Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2014

Nowakowska et al. Org & Biomol Chemistry, Electronic Supplementary Information (ESI)

Cap analogs containing 6-thioguanosine – reagents for the synthesis of mRNAs selectively photo-crosslinkable with cap-binding biomolecules

Monika Nowakowska,^a Joanna Kowalska,^a Franck Martin,^b Arnaud d'Orchymont,^b

Joanna Zuberek,^a Maciej Lukaszewicz,^a Edward Darzynkiewicz^{a,c} and Jacek

Jemielity^{a,c*}

^aDivision of Biophysics, Institute of Experimental Physics, Faculty of Physics, University

of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland

^bArchitecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Institut de

Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg CEDEX,

France

^cCentre of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland; E-mail: jacekj@biogeo.uw.edu.pl, tel: +48 22 55 40 774, fax.: +48 22 55 40 771

Electronic Supplementary Information (ESI)

List of content

- 1. Figure S1 (page 2)
- 2. Figure S2 (page 3)
- 3. Figure S3 (page 4)
- Characterization of compounds 1, 2a, 2b, 3 and 4: RP HPLC profiles, HRMS, and ¹H and ³¹P NMR spectra recorded in D₂O at 25 °C.

Compound 1 (page 5)

Compound 2a (page 8)

Compound **2b** (page 11)

Figure S1. Electrophoretic mobility of short (6 nt) transcripts capped *in vitro* with indicated dinucleotide cap analogs. RNA transcripts were synthesized on a synthetic dsDNA template (28 bp), where the SP6 promoter sequence is directly followed by a GCCCC sequence, which undergoes transcription to RNA. A typical *in vitro* transcription reaction mixture (25 μl) contained: SP6 transcription buffer (Frementas) 3.4 μM DNA template, 1.2 U/μl SP6 RNA polymerase, 2 U/μl RiboLock Ribonuclease Inhibitor (Fermentas), 2 mM CTP, 1 mM dinucleotide cap analog and either 0.2 mM GTP (5:1 molar ratio of cap analog to GTP; lanes 1-9) or 0.1 mM GTP (10:1 cap to GTP; lanes 10, 11 and 12). The reaction was incubated at 37 °C for 60 minutes. Resultant short RNA transcripts (5 and 6 nucleotides in length) were separated on 20% polyacrylamide gel (19:1) with 7 M urea and directly after electrophoresis RNA transcripts were visualised by UV shadowing. The black arrow indicates position of a non-capped (GTP initiated) transcript.

Lane 1: pppGCCCC Lane 2: m⁷GpppGCCCC

Lane 3: iPr-m⁷pppGCCCC (Warminski et.al. 2013)

Lane 4: iPr-m⁷ppspGCCCC (D1) (*Warminski et.al.* 2013)

Lane 5: iPr-m⁷ppspGCCCC (D2) (*Warminski et.al. 2013*)

Lane 6: m₂^{7,2'-O}Gpp_SpGCCCC (D2)

Lane 7: m₂^{7,2'-O}Gppp^{6S}GCCCC

Lane 8: m₂^{7,2'-O}Gpp_Sp^{6S}GCCCC (D1)

Lane 9: m₂^{7,2'-O}Gpp_Sp^{6S}GCCCC (D2)

Lane 10: $m_2^{7,2'-O}Gppp^{6S}GCCCC$ (10:1)

Lane 11: $m_2^{7,2'-O}Gpp_{S}p^{6S}GCCCC$ (D1) (10:1)

Lane 12: $m_2^{7,2}$ -OGppsp^{6S}GCCCC (D2) (10:1)

Lane 1: m^7 GpppG-luciferase-polyA₃₁ Lane 2: $m_2^{7,3'-O}$ GpppG-luciferase-polyA₃₁ Lane 3: $m_2^{7,2'-O}$ Gppp 6S G-luciferase-polyA₃₁ Lane 4: $m_2^{7,2'-O}$ Gpps 6S G-luciferase-polyA₃₁ (D1) Lane 5: $m_2^{7,2'-O}$ Gpps 6S G-luciferase-polyA₃₁ (D2) Lane 6: $m_2^{7,2'-O}$ Gpps 6S G-luciferase-polyA₃₁ (D2) Lane 7: iPr-m⁷ppG-luciferase-polyA₃₁ Lane 8: iPr-m⁷ppspG-luciferase-polyA₃₁ (D1) Lane 9: iPr-m⁷ppspG-luciferase-polyA₃₁ (D2) Lane 10: ApppG-luciferase-polyA₃₁ M: RNA size marker (Fermentas)

Figure S3. Representative experiment of translation efficiency in RRL lysate of luciferase mRNA transcripts capped with different cap analogs. Activity of synthesized luciferase is shown as a function of mRNA concentration.

