, R₂, 1-Naphth 4.3(0.02) 3.0 (0.1)

R, H 10.8(1.1) R, CH₃ 9.9(1.5)

-R

R nBu 2.9(0.1) R Benz 5.7(0.4) R Cyc-hex 4.5(0.2)

R Ph 21.7(2.8) R Benz 0.5(0.05)

Ρh

X, OH, n, 2, 28.1(2.0) X = NMe₂, n, 1, 0.2(0.03)

Procedure for growth sensitivity and growth curve assay

Figure S131 Growth sensitivity assay

To investigate the biological effect of ebselen and compounds **1b-1d**, **1n** and **1r** on the growth of yeast cells, growth assay was carried out by spot tests and growth curve assays. For spot test, serial dilutions of mid-log phase cultures of wild-type yeast strain W1588-4C (MATa ade2-1 can1-100 his3-11, 15 leu2-3, 112 trp1-1, ura3-1, RAD5+)⁵ was made in autoclaved distilled water. Three microliter of each undiluted and 10-fold serially diluted cultures were spotted onto solid SCA (Synthetic complete + 2% Agar) plates containing DMSO (control) or different concentrations of compounds (2.5, 5.0, 7.5, 10 μ M). All plates were incubated at 30°C and growth of the yeast cells was recorded after 72 hours by scanning SCA (Synthetic complete + 2% Agar) plates using a HP scanner. Isoselenazolones bearing quinine moiety **1b-1d** showed better cell growth than ebselen **1a** while nitro-substituted isoselenazolone **1r** showed minimum cell growth. Results obtained from growth sensitivity assay were further validated with most active compound **1b** by growth curve analysis and results were compared with that of ebselen **1a**.

Growth curve analysis was performed for compounds **1a** and **1b**. Yeast cells were treated with increasing dose of compounds **1a** and **1b** (10, 20 and 30 μ M) in liquid SC media. Growth was monitored at OD_{600nm} (1 OD₆₀₀ unit represents 10⁷ cells/mL) for 11 hours at regular interval of 1hour by automated micro- plate spectrophotometer (Eon Biotek). Results obtained from spectrophotometer were processed using Gen5 2.03lnk software and growth

curve was generated.⁶ Growth curve analysis was performed separately in three independent biological repeats and each time experiment was conducted in triplicate to ensure the reproducibility of the results.

The doubling time of WT yeast cells in presence or absence of compound **1a** or **1b** (30 μ M) were calculated using the formula: Doubling time = t/g [Where, t = the time cultured; g = [log10 (N_t/N₀)]/0.3; N₀ = Number of cells or OD₆₀₀ at start, N_t =Number of cells or OD₆₀₀ at the end].⁷

OD₆₀₀ values taken at 600 nm

DMSO

Time	Fi	rst Repe	at	Sec	ond Rep	eat	Th	ird Repe	eat	Average	Standard
(hr)											Deviation
0	0.028	0.026	0.024	0.025	0.029	0.022	0.023	0.023	0.026	0.025111	0.002369
1	0.031	0.028	0.028	0.026	0.031	0.024	0.025	0.024	0.028	0.027222	0.002682
2	0.037	0.032	0.033	0.03	0.034	0.028	0.028	0.029	0.033	0.031556	0.003046
3	0.051	0.044	0.044	0.042	0.048	0.038	0.039	0.039	0.046	0.043444	0.004419
4	0.08	0.067	0.067	0.064	0.071	0.057	0.06	0.06	0.07	0.066222	0.007032
5	0.127	0.107	0.105	0.101	0.114	0.091	0.096	0.094	0.113	0.105333	0.011435
6	0.208	0.176	0.17	0.166	0.188	0.15	0.16	0.155	0.189	0.173556	0.018682
7	0.33	0.285	0.276	0.267	0.3	0.244	0.261	0.251	0.314	0.280889	0.029062
8	0.495	0.437	0.423	0.413	0.454	0.38	0.404	0.391	0.502	0.433222	0.043266
9	0.675	0.613	0.597	0.583	0.631	0.546	0.573	0.56	0.715	0.610333	0.05541
10	0.833	0.776	0.76	0.745	0.791	0.708	0.736	0.723	0.875	0.771889	0.054052
11	0.977	0.921	0.907	0.892	0.937	0.854	0.882	0.869	1.006	0.916111	0.050191

10 μ M dose of 1a

Time	Fi	rst Repe	at	Sec	ond Rep	oeat	Th	ird Repe	eat	Average	Standard
(hr)											Deviation
0	0.033	0.032	0.031	0.032	0.032	0.029	0.029	0.028	0.026	0.030222	0.002333
1	0.035	0.032	0.032	0.032	0.032	0.03	0.029	0.028	0.027	0.030778	0.002489
2	0.037	0.034	0.033	0.034	0.034	0.032	0.03	0.03	0.028	0.032444	0.002744
3	0.044	0.041	0.04	0.041	0.04	0.038	0.037	0.036	0.034	0.039	0.003041
4	0.059	0.056	0.054	0.055	0.052	0.051	0.048	0.048	0.045	0.052	0.004472
5	0.085	0.08	0.078	0.079	0.072	0.072	0.069	0.069	0.065	0.074333	0.006481
6	0.13	0.124	0.121	0.12	0.109	0.111	0.106	0.105	0.101	0.114111	0.00993
7	0.206	0.196	0.191	0.191	0.171	0.176	0.168	0.166	0.159	0.180444	0.016009
8	0.323	0.31	0.301	0.301	0.269	0.279	0.272	0.262	0.252	0.285444	0.02413
9	0.478	0.463	0.449	0.447	0.407	0.419	0.409	0.395	0.384	0.427889	0.032471
10	0.648	0.63	0.61	0.612	0.564	0.58	0.57	0.55	0.536	0.588889	0.037962

11	0.806	0.8	0.767	0.768	0.714	0.735	0.726	0.7	0.684	0.744444	0.043192

20 μM dose of 1a

ſ

Time	Fi	rst Repe	at	Sec	ond Rep	oeat	Th	ird Repe	eat	Average	Standard
(hr)											Deviation
0	0.039	0.043	0.044	0.044	0.045	0.042	0.047	0.039	0.037	0.042222	0.00327
1	0.04	0.042	0.045	0.044	0.044	0.042	0.047	0.039	0.037	0.042222	0.003153
2	0.04	0.042	0.045	0.044	0.045	0.042	0.048	0.038	0.037	0.042333	0.003571
3	0.046	0.046	0.049	0.048	0.048	0.045	0.051	0.041	0.04	0.046	0.003606
4	0.055	0.053	0.056	0.056	0.056	0.052	0.058	0.048	0.047	0.053444	0.003812
5	0.066	0.067	0.07	0.069	0.07	0.065	0.072	0.06	0.059	0.066444	0.004503
6	0.09	0.091	0.095	0.092	0.095	0.087	0.095	0.081	0.081	0.089667	0.00559
7	0.133	0.133	0.14	0.133	0.14	0.128	0.137	0.118	0.117	0.131	0.008544
8	0.205	0.207	0.216	0.201	0.212	0.197	0.209	0.181	0.179	0.200778	0.013046
9	0.317	0.319	0.331	0.307	0.33	0.305	0.321	0.282	0.281	0.310333	0.01854
10	0.466	0.472	0.488	0.452	0.484	0.454	0.472	0.422	0.42	0.458889	0.024538
11	0.625	0.642	0.657	0.614	0.653	0.62	0.638	0.584	0.578	0.623444	0.028018

$30\,\mu M$ dose of 1a

Time	Fi	rst Repe	at	Sec	ond Rep	eat	Th	ird Repe	eat	Average	Standard
(hr)											Deviation
0	0.047	0.052	0.046	0.048	0.057	0.063	0.051	0.052	0.047	0.051444	0.005548
1	0.049	0.056	0.047	0.048	0.054	0.061	0.052	0.051	0.048	0.051778	0.004577
2	0.049	0.056	0.049	0.048	0.057	0.06	0.053	0.051	0.048	0.052333	0.004416
3	0.05	0.057	0.048	0.049	0.055	0.062	0.054	0.051	0.049	0.052778	0.004631
4	0.052	0.059	0.051	0.051	0.057	0.064	0.056	0.054	0.051	0.055	0.004472
5	0.056	0.063	0.053	0.055	0.061	0.067	0.06	0.057	0.054	0.058444	0.00464
6	0.063	0.069	0.059	0.061	0.068	0.075	0.067	0.064	0.061	0.065222	0.005019
7	0.074	0.082	0.07	0.072	0.08	0.088	0.078	0.074	0.071	0.076556	0.00594
8	0.093	0.101	0.088	0.093	0.101	0.11	0.097	0.093	0.089	0.096111	0.006954
9	0.126	0.135	0.12	0.122	0.134	0.139	0.131	0.125	0.12	0.128	0.007
10	0.181	0.193	0.168	0.174	0.191	0.197	0.185	0.177	0.171	0.181889	0.010265
11	0.267	0.281	0.242	0.256	0.279	0.286	0.271	0.259	0.252	0.265889	0.014752

10 μM dose of 1b

Time	Fi	rst Repe	at	Sec	ond Rep	eat	Th	ird Repe	eat	Average	Standard
(hr)											Deviation
0	0.027	0.027	0.025	0.028	0.024	0.025	0.025	0.025	0.024	0.025556	0.001424
1	0.029	0.029	0.027	0.03	0.026	0.027	0.028	0.027	0.025	0.027556	0.00159
2	0.033	0.033	0.031	0.033	0.03	0.03	0.032	0.03	0.028	0.031111	0.001764
3	0.045	0.045	0.043	0.045	0.041	0.042	0.045	0.041	0.039	0.042889	0.002261
4	0.068	0.067	0.065	0.068	0.062	0.063	0.068	0.063	0.06	0.064889	0.003018
5	0.109	0.108	0.105	0.108	0.101	0.102	0.108	0.1	0.096	0.104111	0.004567
6	0.181	0.177	0.174	0.179	0.165	0.171	0.179	0.165	0.158	0.172111	0.007928
7	0.29	0.288	0.284	0.288	0.27	0.277	0.289	0.268	0.258	0.279111	0.011483

8	0.442	0.442	0.437	0.439	0.415	0.428	0.438	0.413	0.402	0.428444	0.014842
9	0.615	0.617	0.611	0.613	0.589	0.6	0.61	0.585	0.573	0.601444	0.015653
10	0.774	0.78	0.774	0.772	0.751	0.763	0.769	0.747	0.734	0.762667	0.015362
11	0.918	0.928	0.92	0.918	0.897	0.91	0.915	0.892	0.878	0.908444	0.016094

$20\,\mu\text{M}$ dose of 1b

Time	Fi	rst Repe	at	Sec	ond Rep	eat	Th	ird Repe	eat	Average	Standard
(hr)											Deviation
0	0.034	0.024	0.028	0.03	0.027	0.026	0.028	0.024	0.022	0.027	0.003606
1	0.036	0.026	0.029	0.031	0.028	0.028	0.029	0.025	0.024	0.028444	0.003575
2	0.042	0.03	0.034	0.035	0.032	0.031	0.032	0.028	0.028	0.032444	0.004304
3	0.053	0.041	0.045	0.048	0.044	0.042	0.042	0.038	0.039	0.043556	0.004667
4	0.075	0.064	0.068	0.071	0.067	0.063	0.061	0.058	0.06	0.065222	0.005518
5	0.113	0.1	0.109	0.112	0.106	0.1	0.096	0.091	0.094	0.102333	0.008016
6	0.18	0.166	0.179	0.184	0.174	0.165	0.156	0.151	0.156	0.167889	0.011973
7	0.285	0.268	0.289	0.295	0.281	0.266	0.254	0.246	0.255	0.271	0.017321
8	0.435	0.417	0.442	0.448	0.43	0.41	0.394	0.384	0.393	0.417	0.023243
9	0.608	0.59	0.619	0.623	0.604	0.58	0.56	0.551	0.563	0.588667	0.026655
10	0.771	0.752	0.779	0.788	0.765	0.744	0.722	0.713	0.722	0.750667	0.027212

$30\,\mu\text{M}$ dose of 1b

Time	Fi	rst Repe	at	Sec	ond Rep	eat	Th	ird Repe	eat	Average	Standard
(hr)											Deviation
0	0.022	0.018	0.021	0.021	0.024	0.025	0.02	0.022	0.021	0.021556	0.002068
1	0.024	0.02	0.023	0.024	0.025	0.027	0.023	0.025	0.023	0.023778	0.001922
2	0.03	0.024	0.027	0.028	0.029	0.032	0.026	0.029	0.026	0.027889	0.002421
3	0.04	0.035	0.038	0.038	0.04	0.041	0.037	0.039	0.036	0.038222	0.001986
4	0.059	0.052	0.057	0.059	0.06	0.061	0.056	0.058	0.055	0.057444	0.002789
5	0.094	0.081	0.089	0.093	0.094	0.096	0.088	0.091	0.088	0.090444	0.004558
6	0.157	0.136	0.147	0.153	0.154	0.155	0.146	0.15	0.145	0.149222	0.006515
7	0.256	0.225	0.24	0.249	0.249	0.254	0.24	0.245	0.238	0.244	0.009513
8	0.396	0.356	0.376	0.388	0.386	0.394	0.376	0.381	0.374	0.380778	0.012204
9	0.564	0.52	0.54	0.557	0.554	0.562	0.543	0.55	0.542	0.548	0.013611
10	0.725	0.677	0.7	0.716	0.715	0.722	0.708	0.713	0.702	0.708667	0.014491

Average values calculated from nine independent samples

Time	DMSO	10 µM (1a)	20 µM(1a)	30 µM(1a)	10 µM (1b)	20 µM(1b)	30 µM(1b)
0	0.025111	0.030222	0.042222	0.051444	0.025556	0.027	0.021556
1	0.027222	0.030778	0.042222	0.051778	0.027556	0.028444	0.023778
2	0.031556	0.032444	0.042333	0.052333	0.031111	0.032444	0.027889
3	0.043444	0.039	0.046	0.052778	0.042889	0.043556	0.038222
4	0.066222	0.052	0.053444	0.055	0.064889	0.065222	0.057444
5	0.105333	0.074333	0.066444	0.058444	0.104111	0.102333	0.090444
6	0.173556	0.114111	0.089667	0.065222	0.172111	0.167889	0.149222
7	0.280889	0.180444	0.131	0.076556	0.279111	0.271	0.244

0.2

Time (hours)

8	0.433222	0.285444	0.200778	0.096111	0.428444	0.417	0.380778
9	0.610333	0.427889	0.310333	0.128	0.601444	0.588667	0.548
10	0.771889	0.588889	0.458889	0.181889	0.762667	0.750667	0.708667

-30 μM(1a)

-30 μM(1b)

Calculation of doubling time of yeast cells grown at 30 μM concentration of ebselen (1a) and compound 1b

Samples	1	2	3	4	5	6	7	8	9	Average	Std. dev
DMSO	128.8	128.2	126	128	131.6	125	125.4	126	125.1	127.1222	2.204415
30 uM											
(1a)	263.4	271.2	275.5	273.3	288.1	302.4	273.9	284.9	272.4	278.3444	11.61799
30 uM											
(1b)	124.5	119.7	123.9	123.3	127.8	129.1	121.9	125	123.8	124.3333	2.831519

		Standard
Samples	Average (min)	Deviation
DMSO	127.1222	2.204415
30 uM 1a	278.3444	11.61799
30 uM 1b	124.3333	2.831519

Crystallographic details for compounds 1b, 1c and 1e

Data collection, structure solution and refinement:

Single crystal X-ray diffraction data of all the compounds were collected at 25 °C on a Bruker Apex II D8 Venture diffractometer equipped with CMOS detector. Data reduction and integration were performed by SAINT V7.685A12 and absorption corrections and scaling was done using SADABS. All the crystal structures were solved by direct methods using SIR 92 and refined by the full matrix least squares method using SHELXL97 present in the program suite WinGX. *ORTEP* of all the compounds were generated using ORTEP32 and molecular diagrams were generated using Mercury software. The non-hydrogen atoms were refined anisotropically and the hydrogen atoms bonded to C and N atoms were positioned geometrically and refined using a riding model. **Table 8-10** lists the crystallographic and refinement data of **1b**, **1c** and **1e** respectively.

Crystallographic modelling of disorder:

The ethenyl group at quinine moiety on compounds **1b** and **1c** displays disorder at two positions. The associated disorders were refined using PART command in SHELXL97 with occupancy ratio of 0.72(1): 0.28(1) and 0.87 (1): 0.13(1) for compounds **1b** and **1c** respectively. The thermal parameters of involved atoms were constrained to be equal by EADP command in SHELXL 97. The distance and angle restrain DFIX, DANG or SADI were applied in order to model the associated disorder in the ethenyl group. Crystallization of **1c** from ethanol at room temperature produces its solvates with one ethanol and one water molecules present in the asymmetric unit. The ethanol molecule found to disorder at two orientations with occupancy ratio 0.73(1): 0.27 (1) and was modelled with PART command in SHELXL97. The thermal parameters of involved atoms were constrained to be equal by
EADP command in SHELXL 97. The hydrogen atoms for water molecule and oxygen atom

of ethanol molecule were located from the difference fourier.

DATA	(1b)
Molecular Formula	$C_{28}H_{29}N_3O_2Se$
Molecular weight	518.50
Wavelength	0.71073
CCDC No.	930741
Solvent system	Ethanol
Crystal System	Orthorhombic
Space Group	$P2_{1}2_{1}2_{1}$
a (Å)	9.2900(5)
b (Å)	16.2681(10)
c (Å)	16.8894(10)
α (°)	90
β (⁰)	90
γ (⁰)	90
Volume (Å ³)	2552.5(3)
Ζ	4
$\rho (g/cm^3)$	1.349
$\mu (\mathrm{mm}^{-1})$	1.500
F (000)	1072
$\theta_{\min, \max}$	2.41, 24.09
h _{min,max} ;k _{min,max} ; l _{min,max}	-10, 10; -17, 15; -
	19, 19
Treatment of hydrogen	Fixed
No. of reflections.	16444
No. unique/	3449/3054
observedreflections.	
No. of parameters	316
R_all, R_obs	0.0361, 0.0275
wR ₂ _all, wR ₂ _obs	0.0616, 0.0590
$\Delta \rho_{\min,\max}(e \check{A}^{-3})$	-0.148, 0.240
GooF	1.052

Table 8: Crystallographic and Refinement Data for 1b:

Figure 133 (a) *ORTEP* of **1b** drawn with 50% ellipsoidal properties. Hydrogen atoms were omitted for clarity. (b)Molecular diagram of **1b** displaying atom numbering scheme.

DATA	(1c)
Molecular Formula	$C_{27}H_{27}N_{3}O_{2}Se \cdot C_{2}$
	$H_6O \cdot H_2O$
Molecular weight	568.56
Wavelength	0.71073
CCDC No.	930742
Solvent system	Ethanol
Crystal System	Monoclinic
Space Group	$P2_1$
a (Å)	9.5877(15)
b (Å)	15.441(2)
c (Å)	10.1760(17)
α (°)	90
β(⁰)	112.072(9)
γ (⁰)	90
Volume (Å ³)	1396.1(4)
Ζ	2
ρ (g/cm ³)	1.352
$\mu (\mathrm{mm}^{-1})$	1.383
F (000)	592
$\theta_{\min, \max}$	2.29, 24.98
h _{min,max} ; k _{min,max} ; l _{min,max}	-8, 11; -18, 18; -
	12, 12
Treatment of hydrogen	Fixed
No. of reflections.	11855
No. unique/	4768/ 3046
observedreflections.	
No. of parameters	363
R_all, R_obs	0.1002, 0.0441
wR_2 all, wR_2 obs	0.0801, 0.0716

Table 9. Crystanographic and Kennement Data for IC:

$\Delta \rho_{\min,\max}(e \text{\AA}^{-3})$	-0.276, 0.576
GooF	0.921

Figure 134. (a) ORTEP of 1c drawn with 50% ellipsoidal properties. Hydrogen atoms were omitted for clarity. (b)Molecular diagram of 1c displaying atom numbering scheme.

DATA	(1e)
Molecular Formula	C ₁₅ H ₁₃ NOSe
Molecular weight	302.22
Wavelength	0.71073
CCDC No.	953729
Solvent system	Dichloromethane
Morphology	Plate
Crystal System	Monoclinic
Space Group	$P2_{1}/c$
a (Å)	10.4368(2)
b (Å)	10.9926(2)
c (Å)	11.5312(2)
α (°)	90
β (⁰)	102.8070(10)
γ (⁰)	90
Volume (Å ³)	1290.03(4)
Ζ	4
ρ (g/cm ³)	1.556
$\mu (\mathrm{mm}^{-1})$	2.897
F (000)	608
$\theta_{\min, \max}$	2.00, 30.65
h _{min,max} ;k _{min,max} ; l _{min,max}	-14, 13; -15, 15; -
	16, 16
Treatment of hydrogen	Fixed
No. of reflections.	14580
No. unique/	3981/3157
observedreflections.	

Table 10: Crystallographic and Refinement Data for 1e:

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is C The Royal Society of Chemistry 2014

No. of parameters	164
R_all, R_obs	0.0395, 0.0271
wR ₂ _all, wR ₂ _obs	0.0749, 0.0693
$\Delta \rho_{\min,\max}(e Å^{-3})$	-0.520, 0.280
GooF	1.021

Figure 135.ORTEP of 1ewith 50% ellipsoidal properties. Hydrogen atoms were omitted for clarity.

Figure S136 ¹H NMR of potassium *tert*-butoxyselenolate

Figure S139⁷⁷Se NMR of potassium *tert*-butoxyselenolate

Reference:

1) S. J. Balkrishna, B. S. Bhakuni, D. Chopra, S. Kumar, Org. Lett., 2010, 12, 5394-5397.

2) S. J. Balkrishna, B. S. Bhakuni, S. Kumar, Tetrahedron, 2011., 67, 9565-9575.

3) C. Cassani, R. –M. Rapún, E. Arceo, F. Bravo, P. Melchiorre, *Nature Protocols.*, 2013, **8**, 325-345.

4) (a) G. Mugesh, A. Panda, H. B. Singh, R. J. Butcher, *Chem. Eur. J.*, 1999, 5, 2035; (b) S. Kumar, K. Kandasamy, H. B. Singh, G. Wolmerhäuser, R. J. Butcher, *Organometallics.*, 2004, 23, 4199; (c) S. Kumar, H. B. Singh, G. Wolmerhäuser, *Organometallics.*, 2006, 25, 382.

5) G. K. Azad, S. J. Balkrishna, S. Narayanan, S. Kumar, R. S. Tomar, *Biochem.Pharmacol.*, 2012, **83**, 296-303.

6) A. A. Hostetter, M. F. Osborn, V. J. DeRose, ACS Chem. Biol., 2012, 7, 218-225.

7) U. Golla, V. Singh, G. K. Azad, P. Singh, N. Verma, P. Mandal, S. Chauhan, R. S. Tomar, *PLoS ONE* 2013, **8**, e64798.