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S1 Main reactions
We consider the following reactions: The uncatayzed reaction
RSEt + R’NH; — RNHR’ 4+ EtSH, (1)

where R is -COCHj3 and R’ is -CHs, and the catalyzed reaction via trans-thioesterfication,

RSEt + PhS™ <« RSPh+ EtS™ (2)
RSPh + R'NH; — RNHR’ + PhSH. (3)

whereafter the catalyst is regenerated,
PhSH + EtS™ — PhS™ + EtSH. (4)

For future convenience, we will here include (2)+(4),

RSEt + PhSH « RSPh + EtSH. (5)

S2 Assumptions
We assume that all reaction rates are first order in both reactants
r = k[R1][Ro], (6)

where R; and Ry denote the reactants, and that all species are thermally equilibrated at all times, i.e. that their
concentrations are governed by the law of mass action. Further, the reaction rates are assumed to follow Arrhenius
type expressions, i.e.

r = [R1][Ra] x A x eXp(— lf;jf) (7)

where A is a pre-exponential factor, E 4 is the Gibbs free activation energy, kp is Boltzmanns constant and T is the
absolute temperature.
S3 The catalytic speed-up

Considering the high exothermicity of the second step of the catalysed reaction, it is clear that reaction (3) is practically
irreversible and hence that

Tecat = T3 (8)

[RSPh][R’NH,] x As X exp (— EA3) (9)

kgT

where r.,; denotes the overall catalyzed reaction rate.
We are interested in the catalytic speed-up, i.e. the ratio

Tecat _ [RSPh]&eX . EAg—EAl (10)
1 [RSE‘E} A, kgT
Due to the equilibrium of reac. (5) we have that
[RSPh]  [PhSH] AGs
_ N 11
[RSEt]  [EtSH] “ P\ ™~ ksl (11)
where AGs is the Gibbs free energy difference between reactants and products.
Inserting (11) in (10) we obtain
Tcat [PhSH] Aj AGs +Ea3 —Ea;
= —exp| — . (12)
71 [EtSH] A1 kBT



Assuming that [RSPh] is small implies that [EtSH]=[RNHR’|. Further, the only net reaction consuming PhSH is
(4) and we thus have and that

[PhSH] = [PhSH]o — [EtSH] (13)
— [PhSH]o — [RNHR/] (14)
(12) can thus be written as
Tcat - [PhSH]O— [RNHR/] < &ex _ AG5+EA3—EA1 (15)
no [RNHR] A P ksT '

Determination of the pre-exponentials is often attempted based on a solvent cage forming around the reactants and
remains non-trivial and associated with significant uncertainties. However, since reactions (1) and (3) are so similar it
is reasonable to assume that A; ~As.

We insert [PhSH]p=0.1 M, [RNHR’]=0.05M (end concentration), T=298 K, AGs= 2.66 kJ/mol, E43=103.11
kJ/mol, E41=142.52 kJ/mol, and obtain

Teat _ 98 % 10° (16)
1
tableofcontents
Time(min) 0Eq 02Eq 05Eq 1Eq 2Eq
0 0 0 0 0 0
5 0 4 13 23 43
10 0 8 18 32 62
20 0 10 29 45 80
30 0 14 34 54 87
45 0 19 42 58 91
60 0 23 48 67 95
90 0 28 53 72 100
120 0 34 57 78 100

Table S1: Conversion of thioester to amide (in %) as function of time and added PhSH.
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Figure S1: Atoms-In-Molecules analysis of the bond critical points in the transition state structure of reaction 3,
confirming the presence of a bond from an amine proton to the m-electrons of the aromatic ring. The bond critical
points are purple spheres.

S4 Thermodynamics

Species | Epsryr  Ggsryr  Ecospr) | Georrected
EtS™ -477.5490 -477.5095 -476.7115 | -476.6720
PhS™ -629.9907 -629.9303 -628.7378 | -628.6775
RSEt -630.6859 -630.6056 -629.4400 | -629.3597
RSPh -783.1115 -783.0103 -781.4510 | -781.3497
PhSH -630.4495 -630.3804 -629.1972 | -629.1280
EtSH -478.0208  -477.9727  -477.1851 | -477.1370
R’NH, | -95.8666  -95.8252 -95.5562 -95.5148

RNHR’ | -248.5454 -248.4743 -247.8199 | -247.7488

Table S2: Electronic and Gibbs free energies of the most important species. All calculations are using the 6-314+G*
basis set. Unites are Hartree. R is -COCHj3 and R’ is -CHs.

Energy | Epscyr  Gasryp  Eccspr) | Georrected
o 87.77 14858  8LTI 142.52
Eao 87.95 139.91 55.31 107.26
Eas 61.40 123.34 41.17 103.11
AGsy 42.07 42.40 40.2515 40.58
AGy -34.00 -34.50 -37.41 -37.41
AGs 8.07 7.90 2.83 2.66

Table S3: Electronic and Gibbs free energies of the main reactions. All calculations are using the 6-31+G* basis set.
Unites are kJ/mol.

S5 'H-NMR and C-NMR spectra of N-cyclohexyl hippuramide (3)
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