## Supporting Information

# Synthesis of 3-Acyltetramates by Side Chain Manipulation and their Antibacterial Activity 

Song Wei Benjamin Tan ${ }^{\text {a,b }}$, Christina Chai ${ }^{\text {b,c* }}$ and Mark G. Moloney ${ }^{\text {a* }}$

${ }^{\text {a }}$ The Department of Chemistry, Chemistry Research Laboratory, The University of Oxford, 12 Mansfield Road, Oxford. OX1 3TA.
${ }^{\mathrm{b}}$ ICES, 8 Biomedical Grove, Neuros Building, \#07-01/02/03, Singapore 138665;
${ }^{\text {c }}$ Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543
mark.moloney@chem.ox.ac.uk
christina_chai@ices.a-star.edu.sg

## Experimental

## General Procedures

${ }^{1} \mathrm{H}$ NMR spectra were recorded on Brucker DPX400 ( 400 MHz ), DQX400 ( 400 MHz ), AVC500 ( 500 MHz ) spectrometers. Chemical shifts ( $\delta_{H}$ ) are reported in parts per million (ppm) and are referenced to the residual protonated solvent peak. The abbreviations used to describe multiplicity are as follows: s (singlet), br s (broad singlet), d (doublet), dd (double doublet), ddd (double double doublet), t (triplet), dt (double triplet), q (quartet), m (multiplet), at (apparent triplet) and br (broad). Coupling constants ( $J$ ) are given in Hertz (Hz). Two-dimensional COSY (correlation spectroscopy) spectra were obtained on a Brucker DQX400 ( 400 MHz ), AVC500 $(500 \mathrm{MHz})$ spectrometers.
${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker DQX400 spectrometer at 100.6 MHz or Bruker AVC500 spectrometer at 125.8 MHz with proton decoupling. Chemical shifts ( $\delta_{\mathrm{C}}$ ) are reported in parts per million ( ppm ) and are referenced to the residual protonated solvent peak. Assignment was aided by the use of edited HSQC (Heteronuclear Single Quantum Coherence) and HMBC (Heteronuclear multiple-bond correlation spectroscopy). HMBC experiments were performed on a Bruker AVC500 ( 500 MHz ) spectrometer.

Infrared (IR) spectra were recorded on a Bruker Tensor 27 FT-IR spectrometer. Absorption maxima ( $\mathrm{U}_{\max }$ ) are reported in wavenumbers $\left(\mathrm{cm}^{-1}\right)$ and only selected peaks are reported.

Low resolution mass spectra ( $m / z$ ) were recorded on a Fisons Platform spectrometer using electrospray ionisation (ESI) or a Fisons AutoSpec-oaTof spectrometer using electron impact ionisation (EI) or field ionisation (FI). High resolution mass spectra (HRMS) were recorded on a Bruker microTOF (ESI). The $\mathrm{m} / \mathrm{z}$ values of major peaks are reported in Daltons and their intensities given as percentages of the base peaks.

Optical rotations were recorded on a Perkin-Elmer 341 polarimeter at the stated temperature, with concentrations $c$ given in $\mathrm{g} / 100 \mathrm{ml}[a]_{\mathrm{D}}$ values are given in $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$.

Thin layer chromatography (TLC) was performed using Merck aluminium foil backed sheets precoated with 0.2 mm Kieselgel $60 \mathrm{~F}_{254}$. Product spots were visualised by quenching of UV fluorescence ( $\lambda_{\max } 254 \mathrm{~nm}$ ) or by staining with an aqueous solution of $\mathrm{KMnO}_{4}$ followed by heating. Both dips were prepared according to J . Leonard, B. Lygo and G. Procter, "Advanced Practical Organic Chemistry", second edition, Blackie A \& P, 1995. Retention factors $\left(R_{f}\right)$ are quoted to the nearest 0.01 . Flash column chromatography was carried out using Lancaster silica gel 60, 0.040-0.063 mm (230-400 mesh).

Reaction times are recorded in minutes ( min ) and hours ( h ). Temperatures below ambient room temperature were obtained using the following cold baths: $0^{\circ} \mathrm{C}$ ice/water, $-10^{\circ} \mathrm{C}$ to $-15^{\circ} \mathrm{C}$ ice/methanol. All reactions were carried out in oven-dried reaction flasks under inert $\left(\mathrm{N}_{2}\right)$ atmosphere unless otherwise stated. 'Petroleum ether' (PE) refers to that fraction of light petroleum ether boiling at $40-60^{\circ} \mathrm{C}$ and was used as received.

The tetramic acid system is numbered non-systematically as shown below:


Compound 3 (J. Chem Soc, Perkin Trans 1, 1998, 223-236) is a known compound and was synthesised according to the procedures as described in the literature. The respective spectroscopic data was consistent with those reported in the literature.


3
(2R,5R)-1-Aza-2-(tert-butyl)-5-methoxycarbonyl-6,8-dioxo-3-oxabicyclo[3.3.0]-octane, 3
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.09(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 4.81(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.83(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-10), 3.74(\mathrm{~d}, J=21.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-7$ ), $3.62\left(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right.$ '), 3.17 ( $\left.\mathrm{d}, \mathrm{J}=21.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7^{\prime}\right), 0.91\left({ }^{-t} \mathrm{Bu}\right)$;
$\delta_{C}\left(100 \mathrm{Mhz}, \mathrm{CDCl}_{3}\right) 198.29$ (C-6), 172.30 (C-9), 166.84 (C-8), 98.27 (C-2), 80.51 (C-5), 67.89 (C-4), 53.72 (C-10), 44.79 (C-7), $35.59\left(\right.$ - $\left.^{-}{ }^{\mathrm{t}} \mathrm{Bu}\right)$, $24.64\left({ }^{-} \mathrm{Bu}\right)$;

## General Procedure for Synthesis of 3-acyl tetramic acids 5a-d

The respective acid (1.1 eq.) was added dropwise to a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of tetramic acid 3 (1.0 eq.), DMAP ( 1.3 eq.) and DCC ( 1.1 eq.). The reaction mixture was then stirred at r.t. overnight ( $17-20 \mathrm{~h}$ ). The suspension was filtered and the solvents evaporated to give the crude which was purified via flash column chromatography on silica gel. The product thus obtained was washed with a solution of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and $10 \%$ aq. HCl , dried with anhydrous $\mathrm{MgSO}_{4}$, filtered and the solvents removed to afford the 3-acyl tetramic acids 5a-d.
The structures as drawn correspond to the major tautomeric form present.
(2R,5R)-1-Aza-2-(tert-butyl)-5-methoxycarbonyl-6,8-dioxo-7-[(Z)-1-hydroxy-1'-methylvinylidene]-3-oxabicyclo[3.3.0]-octane, 5a

$\mathrm{R}_{f}=0.45$ (10\% MeOH/EtOAc);
$[\alpha]_{\mathrm{D}}^{20}=+66.0\left(\mathrm{c}=1.20\right.$ in $\left.\mathrm{CHCl}_{3}\right)$;
Orange oil;
$\mathrm{v}_{\max } / \mathrm{cm}^{-1}$ (film) 1756 (s, C=O), 1719 (s, C=O), 1660 (s, C=O);
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.83(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 4.81(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.77\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CO}_{2} \mathrm{Me}\right), 3.48(\mathrm{~d}, \mathrm{~J}=8.8$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 2.47$ (s, 3H, H-12), 0.91 (s, 9H, - ${ }^{\mathrm{t}} \mathrm{Bu}$ );
$\delta_{\mathrm{C}}\left(125 \mathrm{Mhz}, \mathrm{CDCl}_{3}\right) 188.39(\mathrm{C}-11), 187.96$ (C-6), 179.84 (C-8), 167.42 (C-9), 101.73 (C-7), $98.20(\mathrm{C}-2)$,

$\mathrm{m} / \mathrm{z}$ (ESI-) 296.09 ([M-H]-, 94\%); HRMS (ESI-) calculated for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{6}$ ([M-H] ${ }^{-}$) 296.1140, found 296.1142.
(2R,5R)-1-Aza-2-(tert-butyl)-5-methoxycarbonyl-6,8-dioxo-7-[(Z)-1-hydroxy-1'-(but-3-ene)vinylidene]-3-oxabicyclo[3.3.0]-octane, 5b

$\mathrm{R}_{f}=0.26$ (EtOAc);
$[\alpha]_{\mathrm{D}}^{20}=+75.9\left(\mathrm{c}=1.28\right.$ in $\left.\mathrm{CHCl}_{3}\right)$;
Orange oil;
$\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$ (film) 1756 (s, C=O), 1718 (s, C=O), 1659 (s, C=O);
$\delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.75-5.85(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-14), 5.05(\mathrm{dt}, J=8,21 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-15), 4.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 4.82(\mathrm{~d}, \mathrm{~J}$ $=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.78\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CO}_{2} \mathrm{Me}\right), 3.49\left(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 2.96$ (apparent $\left.\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-12\right)$, 2.40-2.46 (m, 2H, H-13), 0.92 (s, 9H, - ${ }^{\text {t }} \mathrm{Bu}$ );
$\delta_{\mathrm{C}}\left(100 \mathrm{Mhz}, \mathrm{CDCl}_{3}\right) 191.12(\mathrm{C}-11), 187.72$ (C-6), 180.11 (C-8), 167.40 (C-9), 135.59 (C-4), 116.32 (C-15), 101.33 (C-7), 98.23 (C-2), 78.31 (C-5), $68.18(\mathrm{C}-4), 53.29\left(-\mathrm{CO}_{2} \mathrm{Me}\right), 35.14\left(-\mathrm{C}^{\mathrm{t}} \mathrm{Bu}\right), 32.29(\mathrm{C}-12), 29.47(\mathrm{C}-$ 13), 24.61 ( $-{ }^{-} \mathrm{Bu}$ );
$\mathrm{m} / \mathrm{z}(\mathrm{ESI}-) 336.13$ ([M-H] $]^{-}, 100 \%$ ); HRMS (ESI-) calculated for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{6}\left([\mathrm{M}-\mathrm{H}]^{-}\right) 336.1453$, found 336.1453.
(2R,5R)-1-Aza-2-(tert-butyl)-5-methoxycarbonyl-6,8-dioxo-7-[(Z)-1-hydroxy-1'-(chloromethyl)vinylidene]-3-oxabicyclo[3.3.0]-octane, 5c

$\mathrm{R}_{f}=0.56$ ( $5 \% \mathrm{MeOH} / \mathrm{EtOAc}$ );
$[\alpha]_{\mathrm{D}}^{20}=+49.8\left(\mathrm{c}=1.20\right.$ in $\left.\mathrm{CHCl}_{3}\right)$;
Pale orange oil;
$\mathrm{v}_{\max } / \mathrm{cm}^{-1}$ (film) 1754 (s, C=O), 1720 (s, C=O), 1662 (s, C=O);
$\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 12.05(\mathrm{br}, \mathrm{s}$, enol -OH$), 4.86(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 4.83(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.63(\mathrm{~d}, \mathrm{~J}=$ $13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12$ ), 4.53 (d, $\left.J=13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12^{\prime}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CO}_{2} \mathrm{Me}\right), 3.53$ (d, J = 9.1 Hz, 1H, H-4'), 0.93 (s, 9H, - ${ }^{\mathrm{t} \mathrm{Bu}) \text {; }}$
$\delta_{\mathrm{C}}\left(125 \mathrm{Mhz}, \mathrm{CDCl}_{3}\right) 186.69(\mathrm{C}-6), 181.91$ (C-11), 179.40 (C-8), 166.74 (C-9), 101.53 (C-7), 98.42 (C-2),

$\mathrm{m} / \mathrm{z}$ (ESI-) 330.08 ([M-H], 100\%); HRMS (ESI-) calculated for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{CINO}_{6}$ ([M-H]) 330.0750, found 330.0750 .

## (2R,5R)-1-Aza-2-(tert-butyl)-5-methoxycarbonyl-6,8-dioxo-7-[(Z)-1-hydroxy-1'-(bromomethyl)vinylidene]-3-oxabicyclo[3.3.0]-octane, 5d


$\mathrm{R}_{f}=0.65$ ( $5 \% \mathrm{MeOH} / \mathrm{EtOAc}$ );
$[\alpha]_{\mathrm{D}}^{20}=+39.9\left(\mathrm{c}=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right)$;
Yellow oil;
$\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$ (film) 1753 (s, C=O), 1720 (s, C=O), 1661 (s, C=O);
$\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.88(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 4.84(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.41(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12), 4.35(\mathrm{~d}$, $\left.J=10.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12^{\prime}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CO}_{2} \mathrm{Me}\right), 3.54\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 0.93\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{t}^{\mathrm{t}} \mathrm{Bu}\right)$;
$\delta_{\mathrm{C}}\left(125 \mathrm{Mhz}, \mathrm{CDCl}_{3}\right) 186.95$ (C-6), 181.70 (C-11), 179.11 (C-8), 166.84 (C-9), 101.43 (C-7), 98.40 (C-2), 78.47 (C-5), 68.06 (C-4), 53.48 ( $-\mathrm{CO}_{2} \mathrm{Me}$ ), 35.19 ( $-\mathrm{C}^{\text {t }} \mathrm{t} \mathrm{Bu}$ ), 24.60 ( -tBu ), 23.21 (C-12);
$\mathrm{m} / \mathrm{z}$ (ESI-) 374.00 ([M-H]-, 68\%); HRMS (ESI-) calculated for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{BrNO}_{6}$ ([M-H]) 374.0245, found 374.0242.

## General Procedure for Synthesis of Piperidyl Enamines 7a-c

A solution of $5 \mathbf{a}$, the corresponding aromatic aldehyde ( 0.9 eq .) and piperidine ( 1.5 eq .) in toluene was heated at reflux $\left(120^{\circ} \mathrm{C}\right)$ overnight. The reaction mixture was then cooled to r.t., the solvents evaporated and
the crude was purified via flash column chromatography on silica gel. The product thus obtained was washed with a solution of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and $10 \%$ aq. HCl , dried with anhydrous $\mathrm{MgSO}_{4}$, filtered and the solvents removed to afford the pure product.
(2R,5R)-1-Aza-2-(tert-butyl)-5-methoxycarbonyl-6,8-dioxo-7-[1-piperidyl-3-(E)-(4'-methylphenyl)allylidene]-3-oxabicyclo[3.3.0]-octane, 7a

$\mathrm{R}_{f}=0.31$ ( EtOAc );
$[\alpha]_{\mathrm{D}}^{20}=+321.2\left(\mathrm{c}=1.05\right.$ in $\left.\mathrm{CHCl}_{3}\right)$;
Dark yellow oil;
$\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$ (film) 1745 (s, C=O), 1693 (s, C=O), 1634 (s, C=O);
$\delta_{\mathrm{H}}\left(500 \mathrm{MHz}\right.$, Acetone $\left.-\mathrm{d}_{6}\right) 7.58(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.34(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13), 7.27(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 7.02(\mathrm{~d}, \mathrm{~J}=15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12), 4.79(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 4.69(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.92$ (broad unresolved signal, 1 H , one of $\mathrm{H}-14$ ), $3.74\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{CO}_{2} \mathrm{Me}\right.$ and one of $\mathrm{H}-14$ and $\mathrm{H}-14$ '; base of singlet is broad), 3.57 (d, J = $8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ '), 2.38 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{Me}$ ), 1.96 (broad unresolved signal, 2 H , one of $\mathrm{H}-15$ and one of $\mathrm{H}-15^{\prime}$ ), 1.80 (broad unresolved signal, $4 \mathrm{H}, \mathrm{H}-16$, one of $\mathrm{H}-15$ and one of $\mathrm{H}-15^{\prime}$ ), $0.89\left(\mathrm{~s}, 9 \mathrm{H},-{ }^{-t} \mathrm{Bu}\right)$; $\delta_{C}\left(125 \mathrm{Mhz}\right.$, Acetone- $\mathrm{d}_{6}$ ) 187.27 (C-6), 177.58 (C-8), 170.89 (C-9), 168.09 (C-11), 148.12 (C-13), 141.64, 133.62, 130.42, 129.41 (ArC), 119.73 (C-12), 98.64 (C-2), 95.91 (C-7), 78.29 (C-5), 69.44 (C-4), 56.41 (C-14
 21.46 (Ar-Me);
$m / z(\mathrm{ESI}+) 467.28\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right)$; $\mathrm{HRMS}(\mathrm{ESI}+)$ calculated for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{NaO}_{5}$ 489.2360, found 489.2367.
(2R,5R)-1-Aza-2-(tert-butyl)-5-methoxycarbonyl-6,8-dioxo-7-[1-piperidyl-3-(E)-(4'-methoxyphenyl)allylidene]-3-oxabicyclo[3.3.0]-octane, 7b

$\mathrm{R}_{f}=0.32$ ( EtOAc );
$[\alpha]_{\mathrm{D}}^{20}=+400.9$ (c= 0.96 in $\mathrm{CHCl}_{3}$ );
Orange oil;
$\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$ (film) 1745 (s, C=O), 1693 (s, C=O), 1634 (s, C=O);
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}\right.$, Acetone- $\left.\mathrm{d}_{6}\right) 7.64(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.34(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13), 6.98$ (d, J=8.8 Hz, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ ), $6.93(\mathrm{~d}, \mathrm{~J}=15.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12), 4.78(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 4.69(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.85(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-$ OMe ), $3.79\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CO}_{2} \mathrm{Me}\right.$ ), 3.78-3.80 (broad unresolved signals, $2 \mathrm{H}, \mathrm{H}$ ), $3.57(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ) , 1.93 (broad unresolved signals, 2H), 1.78 (broad unresolved signals, 2 H ), 0.88 (s, $9 \mathrm{H},-\mathrm{t}^{\mathrm{t}} \mathrm{Bu}$ );
$\delta_{C}\left(125 \mathrm{Mhz}\right.$, Acetone- $\mathrm{d}_{6}$ ) 187.26 (C-6), 177.73 (C-8), 170.95 (C-9), 168.28 (C-11), 162.74 (ArC), 148.47 (C13), 131.26, 128.96 ( ArC ), 117.95 (C-12), 115.22 ( ArC ), 98.61 (C-2), 95.57 (C-7), 78.28 (C-5), 69.44 (C-4),
 15), $25.36\left(-{ }^{-} \mathrm{Bu}\right), 24.25(\mathrm{C}-16)$;

HRMS (FI+) calculated for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{6} 482.2417$, found 482.2437.
(2R,5R)-1-Aza-2-(tert-butyl)-5-methoxycarbonyl-6,8-dioxo-7-[1-piperidyl-3-(E)-(4'-chlorophenyl)allylidene]-3-oxabicyclo[3.3.0]-octane, 7c

$\mathrm{R}_{f}=0.30$ (EtOAc);
$[\alpha]_{\mathrm{D}}^{20}=+344.2\left(\mathrm{c}=0.28\right.$ in $\left.\mathrm{CHCl}_{3}\right)$;
Orange oil;
$\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$ (film) 1747 (s, C=O), 1693 (s, C=O), 1637 (s, C=O);
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.46$ (d, J=8.6Hz, 2H, Ar-H), 7.36 (d, J=8.6 Hz, 2H, Ar-H), $7.22(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-13), 6.74$ ( $\mathrm{d}, \mathrm{J}=15.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12$ ), 4.87 ( $\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-2$ ), 4.84 ( $\mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 3.79 ( $\mathrm{s}, 3 \mathrm{H},-\mathrm{CO}_{2} \mathrm{Me}$ ), 3.78-3.80 (broad unresolved signals, $2 \mathrm{H}, \mathrm{H}-14$ or $\mathrm{H}-14$ '), 3.64 (broad unresolved signals, $2 \mathrm{H}, \mathrm{H}-14$ or $\mathrm{H}-14$ '), 3.54 (d, J = $8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ '), 1.80 (broad unresolved signals, $6 \mathrm{H}, \mathrm{H}-15, \mathrm{H}-15{ }^{\prime}, \mathrm{H}-16$ ), 0.91 (s, $9 \mathrm{H},-\mathrm{t}^{\prime} \mathrm{Bu}$ ); $\delta_{\mathrm{C}}\left(100 \mathrm{Mhz}, \mathrm{CDCl}_{3}\right) 187.58$ (C-6), 177.06 (C-8), 169.63 (C-9), 166.57 (C-11), 146.03 (C-13), 136.63, 133.11, 129.52, 129.22 ( $\mathrm{Ar} \underline{\mathrm{C}}$ ), 119.78 (C-12), 98.16 (C-2), 96.39 (C-7), 77.57 (C-5), 68.91 (C-4), 56.10 (C-14 or C$\left.14^{\prime}\right), 52.89\left(-\mathrm{CO}_{2} \mathrm{Me}\right), 52.15\left(\mathrm{C}-14\right.$ or $\left.\mathrm{C}-14^{\prime}\right)$, $35.34\left(-\mathrm{C}-{ }^{-} \mathrm{Bu}\right), 26.61(\mathrm{C}-15), 24.86\left(-{ }^{-} \mathrm{Bu}\right), 23.46(\mathrm{C}-16)$; $\mathrm{m} / \mathrm{z}(\mathrm{ESI}+) 487.23\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right)$; HRMS ( $\mathrm{FI}+$ ) calculated for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{CIN}_{2} \mathrm{O}_{5} 486.1921$, found 486.2147 .
(2R,5R)-1-Aza-2-(tert-butyl)-5-methoxycarbonyl-6,8-dioxo-7-[1-piperidyl-1'-methyl-vinylidene]-3-oxabicyclo[3.3.0]-octane, 6c


A solution of $5 \mathrm{a}(140 \mathrm{mg}, 0.471 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and piperidine ( $68.9 \mu \mathrm{l}, 0.706 \mathrm{mmol}, 1.5 \mathrm{eq}$.) in toluene was heated at reflux $\left(120^{\circ} \mathrm{C}\right)$ overnight. The reaction mixture was then cooled to r.t., the solvents evaporated and the crude material was purified via flash column chromatography (Eluent: EtOAC/PE 10\% to 70\%) on silica gel to afford 6c (140 mg, 82\%).
$\mathrm{R}_{f}=0.19$ (EtOAc);
$[\alpha]_{\mathrm{D}}^{20}=+272.7$ (c= 0.91 in $\mathrm{CHCl}_{3}$ );
Orange oil;
$\mathrm{v}_{\max } / \mathrm{cm}^{-1}$ (film) 1745 (s, C=O), 1693 (s, C=O), 1634 (s, C=O);
$\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.84(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 4.79(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.79\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CO}_{2} \mathrm{Me}\right), 3.69-3.73(\mathrm{~m}, 2 \mathrm{H}$, one of H-13 and one of H-13'), 3.62-3.67 (m, 1H, one of H-13), 3.52-3.57 (m, 1H, one of H-13'), 3.45 (d, J= $8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ) , $2.59(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-12), 1.90-1.94(\mathrm{~m}, 1 \mathrm{H}$, one of $\mathrm{H}-14), 1.68-1.83(\mathrm{~m}, 5 \mathrm{H}$, one of $\mathrm{H}-14, \mathrm{H}-14$ ' and $\mathrm{H}-15$ ), 0.92 (s, $9 \mathrm{H},{ }^{-}{ }^{\text {t }} \mathrm{Bu}$ );
$\delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 186.89(\mathrm{C}-6), 177.42(\mathrm{C}-8), 170.38(\mathrm{C}-11), 169.58(\mathrm{C}-9), 98.18(\mathrm{C}-2), 97.11(\mathrm{C}-7)$, 77.12 (C-5; in the middle of $\mathrm{CDCl}_{3}$ signals but correlation observed in HMBC), 68.85 (C-4), 56.43 (C-13),
 (C-12);
$m / z(\mathrm{ESI}+) 365.23\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right)$; HRMS (ESI+) calculated for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{NaO}_{5}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 387.1890$, found 387.1883.

A solution of $5 \mathbf{a}$ ( $90 \mathrm{mg}, 0.303 \mathrm{mmol}, 1.0 \mathrm{eq}$.), $p$-anisaldehyde ( $36.6 \mu \mathrm{l}, 0.303 \mathrm{mmol}, 1.0 \mathrm{eq}$.), and dibenzylamine ( $87.3 \mu \mathrm{l}, 0.454 \mathrm{mmol}, 1.5 \mathrm{mmol}$ ) in toluene ( 5 ml ) was heated to $120^{\circ} \mathrm{C}$ for 22 h . The solution was cooled to r.t., diluted with EtOAc and washed with aq. $5 \% \mathrm{HCl}$. The organic layer was then dried with anhydrous $\mathrm{MgSO}_{4}$, filtered and the solvents removed in vacuo to give the crude. Purification via flash column chromatography on silica gel (Eluent: EtOAc/PE, $5 \%$ to $35 \%$ ) gave $\mathbf{6 d}$ ( $25.5 \mathrm{mg}, 18 \%$ ) and $\mathbf{7 d}$ ( $32 \mathrm{mg}, 18 \%$ ).
(2R,5R)-1-Aza-2-(tert-butyl)-5-methoxycarbonyl-6,8-dioxo-7-[1-(N,N'-dibenzyl)-1'-methyl-vinylidene]-3-oxabicyclo[3.3.0]-octane, 8b


$$
\mathrm{R}_{f}=0.45 \text { (1:1 PE:EtOAc); }
$$

Bright yellow oil;
$[\alpha]_{\mathrm{D}}^{20}=+348.7\left(c=1.28\right.$ in $\left.\mathrm{CHCl}_{3}\right)$;
$\mathrm{v}_{\max } / \mathrm{cm}^{-1}$ (film) 1746 (s, C=O), 1695 (s, C=O), 1639 (s, C=O);
$\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.30-7.39(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH}), 7.12-7.18(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 5.15(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13), 4.93(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{H}-2), 4.82(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.77(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13 \mathrm{a}), 4.73\left(\mathrm{~d}, \mathrm{~J}=14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13^{\prime}\right)$, 4.50 (d, J = $16.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13 \mathrm{a}$ ), 3.77 ( $\mathrm{s}, 3 \mathrm{H},-\mathrm{CO}_{2} \mathrm{Me}$ ), 3.47 (d, J = $8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ) , 2.68 (s, 3H, H-12), 0.94 ( -t Bu );
$\delta_{C}\left(125 \mathrm{Mhz}, \mathrm{CDCl}_{3}\right) 187.76(\mathrm{C}-6), 176.39(\mathrm{C}-8), 173.39(\mathrm{C}-11), 169.37(\mathrm{C}-9), 134.38,133.47,129.33$, 129.10, 128.69, 128.61, 128.22126 .39 (ArC), 98.81 (C-7), 98.08 (C-2), 77.06 (C-5, obscured by $\mathrm{CDCl}_{3}$ signals but correlation seen on HSQC), 68.85 (C-4), 61.00 (C-13), 53.71 (C-13a), 52.89 (C-10), 35.34 (-C$\left.{ }^{t} \mathrm{Bu}\right), 24.84\left(-{ }^{\text {t}} \mathrm{Bu}\right), 19.77$ (C-12) ;
$\mathrm{m} / \mathrm{z}(\mathrm{ESI}+) 499.23\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right)$; HRMS (ESI+) calculated for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 477.2384$, found 477.2380 .
(2R,5R)-1-Aza-2-(tert-butyl)-5-methoxycarbonyl-6,8-dioxo-7-[1-(N,N'-dibenzyl)-3-(E)-(4'-methoxyphenyl)allylidene]-3-oxabicyclo[3.3.0]-octane, 7d

$\mathrm{R}_{f}=0.36$ (1:1 PE:EtOAc);
Bright yellow oil;
$[\alpha]_{D}^{20}=+312.7\left(c=1.07\right.$ in $\left.\mathrm{CHCl}_{3}\right)$;
$\mathrm{v}_{\max } / \mathrm{cm}^{-1}$ (film) 1746 (s, C=O), 1695 (s, C=O), 1638 (s, C=O);
$\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.47(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.31-7.36(\mathrm{~m}, 7 \mathrm{H}, \mathrm{ArH}$ and $\mathrm{H}-13), 7.15(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 4 \mathrm{H}$, ArH), 6.89 (d, J = $8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$ ), 6.84 (d, J = $15.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12$ ), 4.96 (s, 1H, H-2), 4.93 (d, J = 14.8 Hz , $2 \mathrm{H}, \mathrm{H}-14$ ), 4.86 (d, J = $8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 4.58-5.60 (broad signal, $2 \mathrm{H}, \mathrm{H}-14$ ), 3.84 (s, 3 H, Ar-OMe), 3.78 (s, $3 \mathrm{H},-\mathrm{CO}_{2} \mathrm{Me}$ ), $3.56\left(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 0.94\left({ }^{-t} \mathrm{Bu}\right)$;
$\delta_{c}\left(125 \mathrm{Mhz}, \mathrm{CDCl}_{3}\right) 187.86$ (C-6), 176.82 (C-8), 169.66 (C-9), 162.10 (ArC-OMe), 149.44 (C-13), 134.12 (broad), 130.52, 128.97, 128.39 (broad), 127.41 (ArC), 116.92 (C-12), 114.42 (ArC), 98.05 (C-2), 97.14 (C-7), 77.62 (C-5), 69.01 (C-4), 55.43 ( $\mathrm{Ar}-\mathrm{OMe}$ ), $52.86\left(-\mathrm{CO}_{2} \mathrm{Me}\right), 35.40\left(-\mathrm{C}^{-t} \mathrm{Bu}\right), 24.88\left({ }^{-} \mathrm{Bu}\right)$.
$\mathrm{m} / \mathrm{z}(\mathrm{ESI}+) 617.29\left([\mathrm{M}+\mathrm{Na}]^{+}, 100 \%\right)$, $595.32\left([\mathrm{M}+\mathrm{H}]^{+}, 65 \%\right)$; HRMS (ESI+) calculated for $\mathrm{C}_{36} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 595.2803, found 595.2797.

In a separate experiment, $\mathbf{8 b}$ ( $26 \mathrm{mg}, 0.055 \mathrm{mmol}, 1.0 \mathrm{eq}$.), $p$-anisaldehyde ( $6.6 \mu \mathrm{l}, 0.055 \mathrm{mmol}, 1.0 \mathrm{eq}$.), dibenzylamine ( $5.2 \mu \mathrm{l}, 0.027 \mathrm{mmol}, 0.5$ eq.) was heated in toluene ( 4 ml ) at $120^{\circ} \mathrm{C}$ for 42 h . The solution was cooled to r.t., diluted with EtOAc and washed with aq. $5 \% \mathrm{HCl}$. The organic layer was then dried with anhydrous $\mathrm{MgSO}_{4}$, filtered and the solvents removed in vacuo to give the crude. ${ }^{1} \mathrm{H}$ NMR shows 8b: 7d = 1:2.5, based on $\mathrm{H}-4$ signals of the product.

## Debenzylation of 7d and hydrolysis of 8



Debenzylation:
To a solution of $7 \mathbf{d}(30 \mathrm{mg}, 0.0504 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) in \mathrm{MeOH}(5 \mathrm{ml})$, was added $10 \% \mathrm{Pd} / \mathrm{C}(10 \%$ of 7 d wt.) and ammonium formate $(31.8 \mathrm{mg}, 0.504 \mathrm{mmol}, 10.0$ eq.). The reaction mixture was stirred at r.t. for 19 h . As there is no conversion based on TLC, the reaction mixture was then heated at $60^{\circ} \mathrm{C}$ for another 28 h , cooled to r.t. and filtered over Celite. The filtrate was evaporated and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added to the residue, followed by filtration to remove the precipitated solids. The filtrate was evaporated to give the crude. Purification via flash column chromatography on silica gel (Eluent: EtOAc/petroleum ether, 20\% to $100 \%$, then $5 \% \mathrm{MeOH} / \mathrm{EtOAc}$ ) gave 15 mg of the presumed $-\mathrm{NH}_{2}$ enamine. Analysis via low resolution mass spectrometry gave the desired mass peak.

Hydrolysis:
$\mathrm{LiOH}(1 \mathrm{mg})$ was added to the presumed enamine ( $15 \mathrm{mg}, 0.036 \mathrm{mmol}$ ) in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ (1:1) (3 ml). The reaction mixture was stirred at r.t. for 2 h . The reaction mixture was then acidified with $10 \%$ aq. HCl , saturated with brine and extracted with EtOAc. The combined organic layers was dried with anhydrous $\mathrm{MgSO}_{4}$, filtered and the solvents removed in vacuo to give the crude which was then purified via flash column chromatography on silica gel (Eluent: EtOAc/petroleum ether, $20 \%$ to $100 \%$, then $5 \% \mathrm{MeOH} / \mathrm{EtOAc}$ ), to give the product ( $<5 \mathrm{mg}$ ). Analysis via low resolution mass spectrometry gave the desired mass peak; ${ }^{1} \mathrm{H}$ NMR suggests enamine hydrolysed due to absence of resonance signals $\sim 10 \mathrm{ppm}$.

## Procedure for Hydrolysis of Piperidine Enamines 7a-c to give 3-enoyl tetramic acids 10a-c

Solid LiOH (1.0 eq.) was added to a solution of 7a-c (1.0 eq.) in THF/H2O (1:1) (approx. concentration 0.020.05 M ) and the deep yellow solution was stirred at r.t for 1.0-1.5 h . (The solution begins as a deep yellow solution and becomes pale yellow in colour when the reaction is completed). The solution was then acidified with $10 \%$ aq. HCl and saturated with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}$, followed by extraction with EtOAc. The combined organic layers was dried with anhydrous $\mathrm{MgSO}_{4}$, filtered and the solvents evaporated to give the desired 3enoyl tetramic acids 10a-c with sufficiently good purity as determined by ${ }^{1} \mathrm{H}$ NMR.
(See below for characterisation of 10a-c).

## General Procedure for Aldol Condensation of Tetramic Acid 5a with Aldehydes

A solution of $5 \mathbf{a}$ ( 1.0 eq.) in anhydrous THF was added to 1.8 M LDA solution ( 2.1 eq .), at $-10^{\circ} \mathrm{C}$ and the solution was stirred at $-10^{\circ} \mathrm{C}$ for 1 h . A solution of aldehyde ( 1.0 eq .) in anhydrous THF was then added dropwise to the reaction mixture at $-10^{\circ} \mathrm{C}$ (Overall approx. concentration $0.07-0.1 \mathrm{M}$, based on 5 a ). The
reaction mixture was allowed to warm to r.t. and left to stir at r.t. for 20 h . The reaction mixture was then quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc. The combined organic layers was dried with anhydrous $\mathrm{MgSO}_{4}$, filtered and the solvents removed in vacuo to give the crude. Purification via flash column chromatography on silica gel (Eluent: EtOAc/PE, 10\% to 100\%) gave the product as a yellow or orange oil. The product was then washed with $10 \%$ aq. HCl to remove chelated metals from the 3 -acyltetramic acid moiety to give a well resolved ${ }^{1} \mathrm{H}$ NMR spectrum.

## (2R,5R)-1-Aza-2-(tert-butyl)-5-methoxycarbonyl-6,8-dioxo-7-[(Z)-1-hydroxy-3-(E)-(4'-

 methylphenyl)allylidene]-3-oxabicyclo[3.3.0]-octane, 10a

$\mathrm{R}_{f}=0.70$ ( $5 \% \mathrm{MeOH} / \mathrm{EtOAc}$ );
$[\alpha]_{\mathrm{D}}^{20}=+66.8\left(c=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)(E: Z=0.48: 1)$;
Bright yellow oil;
$\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$ (film) 1753 (s, C=O), 1707 (s, C=O), 1652 (s, C=O);
Major Tautomer
$\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.98(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13), 7.68(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12), 7.57(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$, Ar-H), $7.24(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 4.87(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.81\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CO}_{2} \mathrm{Me}\right)$,

Major Tautomer
$\delta_{\mathrm{C}}\left(125 \mathrm{Mhz}, \mathrm{CDCl}_{3}\right) 187.99$ (C-6), 180.72 (C-8), 176.99 (C-11), 167.71 (C-9), 147.34 (C-13), 142.92, 131.42, 129.92, 129.64, 129.47 (ArC), 116.12 (C-12), 99.76 (C-7), 98.27 (C-2), 78.31 (C-5), 68.34 (C-4), 53.26 (C-

$\mathrm{m} / \mathrm{z}(\mathrm{ESI}-) 398.17$ ([M-H] $]^{-}, 100 \%$ ); HRMS (ESI-) calculated for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}_{6}\left([\mathrm{M}-\mathrm{H}]^{-}\right) 398.1609$, found 398.1603 .
(2R,5R)-1-Aza-2-(tert-butyl)-5-methoxycarbonyl-6,8-dioxo-7-[(Z)-1-hydroxy-3-(E)-(4'-methoxyphenyl)allylidene]-3-oxabicyclo[3.3.0]-octane, 10b

$\mathrm{R}_{f}=0.58$ ( $5 \% \mathrm{MeOH} / \mathrm{EtOAc}$ );
$[\alpha]_{\mathrm{D}}^{20}=+74.3\left(c=1.04\right.$ in $\left.\mathrm{CHCl}_{3}\right)(E: Z=0.28: 1)$;
Bright orange oil;
$\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$ (film) 1752 (s, C=O), 1705 (s, C=O), 1651 (s, C=O);
Major Tautomer
$\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.97(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13), 7.63(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.60(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-12), 6.94(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.89(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 4.86(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.87(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{OMe})$, $3.81\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CO}_{2} \mathrm{Me}\right), 3.55\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 0.96\left(\mathrm{~s}, 9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}\right)$;

## Major Tautomer

$\delta_{\mathrm{C}}\left(125 \mathrm{Mhz}, \mathrm{CDCl}_{3}\right) 187.99$ (C-6), 180.92 (C-8), 177.06 (C-11), 167.81 (C-9), 162.96 (ArC-OMe), 147.19 (C-13), 131.74, 131.52, 126.92, 114.69 (ArC), 114.59 (C-12), 99.31 (C-7), 98.24 (C-2), 78.30 (C-5), 68.37 ( $\mathrm{C}-4$ ), $55.51(\mathrm{Ar}-\mathrm{OMe}), 53.23(\mathrm{C}-10), 35.19\left(-\underline{-}-{ }^{\mathrm{t}} \mathrm{Bu}\right), 24.66\left(-{ }^{-} \mathrm{Bu}\right)$;
$m / z$ (ESI-) 414.16 ([M-H], $100 \%$ ); HRMS (ESI-) calculated for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}_{7}$ ([M-H]-) 414.1558 , found 414.1560.

## (2R,5R)-1-Aza-2-(tert-butyl)-5-methoxycarbonyl-6,8-dioxo-7-[(Z)-1-hydroxy-3-(E)-(4'-chlorophenyl)allylidene]-3-oxabicyclo[3.3.0]-octane, 10c



$\mathrm{R}_{\mathrm{f}}=0.49$ ( $5 \% \mathrm{MeOH} / \mathrm{EtOAc}$ );
$[\alpha]_{\mathrm{D}}^{20}=+63.6\left(c=0.5\right.$ in $\left.\mathrm{CHCl}_{3}\right)(E: Z=0.26: 1)$;
Bright yellow oil;
$\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$ (film) 1755 (s, $\mathrm{C}=\mathrm{O}$ ), 1711 ( $\mathrm{s}, \mathrm{C}=\mathrm{O}$ ), 1655 ( $\mathrm{s}, \mathrm{C}=\mathrm{O}$ );
Major Tautomer
$\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.92(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13), 7.70(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12), 7.59(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ ), 7.41 (d, J = $8.5 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar}-\mathrm{H}$ ), $4.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 4.87(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.81(\mathrm{~s}, 3 \mathrm{H},-$ $\mathrm{CO}_{2} \mathrm{Me}$ ), 3.55 ( $\mathrm{d}, \mathrm{J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}$ ), 0.96 ( $\mathrm{s}, 9 \mathrm{H},-\mathrm{t}^{\mathrm{t} B u}$ );
$\delta_{\mathrm{C}}\left(125 \mathrm{Mhz}, \mathrm{CDCl}_{3}\right) 188.01$ (C-6), 180.38 (C-8), 176.30 (C-11), 167.56 (C-9), 145.31 (C-13), 137.93, 132.55, 130.36, 129.48 ( ArC ), 117.70 (C-12), 100.35 (C-7), 98.32 (C-2), 78.34 (C-5), 68.29 (C-4), 53.31 (C-10), 35.21 (-C-t ${ }^{-1 \mathrm{Bu}), ~} 24.64$ ( -tBu );

Minor Tautomer
$\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.92(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 3.82\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CO}_{2} \mathrm{Me}\right), 0.94\left(\mathrm{~s}, 9 \mathrm{H},-{ }^{\mathrm{t}} \mathrm{Bu}\right)$; (the other signals from the minor isomer were not resolved)
$\delta_{\mathrm{C}}\left(125 \mathrm{Mhz}, \mathrm{CDCl}_{3}\right) 196.78$ (C-6), 176.77 (C-11), 172.57 (C-8), 167.46 (C-9), 145.97 (C-13), 116.98 (C-12), 102.56 (C-7), 98.45 (C-2), 68.22 (C-4), 53.42 (C-10), 35.35 (-C- ${ }^{\mathrm{B}} \mathrm{Bu}$ ), 24.76 ( ${ }^{-} \mathrm{Bu}$ );
$\mathrm{m} / \mathrm{z}$ (ESI-) 418.21 ([M-H], 100\%); HRMS (ESI-) calculated for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{CINO}_{6}$ ([M-H]) 418.1062, found 418.1063.
(2R,5R)-1-Aza-2-(tert-butyl)-5-methoxycarbonyl-6,8-dioxo-7-[(Z)-1-hydroxy-3-(E)-ethylphenylallylidene]-3-oxabicyclo[3.3.0]-octane, 10d


$\mathrm{R}_{f}=0.39$ (EtOAc);
$[\alpha]_{\mathrm{D}}^{20}=+72.5\left(c=0.91\right.$ in $\left.\mathrm{CHCl}_{3}\right)(E: Z=0.23: 1$, based on $\mathrm{H}-2$ signal);

Orange oil;
$\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$ (film) 1754 (s, $\mathrm{C}=\mathrm{O}$ ), 1711 (s, C=O), 1641 (s, $\mathrm{C}=\mathrm{O}$ );
Major Tautomer
$\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.36$ (d, J=15.8 Hz, 1H, H-13), 7.28-7.33 (m, 2H, Ar-H), 7.19-7.24 (m, 3H, Ar-H), 7.12
(d, J=15.8 Hz, 1H, H-12), $4.87(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 4.84(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.80\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CO}_{2} \mathrm{Me}\right), 3.51(\mathrm{~d}, J$ $\left.=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 2.83-2.86(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-15), 2.67-2.71(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-14), 0.94\left(\mathrm{~s}, 9 \mathrm{H},-{ }^{-} \mathrm{Bu}\right)$;
Major Tautomer
$\delta_{\mathrm{C}}\left(125 \mathrm{Mhz}, \mathrm{CDCl}_{3}\right) 187.85$ (C-6), 180.62 (C-8), 176.77 (C-11), 167.58 (C-9), 152.46 (C-13), 140.29, 128.59, 128.57, 128.29, 126.32 (ArC), 121.43 (C-12), 99.43 (C-7), 98.27 (C-2), 78.25 (C-5), 68.25 (C-4), 53.27 (C10 ), 35.30 ( $-\mathrm{C}-\mathrm{t}^{\mathrm{B}} \mathrm{Bu}$ ), 35.08 (C-14), 34.17 (C-15), 24.63 ( $-{ }^{-} \mathrm{Bu}$ );
$\mathrm{m} / \mathrm{z}$ (ESI-) 412.20 ([M-H]; 100\%); HRMS (ESI-) calculated for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NNaO}_{6}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 436.1731$, found 436.1727.
(2R,5R)-1-Aza-2-(tert-butyl)-5-methoxycarbonyl-6,8-dioxo-7-[(Z)-1-hydroxy-3-(E)-heptylallylidene]-3-oxabicyclo[3.3.0]-octane, 10e

$\mathrm{R}_{f}=0.42$ (EtOAc);
$[\alpha]_{\mathrm{D}}^{20}=+64.9\left(c=1.23\right.$ in $\left.\mathrm{CHCl}_{3}\right)(E: Z=0.24: 1$, based on $\mathrm{H}-2$ signal);
Orange oil;
$\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$ (film) 1755 (s, C=O), 1714 (s, C=O), 1640 (s, C=O);
Major Tautomer
$\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.36(\mathrm{~d}, \mathrm{~J}=15.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13), 7.07(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12), 4.87(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 4.84$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 3.79 ( $\mathrm{s}, 3 \mathrm{H},-\mathrm{CO}_{2} \mathrm{Me}$ ), $3.51\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 2.36$ (apparent quartet, $J=6.9$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}-14), 1.49-1.53(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-15), 1.25-1.36(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}-16, \mathrm{H}-17, \mathrm{H}-18, \mathrm{H}-19), 0.94(\mathrm{~s}, 9 \mathrm{H},-\mathrm{t} \mathrm{Bu}), 0.89(\mathrm{t}$, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-20$ );
Major Tautomer
$\delta_{\mathrm{C}}\left(125 \mathrm{Mhz}, \mathrm{CDCl}_{3}\right) 187.85$ (C-6), 180.77 (C-8), 177.08 (C-11), 167.63 (C-9), 154.33 (C-13), 120.92 (C-12), 101.54 (C-7), 98.25 (C-2), 78.25 (C-5), 68.28 (C-4), 53.24 (C-10), 35.18 (-C- ${ }^{\text {tBu }}$ ), 33.53 (C-14), 31.65, 29.21, 29.00 (C-16, C-17, C-18), 27.95 (C-15), 24.63 ( - -Bu), 22.57 (C-19), 14.04 (C-20);
$\mathrm{m} / \mathrm{z}$ (ESI-) 406.24 ([M-H], $100 \%$ ); HRMS (ESI+) calculated for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{NNaO}_{6}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 430.2200$, found 430.2196.

General Procedure for Synthesis of O-arylether tetramic acids 11a-c
$\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ( 3.0 eq.) and the corresponding phenol ( 1.1 eq .) was added to $\mathbf{5 c}$ ( 1.0 eq.) dissolved in acetonitrile. The solution was stirred at r.t. for 17 h , afterwhich the solvents were evaporated and water and EtOAc were added to the residue. The aqueous layer was acidified with dilute aq. $10 \% \mathrm{aq} . \mathrm{HCl}$ and extracted with EtOAc. The combined organic layers were dried with $\mathrm{MgSO}_{4}$, filtered and evaporated to give the crude. Purification via flash column chromatography on silica gel (Eluent: EtOAc/Petroleum Ether) gave the product, which was then washed with a solution of aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and $10 \%$ aq. HCl , dried with anhydrous $\mathrm{MgSO}_{4}$, filtered and the solvents evaporated.
(2R,5R)-1-Aza-2-(tert-butyl)-5-methoxycarbonyl-6,8-dioxo-7-[(Z)-1-hydroxy-1'-(4"-methylphenoxy)methyl-allylidene]-3-oxabicyclo[3.3.0]-octane, 11a

$\mathrm{R}_{f}=0.37$ (EtOAc);
$[\alpha]_{\mathrm{D}}^{20}=+61.3\left(\mathrm{c}=1.10\right.$ in $\left.\mathrm{CHCl}_{3}\right)$;
Pale orange oil;
$\mathrm{v}_{\max } / \mathrm{cm}^{-1}$ (film) 1755 (s, C=O), 1717 (s, C=O), 1661 (s, C=O), 1286, 1176, 1047 (s, C-O-C);
Major Isomer
$\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.10(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.85(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 5.26$ (d, $J=17.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 12), $5.18\left(\mathrm{~d}, \mathrm{~J}=17.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12\right.$ '), $4.87(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 4.86(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.82\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CO}_{2} \mathrm{Me}\right)$, 3.55 (d, J = $9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ '), 2.30 (s, 3H, Ar-Me), 0.94 (s, 9H, - ${ }^{\text {t } \mathrm{Bu} \text { ); }}$
$\delta_{\mathrm{C}}\left(125 \mathrm{Mhz}, \mathrm{CDCl}_{3}\right) 187.27$ (C-6), 185.92 (C-11), 179.83 (C-8), 166.95 (C-9), 155.55, 131.47, 130.07, 114.60 (Ar-C), 100.80 (C-7), 98.35 (C-2), 78.28 (C-5), 68.06 (C-4), 65.21 (C-12), 53.43 (C-10), 35.16 (-C$\left.{ }^{t} \mathrm{Bu}\right), 24.59\left(-{ }^{\mathrm{t}} \mathrm{Bu}\right), 20.47$ ( $\mathrm{Ar}-\mathrm{Me}$ );
$m / z(E S I-) 402.14$ ([M-H] $]^{-}, 100 \%$ ); HRMS (ESI-) calculated for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{7}\left([\mathrm{M}-\mathrm{H}]^{-}\right) 402.1558$, found 402.1561 .
(2R,5R)-1-Aza-2-(tert-butyl)-5-methoxycarbonyl-6,8-dioxo-7-[(Z)-1-hydroxy-1'-(4''-
methoxyphenoxy)methyl-allylidene]-3-oxabicyclo[3.3.0]-octane, 11b

$\mathrm{R}_{f}=0.33$ ( EtOAc );
$[\alpha]_{\mathrm{D}}^{20}=+24.6\left(\mathrm{c}=0.97\right.$ in $\left.\mathrm{CHCl}_{3}\right)$;
Yellow oil;
$\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$ (film) 1754 (s, C=O), 1716 (s, C=O), 1661 (s, C=O), 1285, 1178 (br), 1045 (br) (s, C-O-C);
Major Isomer
$\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 6.90(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.83(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 5.23(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 12), 5.14 (d, J = $17.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12$ '), 4.87 ( $\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-2$ ), 4.85 (d, J = $8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 3.81 (s, $3 \mathrm{H},-\mathrm{CO}_{2} \mathrm{Me}$ ), 3.77 (s, 3H, Ar-OMe), 3.54 (d, J = $8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 0.94 (s, 9h, - ${ }^{\mathrm{t}} \mathrm{Bu}$ );
$\delta_{\mathrm{C}}\left(125 \mathrm{Mhz}, \mathrm{CDCl}_{3}\right) 187.26(\mathrm{C}-6), 185.94(\mathrm{C}-11), 179.81(\mathrm{C}-8), 166.94(\mathrm{C}-9), 154.79,151.78,116.03$, 114.70 (Ar-C), 100.81 (C-7), 98.35 (C-2), 78.28 (C-5), 68.06 (C-4), 65.96 (C-12), 55.65 (Ar-OMe), 53.43 (C10), 35.15 (- $-{ }^{-1} \mathrm{Bu}$ ), 24.58 (- ${ }^{\mathrm{t} \mathrm{Bu}) ; ~}$
$m / z$ (ESI-) 418.13 ([M-H] ${ }^{-}, 100 \%$ ); HRMS (ESI-) calculated for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{7}\left([\mathrm{M}-\mathrm{H}]^{-}\right) 418.1507$, found 418.1513.
(2R,5R)-1-Aza-2-(tert-butyl)-5-methoxycarbonyl-6,8-dioxo-7-[(Z)-1-hydroxy-1'-(4'"-chlorophenoxy)methyl-allylidene]-3-oxabicyclo[3.3.0]-octane, 11c

$\mathrm{R}_{f}=0.38$ (EtOAc);
$[\alpha]_{\mathrm{D}}^{20}=+20.4\left(\mathrm{c}=0.95\right.$ in $\left.\mathrm{CHCl}_{3}\right)$;
Yellow oil;
$\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$ (film) 1754 (s, C=O), 1716 (s, C=O), 1662 (s, C=O), 1284, 1173, 1045 (s, C-O-C);
Major Isomer
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 11.64(\mathrm{~s}, \mathrm{br}$, enol -OH$), 7.26(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.89(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH})$, 5.28 (d, $J=17.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12), 5.20(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12$ '), $4.87(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 4.86(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-4), 3.82\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CO}_{2} \mathrm{Me}\right), 3.55\left(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime}\right), 0.94\left(\mathrm{~s}, 9 \mathrm{~h},{ }^{\dagger}{ }^{( } \mathrm{Bu}\right)$;
$\delta_{\mathrm{H}}\left(400 \mathrm{MHz}\right.$, Acetone- $\mathrm{d}_{6}$ ) 10.08 (s, br, enol -OH), $7.34(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.01(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH})$, 5.35 (s, 2H, H-12), $4.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 4.77(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.82\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CO}_{2} \mathrm{Me}\right), 3.77(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 0.93\left(\mathrm{~s}, 9 \mathrm{~h},-{ }^{-} \mathrm{Bu}\right)$; [broad signals in ${ }^{13} \mathrm{C}$ ]
$\delta_{\mathrm{H}}\left(700 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 278 \mathrm{~K}\right) 7.30(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.92(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 5.27(\mathrm{~d}, J=17.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-12), 5.22\left(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12^{\prime}\right), 4.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 4.83(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.81(\mathrm{~s}, 3 \mathrm{H},-$ $\mathrm{CO}_{2} \mathrm{Me}$ ), 3.58 (d, J = 9.0Hz, 1H, H-4'), $0.95\left(\mathrm{~s}, 9 \mathrm{H},-{ }^{\mathrm{t}} \mathrm{Bu}\right)$;
$\delta_{\mathrm{C}}\left(175 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 278 \mathrm{~K}\right) 187.20$ (C-6), 184.88 (C-11), 179.78 (C-8), 167.04 (C-9), 156.32, 129.52, 126.73, 116.00 (Ar-C), 101.04 (C-7), 98.24 (C-2), 78.28 (C-5), 67.98 (C-4), 65.19 (C-12), 53.49 (C-10; obscured by $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ signals but HMBC correlation with $\mathrm{C}-9$ seen), 35.06 ( $-\underline{\mathrm{C}}-{ }^{\mathrm{t}} \mathrm{Bu}$ ), $24.35\left(-{ }^{\mathrm{t}} \mathrm{Bu}\right)$;
$m / z$ (ESI-) 422.09 ([M-H], 100\%); HRMS (ESI-) calculated for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{CINO}_{7}$ ([M-H] ${ }^{-}$) 422.1012, found 422.1010.

## Synthesis of Phosphonate Ester 12

NaH used was pre-washed with dry $\mathrm{Et}_{2} \mathrm{O}$.
A suspension of $\mathrm{NaH}\left(87.1 \mathrm{mg}, 2.186 \mathrm{mmol}, 3.5 \mathrm{eq} . ; 60 \%\right.$ in mineral oil) in dry THF ( 3 ml ) was cooled to $0^{\circ} \mathrm{C}$. Diethyl phosphate ( $284 \mu \mathrm{l}, 2.186 \mathrm{mmol}, 3.5$ eq.) was then added dropwise and the resulting suspension was stirred at $0^{\circ} \mathrm{C}$ for $30 \mathrm{~min} .5 \mathrm{~d}(235 \mathrm{mg}, 0.625 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in THF ( 5 ml ) was then added slowly dropwise. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h , then at $\mathrm{r} . \mathrm{t}$. for 16 h . Reaction was quenched with water and extracted with EtOAc. The combined organic layers was dried with anhydrous $\mathrm{MgSO}_{4}$, filtered and the solvents removed in vacuo to give the crude. Purification via flash column chromatography on silica gel (Eluent: EtOAc/PE, 10\% to $100 \%$, then $5 \% \mathrm{MeOH} / \mathrm{EtOAc}$ ) gave $12(228 \mathrm{mg}, 84 \%$ ) as an orange oil, which was then washed with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and $10 \%$ aq. HCl to remove chelated metals from the 3-acyltetramic acid moiety.
(2R,5R)-1-Aza-2-(tert-butyl)-5-methoxycarbonyl-6,8-dioxo-7-[(Z)-1-hydroxy-1'-(diethyl-methylphosphonate)-allylidene]-3-oxabicyclo[3.3.0]-octane, 12

$\mathrm{R}_{f}=0.11$ ( $5 \% \mathrm{MeOH} / \mathrm{EtOAc}$ );
Orange oil;
$[\alpha]_{\mathrm{D}}^{20}=+40.8\left(c=0.88\right.$ in $\left.\mathrm{CHCl}_{3}\right)$;
$v_{\text {max }} / \mathrm{cm}^{-1}$ (film) 1754 (s, C=O), 1718 (s, C=O), 1658 (s, C=O), 1265 (s, P=O), 1047, 1020, 956 (s, RO-P);
$\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 4.86(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 4.83(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.16$ (apparent quintet, $J=7.3 \mathrm{~Hz}, 4 \mathrm{H},-$ $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CO}_{2} \mathrm{Me}\right), 3.55(\mathrm{~d}, J=24.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-12), 3.50(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 1.31(\mathrm{dt}, J=$ $\left.6.9 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 6 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 0.93$ (s, 9 H, - $^{\mathrm{t}} \mathrm{Bu}$ );
$\delta_{\mathrm{C}}\left(125 \mathrm{Mhz}, \mathrm{CDCl}_{3}\right) 187.38(\mathrm{C}-6), 181.25\left(\mathrm{C}-11,{ }^{2} \mathrm{~J}_{\mathrm{PC}}=9.5 \mathrm{~Hz}\right), 179.49(\mathrm{C}-8), 167.14(\mathrm{C}-9), 102.53(\mathrm{C}-7$, $\left.{ }^{3} J_{P C}=6.7 \mathrm{~Hz}\right), 98.32(\mathrm{C}-2), 78.46(\mathrm{C}-5), 68.09(\mathrm{C}-4), 63.05\left(-\mathrm{OCH}_{2} \mathrm{CH}_{3},{ }^{2} \mathrm{~J}_{\mathrm{PC}}=6.7 \mathrm{~Hz}\right), 53.30(\mathrm{C}-10), 35.13$ $\left(-\underline{C}^{-}{ }^{\mathrm{t}} \mathrm{Bu}\right), 32.36\left(\mathrm{C}-12,{ }^{1} \mathrm{~J}_{\mathrm{PC}}=127.8 \mathrm{~Hz}\right), 24.58\left(-{ }^{\mathrm{t} \mathrm{Bu}}\right), 16.24\left(-\mathrm{OCH}_{2} \mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{PC}}=6.7 \mathrm{~Hz}\right)$;
$\delta_{\mathrm{P}}\left(200 \mathrm{Mhz}, \mathrm{CDCl}_{3}\right)$ 19.21;
$\mathrm{m} / \mathrm{z}$ (ESI-) 432.11 ([M-H] ${ }^{-}, 100 \%$ ); HRMS (ESI-) calculated for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{9} \mathrm{P}\left([\mathrm{M}-\mathrm{H}]^{-}\right) 432.1429$, found 432.1431 .

## General Procedure for Horner-Wadsworth-Emmons Olefination Towards 10a-h

Phosphonate 12 ( 1.0 eq.) in dry THF ( 1.5 ml ), was added to solid ${ }^{t} \mathrm{BuOK}$ ( 2.1 eq .) at $0^{\circ} \mathrm{C}$ and the suspension was stirred at $0^{\circ} \mathrm{C}$ for 30 min . The corresponding aldehyde ( 1.1 eq .) in dry THF ( 1.5 ml ) was then added. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min , quenched with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}$, acidified with aq. $10 \% \mathrm{HCl}$ and extracted with EtOAc. The combined organic layers was dried with anhydrous $\mathrm{MgSO}_{4}$, filtered and the solvents removed in vacuo to give the crude. Purification via flash column chromatography on silica gel (Eluent: EtOAc/PE, then $5 \% \mathrm{MeOH} / E t O A c$ ) gave the product, which was then washed with aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and $10 \%$ aq. HCl .
(2R,5R)-1-Aza-2-(tert-butyl)-5-methoxycarbonyl-6,8-7-[(Z)-1-hydroxy-1'-(E,E-phenyldienyl)vinylidene]-dioxo-3-oxabicyclo[3.3.0]-octane, $10 f$


$\mathrm{R}_{f}=0.31$ ( EtOAc );
$[\alpha]_{\mathrm{D}}^{20}=+51.8\left(c=0.88\right.$ in $\left.\mathrm{CHCl}_{3}\right)(E: Z=0.24: 1$, based on $\mathrm{H}-2$ signal);
Orange oil;
$\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$ (film) 1752 (s, C=O), 1705 (s, C=O), 1651 (s, C=O);
Major Tautomer
$\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.78(\mathrm{dd}, \mathrm{J}=15.1 \mathrm{~Hz}, 10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13), 7.51-7.57(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.36-7.48(\mathrm{~m}, 3 \mathrm{H}$, ArH ), $7.24(\mathrm{~d}, \mathrm{~J}=15.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-12), 6.95-7.03(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-14$ and $\mathrm{H}-15), 4.89(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 4.86$ (d, J=8.8 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.81\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CO}_{2} \mathrm{Me}\right), 3.54\left(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right.$ ), 0.96 (s, 9 H, - $^{\mathrm{t}} \mathrm{Bu}$ );
Major Tautomer
$\delta_{C}\left(125 \mathrm{Mhz}, \mathrm{CDCl}_{3}\right) 186.64$ (C-6), 179.68 (C-8), 175.45 (C-11), 166.74 (C-9), 146.41 (C-13), 143.86 (C-15), 129.10, 128.00, 127.09, 126.82 (ArC), 125.91 (C-14), 119.66 (C-12), 98.72 (C-7), 97.25 (C-2), 77.28 (C-5), 67.34 (C-4), 52.25 (C-10), 34.20 ( - C- $^{-t} \mathrm{Bu}$ ), 23.66 ( $-{ }^{\text {t } \mathrm{Bu}) \text { ); }}$
$\mathrm{m} / \mathrm{z}($ ESI- $) 410.17$ ([M-H] $]^{-}, 100 \%$ ); HRMS (ESI-) calculated for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NO}_{6}\left([\mathrm{M}-\mathrm{H}]^{-}\right) 410.1609$, found 410.1603.
(2R,5R)-1-Aza-2-(tert-butyl)-5-methoxycarbonyl-6,8-7-[(Z)-1-hydroxy-3-(E)-(2'-furan)allylidene]-dioxo-3-oxabicyclo[3.3.0]-octane, 10g

$\mathrm{R}_{f}=0.32$ (EtOAc);
Dark yellow oil;
$[\alpha]_{\mathrm{D}}^{20}=+102.9\left(c=0.50\right.$ in $\left.\mathrm{CHCl}_{3}\right)$;
$\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$ (film) 1752 (s, C=O), 1704 (s, C=O), 1651 (s, C=O), 1614, 1589, 1537, 1483, 1387, 1368 (s, furan $\mathrm{C}=\mathrm{C}$ ) ;
Major Tautomer
$\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.72$ (d, $\left.J=15.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13\right), 7.61(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-17), 7.54(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}$, H-12), 6.86 (d, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-15$ ), 6.56 (dd, $J=1.6,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-16$ ), 4.89 (s, 1H, H-2), 4.86 (d, J = 9.1 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), $3.80\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CO}_{2} \mathrm{Me}\right), 3.54$ (d, J = $9.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), $0.95\left(\mathrm{~s}, 9 \mathrm{H}\right.$, -t $^{-\mathrm{Bu}}$ );
$\delta_{C}\left(125 \mathrm{Mhz}, \mathrm{CDCl}_{3}\right) 187.71(\mathrm{C}-6), 180.62(\mathrm{C}-8), 176.26(\mathrm{C}-11), 167.71(\mathrm{C}-9), 151.28(\mathrm{C}-14), 147.06(\mathrm{C}-17)$, 132.11 (C-13), 118.81 (C-15), 114.81 (C-12), 113.38 (C-16), 99.84 (C-7), 98.24 (C-2), 78.28 (C-5), 68.33 (C4), 53.24 (C-10), 35.20 ( $-\underline{C}^{-t} \mathrm{Bu}$ ), 24.65 ( $-{ }^{-t \mathrm{Bu}) \text {; }}$
$\mathrm{m} / \mathrm{z}(\mathrm{ESI}+) 398.13\left(\left[\mathrm{M}+\mathrm{Na}^{+}, 63 \%\right), 374.13([\mathrm{M}-\mathrm{H}]-, 47 \%) ;\right.$ HRMS (ESI+) calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NNaO}_{7}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$398.1210, found 398.1215.
(2R,5R)-1-Aza-2-(tert-butyl)-5-methoxycarbonyl-6,8-7-[(Z)-1-hydroxy-3-(E)-(2'-thiophene)allylidene]-dioxo-3-oxabicyclo[3.3.0]-octane, 10h

$\mathrm{R}_{f}=0.39$ (EtOAc);
Dark yellow oil;
$[\alpha]_{\mathrm{D}}^{20}=+148.2\left(c=0.48\right.$ in $\left.\mathrm{CHCl}_{3}\right)$;
$\mathrm{v}_{\max } / \mathrm{cm}^{-1}$ (film) 1752 ( $\mathrm{s}, \mathrm{C}=\mathrm{O}$ ), 1705 ( $\mathrm{s}, \mathrm{C}=\mathrm{O}$ ), 1651 ( $\mathrm{s}, \mathrm{C}=\mathrm{O}$ ), 1604, 1570, 1503, 1482, 1383, 1355 (s, thiophene $\mathrm{C}=\mathrm{C}$ ) ;
Major Tautomer
$\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.09(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-13), 7.57(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-17), 7.48(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-12$ ), 7.45 (d, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-15$ ), 7.13 (dd, $J=3.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-16$ ), 4.89 (s, 1H, H-2), 4.86 (d, J=8.8 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 3.81 (s, 3H, $-\mathrm{CO}_{2} \mathrm{Me}$ ), 3.54 (d, J = $8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ ), 0.95 (s, $9 \mathrm{H},-\mathrm{t}^{\mathrm{t}} \mathrm{Bu}$ );
$\delta_{\mathrm{C}}\left(125 \mathrm{Mhz}, \mathrm{CDCl}_{3}\right) 187.85$ (C-6), 180.64 (C-8), 176.24 (C-11), 167.68 (C-9), 139.98 (C-14), 139.32 (C-13), 133.70 (C-15), 132.11 (C-17), 128.82 (C-16), 115.82 (C-12), 99.64 (C-7), 98.27 (C-2), 78.31 (C-5), 68.34 (C4), 53.27 (C-10), 35.19(-ㄷ-- ${ }^{\text {tBu }}$ ), 24.65 (-tBu);
$\mathrm{m} / \mathrm{z}(\mathrm{ESI}-) 390.11$ ([M-H] $\left.{ }^{-}, 55 \%\right)$; HRMS (ESI-) calculated for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{6} \mathrm{~S}$ ([M-H] ${ }^{-}$) 390.1017, found 390.1025.

## Bioassay Procedures

Antibacterial activity was assessed using hole-plate bioassay, with agar (Brain Heart Infusion Agar) plates inoculated with either $S$. aureus DS267 or $E$. coli X580. A calibration curve was obtained using Cephalosporin C (CepcC) for each of the bacteria species.
$100 \mu \mathrm{l}$ of each sample at the respective concentrations were loaded as $70 \% \mathrm{DMSO} / \mathrm{H}_{2} \mathrm{O}$ solutions into 10 mm wells, and the agar plates incubated at $37^{\circ} \mathrm{C}$ for 18 h .

## An Example of Bioassay Calibration

Each of the reference solutions were prepared by using the required amount of the respective stock solutions, and made up to a final volume of $100 \mu \mathrm{l}$ with distilled water.
S.aureus ( $1 \mathrm{mg} / \mathrm{ml}$ stock solution)

| Reference Solution | No. of moles of CepcC (nmol/well) | Ig (no. of moles of CepcC nmol/well) | Zone size (mm) |
| :---: | :---: | :---: | :---: |
| $40 \mu \mathrm{l}+60 \mu \mathrm{l} \mathrm{H}_{2} \mathrm{O}$ <br> ( $40 \mu \mathrm{~g}$ of CepcC) | 96.29 | 1.984 | 13.5 |
| $60 \mu \mathrm{l}+40 \mu \mathrm{l} \mathrm{H}_{2} \mathrm{O}$ <br> ( $60 \mu \mathrm{~g}$ of CepcC) | 144.44 | 2.160 | 16.0 |
| $80 \mu \mathrm{l}+20 \mu \mathrm{l} \mathrm{H}_{2} \mathrm{O}$ <br> ( $80 \mu \mathrm{~g}$ of CepcC) | 192.59 | 2.285 | 19.0 |
| $\begin{gathered} 100 \mu \mathrm{l}+0 \mu \mathrm{l} \mathrm{H}_{2} \mathrm{O} \\ (100 \mu \mathrm{~g} \text { of CepcC }) \end{gathered}$ | 240.73 | 2.382 | 21.5 |


E.coli $(100 \mu \mathrm{~g} / \mathrm{ml}$ and $10 \mu \mathrm{~g} / \mathrm{ml}$ stock solution)

| Stock <br> Solution used | Reference <br> Solution | No. Of moles of <br> CepcC (nmol/well) | Ig (no. of moles of <br> CepcC nmol/well) | Zone size <br> (mm) |
| :---: | :---: | :---: | :---: | :---: |
| $10 \mu \mathrm{~g} / \mathrm{ml}$ | $40 \mu \mathrm{l}+60 \mu \mathrm{l} \mathrm{H}_{2} \mathrm{O}$ | 0.9629 | -0.0164 | 19 |
|  | $60 \mu \mathrm{l}+40 \mu \mathrm{l} \mathrm{H}_{2} \mathrm{O}$ | 1.4444 | 0.1597 | 22 |
|  | $80 \mu \mathrm{l}+20 \mu \mathrm{l} \mathrm{H}_{2} \mathrm{O}$ | 1.9259 | 0.2846 | 25 |
|  | $100 \mu \mathrm{l}+0 \mu \mathrm{l} \mathrm{H}_{2} \mathrm{O}$ | 2.4073 | 0.3815 | 30 |
|  | $20 \mu \mathrm{l}+80 \mu \mathrm{l} \mathrm{H}_{2} \mathrm{O}$ | 4.8146 | 0.6826 | 31 |
|  | $40 \mu \mathrm{l}+60 \mu \mathrm{l} \mathrm{H}_{2} \mathrm{O}$ | 9.6293 | 0.9836 | 36 |
|  | $60 \mu \mathrm{l}+40 \mu \mathrm{l} \mathrm{H}_{2} \mathrm{O}$ | 14.4439 | 1.1597 | 38 |
|  | $80 \mu \mathrm{l}+20 \mu \mathrm{l} \mathrm{H}_{2} \mathrm{O}$ | 19.2585 | 1.2846 | 42 |
|  | $100 \mu \mathrm{l}+0 \mu \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ | 24.07318 | 1.3815 | 44 |



