Hydroxyl Radical Induced Oxidation of Theophylline in Water: A Kinetic and Mechanistic Study

M. M. Sunil Paul^a, U. K. Aravind^b, G. Pramod^c, A. Saha^d, and C. T. Aravindakumar^{a,e}

^aSchool of Environmental Sciences, Mahatma Gandhi University, Kottayam. ^bAdvanced Centre of Environmental Studies and Sustainable Development, Mahatma Gandhi University, Kottayam. ^cDepartment of Chemistry, N.S.S. Hindu College, Changanachery, India ^dUGC-DAE Consortium for Scientific Research, Kolkata Centre, Kolkata. ^eInter University Instrumentation Centre, Mahatma Gandhi University, Kottayam.

(Electronic Supplementary Information)

Radical	pH	λ _{max} / nm	$k_2 / 10^9 dm^3 mol^{-1} s^{-1}$
•ОН	5.9	330, 500	8.22 ± 0.03
	10.2	340	7.11 ± 0.07
SO₄ ^{●−}	6	350	7.51 ± 0.04
	9.3	350	5.37 ± 0.03
N ₃ •	4	350	4.05 ± 0.02
	6.1	340	7.61 ± 0.02
	9.6	350	8.42 ± 0.06
0 ^{•–}	~ 13	320, 350	1.95 ± 0.02

Table S1 - The spectral and kinetic parameters of the reaction of ${}^{\bullet}OH$, $SO_4 {}^{\bullet-}$, $N_3 {}^{\bullet}$ and $O^{\bullet-}$ with the ophylline

Figure S1 – MS/MS spectrum of 1-methylxanthine (ii)

Figure S2 - MS/MS spectrum of 3-methylxanthine (iii)

Figure S3 - MS/MS spectrum of 1,3-dimethyluric acid (i)

Figure S4 - Mass spectrum of 1,3-dimethyluric acid (i) in positive ionization mode

Figure S5 - Mass spectrum of 1-methylxanthine (ii) in negative ionization mode

Figure S6 - Mass spectrum of 3-methylxanthine (iii) in positive ionization mode

Figure S7 - MS/MS spectrum of 1-dimethyluric acid (iv) and 3-dimethyluric acid (v) in positive ionization mode

Figure S8 - Mass spectrum of xanthine (vi) in positive ionization mode

Figure S9 - Mass spectrum of 1/3-methyl tetrahydro-1H-purine-2,6-dione (vii) in negative ionization mode

Figure S10 - Mass spectrum of 8-hydroxy-1/3-methyl-3,7,8,9-tetrahydro-1H-purine-2,6-dione (viii) in positive ionization mode

Figure S11 - Mass spectrum of 5/6-amino derivative of 5/6-hydroxy-1,3-dimethylpyrimidine-2,4(1H,3H)-dione (**ix**) in positive ionization mode

Figure S12 - Mass spectrum of 5/6-amino derivative of 1/3- methylpyrimidine-2,4(1H,3H)-dione (x) in positive ionization mode

Figure S13 - Mass spectrum of 5/6-aminopyrimidine-2,4(1H,3H)-dione (**xi**) and 5/6-amino derivative of 5/6hydroxydihydropyrimidine-2,4(1H,3H)-dione (**xii**) in positive ionization mode

Figure S14 - Mass spectrum of 5/6-aminopyrimidine-2,4(1H,3H)-dione (xi) in negative ionization mode

Figure S15 - Mass spectrum of 1/3-methylpyrimidine-2,4(1H,3H)-dione (xiii) in positive ionization mode

Figure S16 - Mass spectrum of 5,6-diaminopyrimidine-2,4(1H,3H)-dione (xiv) in positive ionization mode

Figure S17 - Decay traces at 320 nm (Red) and 350 nm (Black) in the case of reaction of $O^{\bullet-}$ with the ophylline.

Figure S18 - Transient absorption spectrum of theophylline $(1 \times 10^{-4} \text{ mol dm}^{-3})$ recorded during its reaction with SO₄^{•-} after (•) 347 μ s (pH 6.0) and with N₃[•] after (•) 328 μ s (pH 6.1).

Figure S19 - UV-Vis Spectrum of theophylline at pH 6 and 10.1.

Figure S20- Plot of absorbance of transient at 330 nm obtained by the reaction of theophylline with •OH against pH.

Figure S21 - Percentage degradation of theophylline in N₂ purged (Red) and aerated (Black) conditions as a function of time