Synthesis of the enantiomers of XYLNAc and LYXNAc: comparison of β -N-acetyl hexosaminidase inhibition by the 8 stereoisomers of 2-N-acetylamino-1,2,4-trideoxy-1,4iminopentitols

Elizabeth V. Crabtree,^{*a,b*} R. Fernando Martínez,^{*b,d*} Shinpei Nakagawa,^{*c*} Isao Adachi,^{*c*} Terry D. Butters,^{*a*} Atsushi Kato,*^{*c*} George W. J. Fleet^{*b*} and Andreas F. G. Glawar*^{*a,b*}

^a Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom. Fax: +44 (0)1865 275216; Tel: +44 (0)1865 275342. ^b Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom. Fax: +44 (0)1865 285002; Tel: +44 (0)1865 275645; ^c Department of Hospital Pharmacy, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan. ^d Departamento de Química Orgánica e Inorgánica, QUOREX Research Group, Universidad de Extremadura, Avda. Elvas s/n, E-06006 Badajoz, Spain.

Electronic Supplementary Information

NMR Spectra	2
•	
Enzyme selectivity data	19

¹³C NMR spectrum for **29L** (100 MHz, CDCl₃)

¹³C NMR spectrum for **30L** (100 MHz, CDCl₃)

¹³C NMR spectrum for **31L** (100 MHz, CD₃CN)

¹H NMR spectrum for **32D** (400 MHz, CDCl₃)

¹³C NMR spectrum for **32D** (100 MHz, CDCl₃)

¹H NMR spectrum for **33D** (400 MHz, MeOD)

¹³C NMR spectrum for **33D** (100 MHz, MeOD)

¹H NMR spectrum for **21D** (400 MHz, MeOD)

¹³C NMR spectrum for **21D** (100 MHz, MeOD)

¹H NMR spectrum for **20D** (400 MHz, D_2O)

13 C NMR spectrum for **20D** (100 MHz, D₂O)

¹³C NMR spectrum for **40L** (100 MHz, CDCl₃)

 13 C NMR spectrum for **36L** (100 MHz, (CD₃)₂CO)

¹H NMR spectrum for **41L** (400 MHz, CDCl₃)

¹³C NMR spectrum for **41L** (100 MHz, CDCl₃)

¹H NMR spectrum for **42L** (400 MHz, CD₃CN)

¹³C NMR spectrum for **42L** (100 MHz, CD₃CN)

¹H NMR spectrum for **43L** (400 MHz, CDCl₃)

¹³C NMR spectrum for **43L** (100 MHz, CDCl₃)

¹H NMR spectrum for **44D** (400 MHz, CDCl₃)

¹³C NMR spectrum for **44D** (100 MHz, CDCl₃)

14

¹H NMR spectrum for **45D** (400 MHz, CDCl₃)

¹³C NMR spectrum for **45D** (100 MHz, CDCl₃)

¹H NMR spectrum for **46D** (400 MHz, CDCl₃)

¹³C NMR spectrum for **46D** (100 MHz, CDCl₃)

¹H NMR spectrum for **23D** (400 MHz, MeOD)

¹³C NMR spectrum for **23D** (100 MHz, MeOD)

¹H NMR spectrum for **22D** (400 MHz, MeOD)

¹³C NMR spectrum for **22D** (100 MHz, MeOD)

Table S1. Concentration of iminosugars	giving 50 % inhibition	of various glycosidases
--	------------------------	-------------------------

	 IC ₅₀ (μM)			
		HOH ₂ C _{m,} HO [*] NHAC	HOH ₂ C	HOH ₂ C _M N HO ^N NHAc
	20D	20L	22D	22L
Enzyme	D-xylo	L <i>-xylo</i>	D- <i>lyxo</i>	L <i>-lyxo</i>
α-Glucosidase				
Yeast	NI (4.0%)	NI (15.4%)	NI (14.1%)	NI (0.8%)
β-Glucosidase				
Almond	NI (19.7%)	NI (8.8%)	NI (9.0%)	NI (0.9%)
α-Galactosidase				
Coffee beans	NI (27.1%)	NI (9.6%)	NI (11.7%)	NI (11.9%)
β-Galactosidase				
Bovine liver	NI (7.4%)	NI (3.7%)	NI (2.7%)	NI (12.6%)
α-Mannosidase				
Jack beans	NI (1.3%)	NI (0%)	NI (0%)	NI (0%)
β-Mannosidase				
Snail	NI (0%)	NI (0%)	NI (0%)	NI (1.7%)
α-L-Rhamnosidase				
P. decumbens	NI (0%)	NI (2.3%)	NI (1.2%)	NI (6.2%)

 $^{a}\,NI$: No inhibition (less than 50% inhibition at 1000 $\mu M).$

 $^{\text{b}}$ (~) : inhibition % at 1000 μM

Table S2. Concentra	tion of iminosugars	giving 50 % inhibition	of various glycosidases
---------------------	---------------------	------------------------	-------------------------

	 IC _{s0} (μM)			
	HOH ₂ C HO NHAC	HOH ₂ C ^{***} , N HO NHAc	HOH ₂ C HONHAC	HOH ₂ C ^{***} , N HO [®] NHAc
Enzyme	21D NBn-D-xylo	21L NBn-L-xylo	23D NBn-D- <i>lyxo</i>	23L NBn-L- <i>lyxo</i>
α-Glucosidase				
Yeast	NI ^a (4.7%) ^b	NI (10.1%)	NI (0%)	NI (0.8%)
β-Glucosidase				
Almond	NI (4.4%)	NI (6.0%)	NI (4.1%)	NI (0%)
α -Galactosidase				
Coffee beans	NI (27.1%)	NI (4.4%)	NI (0%)	NI (2.2%)
β-Galactosidase				
Bovine liver	NI (16.0%)	NI (22.2%)	NI (40.2%)	NI (16.1%)
α-Mannosidase				
Jack bean	NI (1.8%)	NI (0%)	NI (6.3%)	NI (2.6%)
β-Mannosidase				
Snail	NI (0%)	NI (5.2%)	NI (0%)	NI (3.0%)
α-L-Rhamnosidase				
P. decumbens	NI (1.8%)	NI (0%)	NI (13.7%)	NI (0%)

 a NI : No inhibition (less than 50% inhibition at 1000 $\mu M).$

 $^{\text{b}}$ (~) : inhibition % at 1000 μM